1. CAPÍTULO 7

Distribuições conjuntas.

Neste capítulo atribuimos a um ponto amostral valores de várias variáveis aleatórias e analisamos a sua distribuição conjunta. Por praticidade desenvolvemos a teoria para vetores de variáveis aleatórias bidimensionais mas os resultados estendem-se para o caso multidimensional de dimensão finita.

1.1. **Distribuições conjuntas discretas.** Começamos com um exemplo:

Exemplo 1.1. Um investidor simula uma sequência de sucessos, ou fracassos, anuais de suas aplicações por um período de três anos. Para isso supõe que a probabilidade de sucesso em determinado ano é p, 0 , independente dos resultados nos outros anos. Considera três variáveis de interesse:

A variável aleatória X, que indica se houve sucesso ou fracasso no primeiro ano. O sucesso (S) indicado pelo algarismo 1 e o fracasso (F) pelo algarismo 0;

a variável aleatória Y que indica o número de sucessos nos três anos e a variável aleatória

Z, indicando o número de mudanças (SF ou FS) que ocorreram durante os três anos.

A configuração dos resultados possíveis com as respectivas probabilidades é a distribuição conjunta tridimensional que apresenta os valores (x,y,z) do vetor aleatório (X,Y,Z) com suas respectivas probabilidades

$$P(X = x, Y = y, Z = z) = P(\{X = x\} \cap \{Y = y\} \cap \{Z = z\}),$$

por exemplo $P(X = 1, Y = 2, Z = 2) = p^{2}(1 - p)$.

Tabela 7.1- Distribuição tridimensional de (X, Y, Z)

$Realiza c\~ao$	(x, y, z)	P(X = x, Y = y, Z = z)
(S, S, S)	(1, 3, 0)	p^3
(S, S, F)	(1, 2, 1)	$p^2(1-p)$
(S, F, S)	(1, 2, 2)	$p^{2}(1-p)$
(F, S, S)	(0, 2, 1)	$p^{2}(1-p)$
(S, F, F)	(1, 1, 1)	$p(1-p)^2$
(F, S, F)	(0, 1, 2)	$p(1-p)^2$
(F, F, S)	(0, 1, 1)	$p(1-p)^2$
(F, F, F)	(0, 0, 0)	$(1-p)^3$

As distribuições unidimensionais das variáveis $X, Y \in Z$ são obtidas fixando o valor da variável de interesse e somando sobre os valores das outras variáveis. Analiticamente temos

$$P(X = x) = \sum_{y} \sum_{z} P(X = x, Y = y, Z = z).$$

Por exemplo

$$P(X = 1) = P(X = 1, Y = 3, Z = 0) + P(X = 1, Y = 2, Z = 1) + P(X = 1, Y = 2, Z = 2) + P(X = 1, Y = 1, Z = 1) = p^3 + 2p^2(1-p) + p(1-p)^2 = p[p^2 + 2p(1-p) + (1-p)^2] = p[p + (1-p)]^2 = p.$$

A probabilidade do evento complementar é P(X = 0) = 1 - p. O resultado era esperado desde que X é uma variável aleatória de Bernoulli que tem média E[X] = p e variância Var(X) = p(1-p).

Obtemos a distribuição da variável Y de maneira semelhante e a sua função de probabilidade é

Resumindo, $P(Y=k)=\binom{3}{k}p^k(1-p)^{3-k}$ para $k\in\{0,1,2,3\}$. Isto é, o número de sucessos em 3 ensaios de Bernoulli, independentes e identicamente distribuidos, com probabilidade de sucesso igual a p, tem distribuição binomial com média E[Y] = 3p e variância Var(Y) =3p(1-p).

A variável Z assume os valores 0, 1, 2 com probabilidades

$$P(Z=0) = p^3 + (1-p)^3;$$

$$P(Z = 0) = p^{3} + (1 - p)^{3};$$

$$P(z = 1) = 2p^{2}(1 - p) + 2p(1 - p)^{2} = 2p(1 - p);$$

$$P(Z = 2) = p^{2}(1 - p) + p(1 - p)^{2}.$$

$$P(Z = 2) = p^{2}(1-p) + p(1-p)^{2}.$$

A sua esperança é

$$E[Z] = 2p(1-p) + 2p^{2}(1-p) + 2p(1-p)^{2} = 4p(1-p)$$

e sua variância

$$Var(Z) = E[Z^2] - E[Z]^2 = 6p(1-p) - 16p^2(1-p)^2 = 6p - 22p^2 + 32p^3 - 16p^4.$$

A distribuição conjunta de (X,Z) pode ser representada por uma tabela de dupla entrada

Tabela 7.2- Distribuição bidimensional de (X, Z)

X, Z	0	1	2	total
0	$(1-p)^3$	p(1 - p)	$p(1-p)^2$	1-p
1	p^3	p(1-p)	$p^2(1-p)$	p
total	$p^3 + (1-p)^3$	2p(1-p)	$pr(1-p) + p(1-p)^2$	1

No seu interior a tabela nos fornece a distribuição conjunta das variáveis (X, Z), isto é, os valores

$$P(X = x, Z = z) = P(\{X = x\} \cap \{Z = z\})$$

para todos os valores de X e de Z representados por x e z respectivemente. As suas margens fornecem as distribuições (marginais) de X e de Z.

Em uma primeira simulação o investidor imaginou o menos pior, ou seja, considerou a probabilidade de sucesso igual a $\frac{1}{2}$. A tabela torna-se

Tabela 7.3- Distribuição bidimensional de (X, Z), $p = \frac{1}{2}$

X, Z	0	1	2	total
0	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{2}$
1	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{2}$
total	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	1

Em seguida, para um cenário de sucesso na carreira considerou $p = \frac{2}{3}$, projetando

Tabela 7.4- Distribuição bidimensional de (X, Z), $p = \frac{2}{3}$

X, Z	0	1	2	total
0	$\frac{1}{27}$	$\frac{6}{27}$	$\frac{2}{27}$	$\frac{1}{3}$
1	$\frac{8}{27}$	$\frac{6}{27}$	$\frac{74}{27}$	$\frac{2}{3}$
total	3	$\frac{4}{9}$	$\frac{2}{9}$	1

Quando estudamos a distribuição conjunta de variáveis aleatórias desejamos conhecer se, de alguma maneira, uma variável esta associada às outras. Um conceito essencial para uma análise neste sentido é o de distribuição condicional fundamentada no conceito de eventos condicionais: Se A e B são eventos com P(B)>0, a probabilidade condicional do evento A dado a ocorrência de B é $P(A|B)=\frac{P(A\cap B)}{P(B)}$.

Definição 1.2. Sejam X e Y variáveis aleatórias discretas que assumem valores $x_1, ..., x_n$ e $y_1, ..., y_m$ respectivamente. Se $P(X = x_i) >$ 0, a probabilidade condicional de $\{Y=y_j\}$ dado $\{X=x_i\}$, denotada por $P(Y = y_i | X = x_i)$ é definida por

$$P(Y = y_j | X = x_i) = \frac{P(X = x_i, Y = y_j)}{P(X = x_i)}, \quad 1 \le j \le m.$$

Podemos observar que para x_i fixado com $P(X = x_i) > 0$, os pares $(y_i, P(Y = y_i | X = x_i))$ $1 \le j \le m$ caracterizam a distribuição de probabilidade da variável aleatória condicional $(Y|X=x_i)$. Observe

$$\sum_{j=1}^{m} P(Y = y_j | X = x_i) = \sum_{j=1}^{m} \frac{P(X = x_i, Y = y_j)}{P(X = x_i)} =$$

$$\frac{1}{P(X=x_i)} \sum_{j=1}^{m} P(X=x_i, Y=y_j) = \frac{P(X=x_i)}{P(X=x_i)} = 1.$$

Na suposição de que $p=\frac{2}{3}$, a probabilidade condicional de termos uma única mudança, condicionada que se obteve sucesso no primeiro ano é:

$$P(Z=1|X=1) = \frac{P(X=1,Z=1)}{P(X=1)} = \frac{\frac{6}{27}}{\frac{2}{3}} = \frac{6}{18}.$$

A distribuição condicional da variável Z condicionada ao valor da variável X = 1 tem função de probabilidade:

$$\begin{array}{c|ccccc} Z|X=1 & 0 & 1 & 2 \\ \hline P(Z=z|X=1) & \frac{8}{18} & \frac{6}{18} & \frac{4}{18} \\ \end{array}$$

Observe que $\sum_{k=0}^{2} P(Z=k|X=1) = 1$. A esperança da variável (Z|X=1) é

$$E[Z|X=1] = \frac{6}{18} + \frac{8}{18} = \frac{14}{18}$$

e a variância da variável (Z|X=1) é

$$Var(Z|X=1) = \frac{22}{18} - \frac{196}{324} = \frac{200}{324},$$

pois
$$E[Z^2|X=1] = \frac{6}{18} + \frac{16}{18} = \frac{22}{18}$$
.

pois $E[Z^2|X=1]=\frac{6}{18}+\frac{16}{18}=\frac{22}{18}$. Com argumento análogo concluimos que a distribuição condicional da variável Z condicionada ao valor da variável X=0 tem função de probabilidade:

Z X=0	0	1	2
P(Z=z X=0)	$\frac{1}{9}$	$\frac{6}{9}$	$\frac{2}{9}$

$$E[Z|X=0] = \frac{10}{9}, E[Z^2|X=0] = \frac{14}{9} e Var(Z|X=0) = \frac{56}{81}.$$

Observe que uma variável Y quando condicionada aos valores de uma variável X é função de tais valores e como função de X é uma variável aleatória. Esta variável aleatória denotada por $\varphi(X) = E[Y|X]$ assume valores E[Y|X=x] com respectivas probabilidades P(X=x).

$$\begin{array}{c|cccc} E[Y|X] & E[Y|X=x_1] & \dots & E[Y|X=x_n] \\ \hline P(E[Y|X]=E[Y|X=x]) & P(X=x_1) & \dots & P(X=x_n) \\ \hline \end{array}$$

Portanto ao calcular $E\{E[Y|X]\}$ temos

$$E\{E[Y|X]\} = \sum_{j=1}^{m} E[Y|X = x_j]P(X = x_j) = \sum_{j=1}^{m} \sum_{i=1}^{n} y_i P(Y = y_i|X = x_j)]P(X = x_j) + \sum_{j=1}^{m} \sum_{i=1}^{n} y_i \frac{P(Y = y_i, X = x_j)}{P(X = x_j)}]P(X = x_j) = \sum_{j=1}^{m} \sum_{i=1}^{n} y_i P(Y = y_i, X = x_j) = \sum_{i=1}^{n} y_i P(Y = y_i) = E[Y].$$

Pode-se provar também que

$$Var(X) = E[Var(X|Y)] + Var(E[Y|X]).$$

Podemos utilizar os cálculos anteriores para, no caso em que $p = \frac{2}{3}$, exemplificarmos:

$$E\{E[Z|X]\} = E[Z|X = 0]P(X = 0) + E[Z|X = 1]P(X = 1) = \frac{10}{9} \frac{1}{3} + \frac{14}{18} \frac{2}{3} = \frac{20 + 28}{54} = \frac{8}{9} = E[Z].$$

Um tópico importante na análise das distribuições conjuntas de variáveis aleatórias é o estudo da independência das mesmas.

Definição 1.3. Duas variáveis aleatórias X e Y assumindo valores nos conjuntos $\{x_1, ..., x_n\}$ e $\{y_1, ..., y_m\}$, respectivamente, são independentes se, e somente se,

$$P(X = x_i, Y = y_j) = P(X = x_i)P(Y = y_j)$$

para quaiquer possiveis pares de valores $(x_i, y_i), 1 \le i \le n \ 1 \le j \le m$.

As variáveis aleatórias X e Z acima, quando consideramos $p=\frac{1}{2},$ tem distribuição conjunta representada por

Tabela 7.5- Distribuição bidimensional de (X, Z), $p = \frac{1}{2}$

$\overline{X,Z}$	0	1	2	total
0	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{2}$
1	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{2}$
total	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	1

E podemos notar que a probabilidade conjunta é igual ao produto de suas marginais para todos os valores possíveis, por exemplo

$$P(X = 1, Z = 1) = \frac{2}{8} = \frac{1}{2} = P(X = 1)P(z = 1).$$

Portanto as variáveis X e Z são independentes.

Se consideramos $p = \frac{2}{3}$ temos

$$P(X = 1, Z = 1) = \frac{6}{27} \neq \frac{24}{39} = P(X = 1)P(z = 1)$$

e podemos afirmar que, neste caso, X e Z não são independentes.

Podemos generalizar a definição de independência para um vetor de variáveis aleatórias com dimensões maiores. Vejamos o caso n=3.

Definição 1.4. As variáveis aleatórias X_1, X_2 e X_3 são independentes se, e sómente se

$$P(X_1 = x_1, X_2 = x_2, X_3 = x_3) = P(X_1 = x_1)P(X_2 = x_2)P(X_3 = x_3),$$

$$P(X_1 = x_1, X_2 = x_2) = P(X_1 = x_1)P(X_2 = x_2),$$

$$P(X_1 = x_1, X_3 = x_3) = P(X_1 = x_1)P(X_3 = x_3)$$
e

$$P(X_2 = x_2, X_3 = x_3) = P(X_2 = x_2)P(X_3 = x_3).$$

Operação entre variáveis aleatórias

Operações com variáveis aleatórias resultam em variáveis aleatórias. Portanto, se X e Y são variáveis aleatórias, as operações \sqrt{X} , $\ln Y$, X+Y, X.Y são variáveis aleatórias e como tais, cada uma tem sua função de distribuição, sua média, sua variância e outras medidas.

A função de probabilidade induzida pela variável aleatória g(X,Y) é caracterizada por:

$$P_{g(X,Y)}(k) = P(g(X,Y) = k) = \sum_{\{(x_i,y_j): g(x_i,y_j) = k\}} P(X = x_i, Y = y_j).$$

No que segue estudaremos algumas destas operações:

Se, no exemplo consideramos $p=\frac{2}{3}$, a distribuição conjunta de (X,Y) é dada por

Tabela 7.6- Distribuição bidimensional de (X,Y), $p=\frac{2}{3}$

X, Y	0	1	2	3	total
0	$\frac{1}{27}$	$\frac{4}{27}$	$\frac{4}{27}$	0	$\frac{1}{3}$
1	0	$\frac{2}{27}$	$\frac{8}{27}$	$\frac{8}{27}$	$\frac{2}{3}$
total	$\frac{1}{27}$	$\frac{6}{27}$	$\frac{12}{27}$	$\frac{8}{27}$	1

A distribuição da variável aleatória X+Y assume os valores x+y, para todos os valores x e y de X e Y, respectivamente. A função de probabilidade de X+Y é:

X+Y	0	1	2	3	4
P(X+Y=x+y)	$\frac{1}{27}$	$\frac{4}{27}$	$\frac{6}{27}$	$\frac{8}{27}$	$\frac{8}{27}$

de maneira que

$$E[X + Y] = \frac{8}{3} = \frac{2}{3} + 2 = E[X] + E[Y].$$

Este resultado sempre é verdadeiro, isto é, a esperança da soma de variáveis aleatórias é a soma de suas esperanças. O fato é uma consequência do teorema que segue que aceitamos sem prova. Sua prova pode ser encontrada em literatura mais especializada.

Teorema 1.5. Sejam X e Y variáveis aleatórias discretas que assumem valores $x_1, ..., x_n$ e $y_1, ..., y_m$, respectivamente, com probabilidade conjunta $P(X = x_i, Y = y_j)$. Se g(x, y) é uma função a valores reais, limitada, então

$$E[g(X,Y)] = \sum_{i=1}^{n} \sum_{j=1}^{m} g(x_i, y_j) P(X = x_i, Y = y_j).$$

Utilizando o Teorema 7.5 podemos provar o corolário:

Corolário 1.6. Sejam X e Y variáveis aleatórias discretas que assumem valores $x_1, ..., x_n$ e $y_1, ..., y_m$ respectivamente, com probabilidade conjunta $P(X = x_i, Y = y_i)$. Então

$$E[X+Y] = E[X] + E[Y].$$

Prova

Considerando, no Teorema 7.5, g(x,y) = x + y, obtemos

$$E[X+Y] = \sum_{i=1}^{n} \sum_{j=1}^{m} (x_i + y_j) P(X = x_i, Y = y_j) =$$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} x_i P(X = x_i, Y = y_j) + \sum_{i=1}^{n} \sum_{j=1}^{m} y_j P(X = x_i, Y = y_j) =$$

$$\sum_{i=1}^{n} x_i \sum_{j=1}^{m} P(X = x_i, Y = y_j) + \sum_{j=1}^{m} y_j \sum_{i=1}^{n} P(X = x_i, Y = y_j) =$$

$$\sum_{i=1}^{n} x_i P(X = x_i) + \sum_{i=1}^{m} y_j P(Y = y_j) = E[X] + E[Y].$$

Se consideramos a transformação produto, isto é, a variável aleatória XY que assume valores xy para todos os pares (x, y) do vetor aleatório (X,Y) com função de probabilidade

\overline{XY}	0	1	2	3
P(XY = xy)	$\frac{9}{27}$	$\frac{2}{27}$	$\frac{8}{27}$	$\frac{8}{27}$

concluimos que $E[XY] = \frac{17}{9} \neq \frac{2}{3}.2 = E[X].E[Y].$ Contudo, se consideramos a distribuição conjunta das variáveis aleatórias independentes X e Z, quando $p = \frac{1}{2}$ obtemos

Tabela 7.7- Distribuição bidimensional de (X, Z), $p = \frac{1}{2}$

$\overline{X,Z}$	0	1	2	total
0	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{2}$
1	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{2}$
total	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	1

e a função de probabilidade de XZ é

$$\begin{array}{c|ccccc} y & 0 & 1 & 2 \\ \hline P(XZ = xz) & \frac{5}{8} & \frac{2}{8} & \frac{1}{8} \end{array}$$

com $E[XZ] = \frac{1}{2} = \frac{1}{2} \cdot 1 = E[X] \cdot E[Z]$.

Utilizando o Teorema 7.5 podemos provar que esta propriedade é verdadeira

Corolário 1.7. Sejam X e Y variáveis aleatórias discretas independentes, que assumem valores $x_1, ..., x_n$ e $y_1, ..., y_m$ respectivamente, com probabilidade conjunta P(X = x, Y = y) = P(X = x).P(Y = y). Então

$$E[X.Y] = E[X].E[Y].$$

Prova

Considerando, no Teorema 7.5, g(x,y) = x.y, obtemos

$$E[X.Y] = \sum_{i=1}^{n} \sum_{j=1}^{m} x_i \cdot y_j P(X = x_i, Y = y_j) = \sum_{i=1}^{n} \sum_{j=1}^{m} x_i \cdot y_j P(X = x_i) \cdot P(Y = y_j) \sum_{j=1}^{n} x_i P(X = x_j) \cdot \sum_{j=1}^{m} y_j P(Y = y_j) = E[X] \cdot E[Y].$$

Observamos que o corolário prova que a independência de X e Y é condição necessária para que E[X.Y] = E[X].E[Y]. A condição não é suficiente:

Exemplo 1.8. Se (X, Y) tem distribuição de probabilidade conjunta Tabela 7.8- Distribuição conjunta de (X, Y)

$\overline{X,Y}$	-1	0	1	total
-1	0	$\frac{1}{4}$	0	$\frac{1}{4}$
0	$\frac{1}{4}$	Ō	$\frac{1}{4}$	$\frac{1}{2}$
1	Ô	$\frac{1}{4}$	Ô	$\frac{1}{4}$
total	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	1

temos
$$E[X.Y] = 0 = 0.0 = E[X].E[Y]$$
 mas $P(X = 0, Y = 0) \neq \frac{1}{2}.\frac{1}{2} = P(X = 0).P(Y = 0).$

As propriedades nos corolários 7.6 e 7.7 se estendem para um número finito de variáveis aleatórias. Se $(X_1, X_2, ..., X_n)$ é um vetor de variáveis aleatórias, então

$$E[X_1 + X_2 + \dots + X_n] = E[X_1] + E[X_2] + \dots + E[X_n].$$

Se, em adição as variáveis aleatórias são independentes

$$E[X_1.X_2...X_n] = E[X_1].E[X_2]...E[X_n].$$

Um tipo de dependência entre duas variáveis X e Y muito importante nas aplicações é a associação linear entre X e Y. Esta medida de

relação linear entre as variáveis é denominada covariância e denotada por Cov(X,Y).

Definição 1.9. Sejam X e Y variáveis aleatórias. A covariância entre X e Y é definida pela esperança do produto dos desvios de X e Y em relação às suas respectivas médias, isto é

$$Cov(X, Y) = E[(X - E[X]).(Y - E[Y])].$$

Observação 1.10. De maneira mais fácil podemos escrever

$$Cov(X,Y) = E[(X - E[X]).(Y - E[Y])] = E[XY - X.E[Y] - Y.E[X] + E[X].E[Y]] = E[XY] - E[X].E[Y].$$

Quando X e Y são variáveis aleatórias discretas que assumem valores $x_1,...,x_n$ e $y_1,...,y_n$ respectivamente, podemos escrever utilizando o Teorema 9.5 que

$$Cov(X,Y) = \sum_{i=1}^{n} \sum_{j=1}^{m} (x_i - E[X]).(y_j - E[Y])P(X = x_i, Y = y_j).$$

Claramente, usando o Corolário 7.7 , se X e Y são variáveis aleatórias independentes Cov(X,Y)=0. Observamos tambem que, como no exemplo 7.8, a Cov(X,Y) pode ser igual a zero quando X e Y são variáveis aleatórias dependentes.

Para o vetor aleatório (X, Y) com distribuição conjunta Tabela 7.9- Distribuição conjunta de (X, Y)

$\overline{X,Y}$	0	1	2	3	total
0	$\frac{1}{27}$	$\frac{4}{27}$	$\frac{4}{27}$	0	$\frac{1}{3}$
1	0	$\frac{2}{27}$	$\frac{8}{27}$	$\frac{8}{27}$	$\frac{2}{3}$
total	$\frac{1}{27}$	$\frac{6}{27}$	$\frac{12}{27}$	$\frac{8}{27}$	1

temos que

$$Cov(X,Y) = E[XY] - E[X].E[Y] = \frac{14}{9} - \frac{2}{3}.2 = \frac{14}{9} - \frac{12}{9} = \frac{2}{9}.$$

No Corolário 7.6 demonstramos que o valor esperado da soma de variáveis aleatórias é a soma dos valores esperados. O que podemos dizer sobre a variância da soma segue do corolário

Corolário 1.11. Sejam X e Y variáveis aleatórias, então

$$Var(X + Y) = Var(X) + Var(Y) + 2.Cov(X, Y).$$

Se, em adição, X e Y forem independentes temos Var(X+Y) = Var(X) + Var(Y).

Prova

A prova é imediata:

$$Var(X+Y) = E\{[(X+Y)-E(X+Y)]^2\} = E\{[(X-E[X])+(Y-E[Y])]^2\} =$$

$$E[(X-E[X])^2 + E[(Y-E[Y])^2 + 2.E[(X-E[X]).(Y-E[Y])] =$$

$$Var(X) + VAR(Y) + 2.Cov(X,Y).$$

$$Se \ X \ e \ Y \ s\~{ao} \ independentes, \ Cov(X,Y) = 0 \ e \ temos$$

$$Var(X+Y) = Var(X) + Var(Y).$$

Exemplo 1.12. Para o vetor aleatório (X,Y) com distribuição conjunta

Tabela 7.10- Distribuição conjunta de (X, Y)

X, Y	0	1	2	3	total
0	$\frac{1}{27}$	$\frac{4}{27}$	$\frac{4}{27}$	0	$\frac{1}{3}$
1	0	$\frac{2}{27}$	$\frac{8}{27}$	$\frac{8}{27}$	$\frac{2}{3}$
total	$\frac{1}{27}$	$\frac{6}{27}$	$\frac{12}{27}$	$\frac{8}{27}$	Ĩ

temos que

$$Var(X) = \frac{2}{9}, \ Var(Y) = \frac{2}{3} \ e \ Cov(X, Y) = \frac{14}{9} - \frac{2}{3}.2 = \frac{2}{9}.$$
 Portanto
$$Var(X + Y) = \frac{2}{9} + \frac{6}{9} + 2.\frac{2}{9} = \frac{12}{9}.$$

Exemplo 1.13. A distribuição Binomial com parâmetros n e p, 0 pode ser interpretada como o número de sucessos quando realizamos <math>n ensaios de Bernoulli com probabilidade de sucesso p, independentes e identicamente distribuidos. A função de probabilidade da variável aleatória, X, de Bernoulli é

$$\begin{array}{c|cc} X & 0 & 1 \\ \hline P(X=x) & 1-p & p \end{array}$$

Assim a média de X é E[X] = p e sua variância Var(X) = p.(1-p). Podemos interpretar a variável aleatória Binomial , Y, como a soma $Y = \sum_{i=1}^{n} X_i$ de variáveis aleatórias, X_i , $1 \le i \le n$, de Bernoulli, independentes e identicamente distribuidas a X.

Portanto

$$E[Y] = E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i] = \sum_{i=1}^{n} p = np$$

е

$$Var(Y) = Var(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} Var(X_i) = \sum_{i=1}^{n} p, (1-p) = np(1-p).$$

E-mail address: bueno@ime.usp.br

DEPARTAMENTO DE ESTATÍSTICA, INSTITUTO DE MATEMÁTICA E ESTATÍSTICA, UNIVERSIDADE DE SÃO PAULO, CAIXA POSTAL 66281, CEP 05311-970, SÃO PAULO, BRAZIL