An Introduction To Lorentzian Geometry And Its Applications

Miguel Angel Javaloyes Victoria (U. Granada) and Miguel Sánchez Caja (U. Granada)

CONTENTS:

1) Lorentzian vector spaces.
 1.1 Vector spaces and scalar products
 1.2 Lorentzian vector spaces
 1.3 The n-dimensional Lorentz group
 1.4 The spinorial covering of the Lorentz group in dimension 4
 1.5 Canonical forms for self-adjoint endomorphisms
 1.A Appendix: Relation with Special Relativity

2) Semi-Riemannian geometry:
 2.1 Similarities between Riemannian and semi-Riemannian geometries.
 2.2 Bounds for the sectional and Ricci curvatures
 2.3 Conformal properties and lightlike pregeodesics
 2.4 A detailed example with Riemannian similarities: Gauss-Bonnet theorem.
 2.5 A tour on the differences with explicit counterexamples.

3) Lorentzian manifolds and spacetimes
 3.1 Existence of Lorentzian metrics and time orientability
 3.2 Causality
 3.3 Curvature and comparison theorems
 3.4 Myers and Hawking theorems
 3.A Appendix: Relation with General Relativity

REFERENCES