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1 Introduction
In a recent article in this journal [7], Ioffe and Lewis discuss alternative notions of differentiability for non smooth
functions f . They consider piecewise linear functions due to their relation with semi-algebraic functions, which
have received much attention in the optimization literature recently. This article extends their work and describes
the geometric topology behind their results. Therefore, reading [7] is an important preliminary step to understand
the relevance of the present work for optimization.

An earlier analysis of regular points of non smooth functions was presented in Marston Morse’s article [9].
We explain the relation of Morse’s work with Ioffe and Lewis’ for piecewise linear functions. We extend the two
dimensional results of Ioffe and Lewis to dimension n≤ 4 and describe the subtle topological geometric question
involved in going to higher dimensions. Theorem 1 in the next section presents a clean picture for piecewise linear
functions f : ℝn→ ℝ if n ≤ 4. It shows that all the concepts discussed by Morse, Ioffe and Lewis are equivalent
for such n. Unfortunately we hit a wall at n = 5 and things get messy. The analysis of n = 5 or greater leads us to
the very hard problems of Schöenflies and Poincaré, which are unsolved in the piecewise linear context.

Some questions raised by our analysis are at least as hard as the Schöenflies problem but some are simpler and
a natural continuation of this work would be to relate our results to the work of Edwards and Cannon regarding
suspensions of homology spheres [3]. Unfortunately this study would take us too far from our expertise and, we
believe, from the interest of the readers of this journal. Therefore, we leave this task to professional geometric
topologists. In the next section we present five definitions of regularity, or non criticality, and a list of lemmas and
theorems relating them among themselves and to geometric topological concepts. The exposition is dry, but we
have not found a way to avoid the technicalities. The lemmas and theorems stated in section 2 are proved in the
next two sections and in the appendix we correct a minor detail in Morse’s work.

In resume, this article is one more step towards understanding regularity for piecewise linear and semi algebraic
functions. We showed that for such functions the relations between various concepts of regularity can be expressed
in geometric topological terms. The complete understanding of these relations is beyond what is currently known
in geometric topology. In fact, by understanding regularity for piecewise linear functions in more depth we may
even obtain new results in geometric topology.

We would like to thank Robert Daverman and Martin Scharlemann for helping us to learn geometric topology.
They have already spared the reader from enough misconceptions due to our lack of experience with this field and
certainly deserve no blame for the ones that may still have been left in this work.

2 Ordinarity, regularity and geometric topology
In this section we present Morse’s and Ioffe and Lewis’ definitions of regularity and explain that for piecewise
linear functions they all can be understood in terms of the topology of some sets which are similar to spheres in
many respects. Our main result is theorem 1, which shows the power of the geometric topological approach for
n≤ 4. On the other hand, the restriction on n in this theorem also exposes the limitations of the current knowledge
in geometric topology. In fact, neither we nor the experts in geometric topology know at this time if these sets are
actually homeomorphic to spheres for n > 4.
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Morse’s work was motivated by the fact that given a smooth function f : ℝn 7→ ℝ and z ∈ ℝn with ∇f (z) ∕= 0
there exists ε > 0 and a diffeomorphism 1 h : Bn(ε) 7→ h(Bn(ε))⊂ ℝn such that

h(0) = z and f (h(x)) = f (z)+ xn for x ∈ Bn(ε) . (1)

Based on (1), Morse meant2 to propose something like:

Definition 1 Let M be a topological n manifold and let f : M 7→ ℝ. A point z ∈ M is topologically ordinary, or
T-ordinary, if there exists ε > 0 and an homeomorphism h : Bn(ε) 7→ h(Bn(ε)) ⊂ M as in (1). If M and h are
piecewise linear then we say that z is PL-ordinary.

For a smooth f : ℝn 7→ℝ the existence of a diffeomorphism h as in (1) can be proved by applying the box flow
theorem to the vector field v(x) =−∇f (x). This led Morse [9] [10] to propose

Definition 2 Let X be a metric space and f : X 7→ ℝ. A point z ∈ X is downards-regular if there exists σ > 0 and
a continuous function 3 Φ : B(z,σ)× [0,σ ] 7→ X such that Φ(x,0) = x and f (Φ(x, t))< f (x).

Similarly, Ioffe and Lewis state

Definition 3 Let X be a metric space and f : X 7→ ℝ. A point z ∈ X is Morse-regular if there exists σ > 0 and a
continuous function Φ : B(z,σ)× [0,σ ] 7→ X such that Φ(x,0) = x and f (Φ(x, t))≤ f (x)−σt.

Definition 3 is a bit unsatisfactory because it allows us to “speed up” the deformation at will, i.e., it does not control
how fast we move along the trajectories T (x) = {Φ(x, t), t ∈ [0,σ ]}. This lack of control yields this lemma:

Lemma 1 In locally compact spaces Morse-regularity is equivalent to downards-regularity.

A stronger version of Morse-regularity follows from the concept of “weak slope” introduced in [5] and [6]:

Definition 4 Let X be metric space and f : X 7→ ℝ. A point z ∈ X is deformationally regular from below if there
exists σ > 0 and a continuous function Φ : B(z,σ)× [0,σ ] 7→ X such that

dist(Φ(x, t),x)≤ t/σ and f (Φ(x, t))≤ f (x)−σt. (2)

If z is T-ordinary and h is the homeomorphism in equation (1), then, for en = (0, ..,0,1)t ∈ℝn, the deformation

Φ(x, t) = h
(
h−1(x)− ten

)
(3)

shows that z is Morse-regular. Moreover, if h is Lipschitz then the function Φ in equation (3) shows that z is also
deformationally regular. Therefore, ordinarity is an stronger requirement than regularity.

The point z = 0 ∈ℝ is T-ordinary for f : ℝ 7→ℝ given by f (x) = x3, because h(x) = 3
√

x satisfies the condition
(1). However, 0 is not PL-ordinary for f , because the only homeomorphism h which satisfies equation (1) is
the h above, and it is not piecewise linear. Therefore, even for polynomials, PL-ordinarity is an strictly stronger
requirement than T-ordinarity. The same example shows that deformational regularity is strictly stronger than
Morse-regularity for polynomials. However, for piecewise linear functions and 1≤ n≤ 4 we prove

Theorem 1 Let f : ℝn 7→ ℝ be piecewise linear. If n≤ 4 and z is downards-regular for f then z is PL-ordinary.

The extension of 1 to n > 4 is related to the classic Schöenflies problem [1] [8]. This problem regards subsets
S of the sphere 4 Sm which are homeomorphic to Sm−1. Schöenflies asked whether there exists a homeomorphism
h : Sm 7→ Sm such that h(S) =Em−1 = {x ∈ Sm with xm+1 = 0}, i.e., whether S can be flattened to the equator Em−1.
Since the 1920’s it is known that the answer is negative in general. In the 1960’s a positive answer was provided
by Brown [1] [2] under the condition of local of flatness of S.

1Bn(r) = {x ∈ ℝn with ∥x∥
∞
≤ r}.

2Appendix A explains why, strictly speaking, Morse’s definition in [9] is flawed.
3In a metric space X , B(x,r) = {y ∈ X with dist(y,x)≤ r}. If X = ℝn we define dist(x,y) = ∥x− y∥

∞
.

4Sm =
{

x ∈ ℝm+1 with ∥x∥
∞
= 1
}

.
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Definition 5 A subset S of a topological n-manifold M is locally flat if for every x ∈ S there exists a neighborhood
V of x and a homeomorphism h : V 7→ h(V )⊂ ℝn such that h(S∩V )⊂ ℝn−1×{0}.

Unfortunately, Brown’s answer is not enough for us, because we need a piecewise linear h. The version of
the Schöenflies problem which is relevant to our discussion is conjecture 1 below. This conjecture is known to be
correct for m ∕= 4 but is status for m = 4 is unknown [11]. In fact, deciding whether conjecture 1 is correct for
m = 4 is considered to be a very hard task by the geometric topology community.

Conjecture 1 Let S be a subcomplex of a rectlinear triangulation of Sm. If S is piecewise linearly homeomorphic
to Sm−1 and locally flat then there exists a piecewise linear homeomorphism h : Sm 7→ Sm such that h(S) = Em−1.

The next theorem relates conjecture 1 to our discussion.

Theorem 2 T-ordinarity implies PL-ordinarity for all piecewise linear functions f : ℝ5 7→ℝ if and only if conjec-
ture 1 is correct for m = 4.

Besides Sn, the spheres relevant to our discussion are

S(z,r) = {x ∈ ℝn with ∥x− z∥
∞
= r}

and the sets S are
Sr = f−1( f (z))∩S(z,r), (4)

for r small enough so that g(x) = f (x)− f (z) is homogeneous in B(z,r). When z is T-ordinary, as in definition 1, we
assume that Sr ⊂ h(Bn(ε)). When z is downards-regular, as in definition 2, we also assume that Sr ⊂ S(z,σ). This
smallness of r will be implicit whenever we mention Sr. The next lemmas show that our Sr’s are homeomorphic
to spheres, or almost, and illustrate their importance.

Lemma 2 Suppose n ≥ 2 and f : ℝn 7→ ℝ is piecewise linear. If z is downards-regular then Sr has the same
homology as Sn−2.

Lemma 3 Suppose n≥ 4 and f : ℝn 7→ ℝ is piecewise linear. If z is T-ordinary then Sr is simply connected.

Lemma 4 Suppose n ≥ 2, f : ℝn 7→ ℝ is piecewise linear and z ∈ ℝn. If Sr is locally flat and piecewise linearly
homeomorphic to Sn−2 then z is T-ordinary.

Lemma 5 Suppose n≥ 2 and f : ℝn 7→ ℝ is piecewise linear. A point z ∈ ℝn is PL-ordinarity for f if and only if
there exists a piecewise linear homeomorphism h : S(z,r) 7→ Sn−1 such that h(Sr) = En−2.

The concept of homology in lemma 2 is described formally and in detail in [4]. Informally, a set has the same
homology as Sm if it passes various tests to be homeomorphic to Sm, but may fail two of them: it may not be a
manifold or, if m≥ 2, it may not be simply connected. If S has the same homology as Sm, is a manifold and, when
m≥ 2, is simply connected, then the famous Poincaré theorem implies that S is homeomorphic to Sm.

Lemma 2 shows that in order to extend theorem 1 we must prove that the Sr are simply connected manifolds,
explicitly or implicitly. The relevance of the simply connectedness of sets Sr is illustrated by the next theorem.

Theorem 3 Consider a piecewise linear f : ℝ5 7→ ℝ and a downards-regular point z ∈ ℝ5. If the set Sr is simply
connected then z is T-ordinary.

This theorem leads naturally to

Question 1 Suppose f : ℝm 7→ ℝ be piecewise linear and z is downards-regular. Is the set Sr simply connected?

Question 2 Suppose f : ℝm 7→ ℝ be piecewise linear and z is deformationally regular. Is Sr simply connected?

Affirmative answers to these questions would allow us to use these general results:
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Theorem 4 If theorem 1 is correct for all piecewise linear functions f : ℝ6 7→ ℝ and question 1 has a positive
answer for m = 7,8, . . . ,n then theorem 1 holds for every piecewise linear function f : ℝn 7→ ℝ.

Theorem 5 If deformational regularity implies PL-ordinarity for every piecewise linear function f : ℝ6 7→ ℝ and
question 2 has a positive answer for m = 7,8, . . . ,n then deformational regularity implies PL-ordinarity for every
piecewise linear function f : ℝn 7→ ℝ.

Theorem 6 If the piecewise linear Poincaré conjecture is correct for m = 4 and question 1 has an affirmative
answer for m = 5,6, . . . ,n then theorem 1 holds for every piecewise linear function f : ℝn 7→ ℝ.

Theorem 7 If the piecewise linear Poincaré conjecture is true for m = 4 and question 2 has an affirmative answer
for m = 5,6, . . . ,n then deformational regularity implies PL-ordinarity for piecewise linear functions f : ℝn 7→ ℝ.

3 Proofs of the theorems
Here we prove the theorems in the introduction. We use the next lemmas, which are proved in the next section.

Lemma 6 Suppose f : ℝn 7→ ℝ is piecewise linear and homogeneous and z = 0 is downards-regular for f . If ∣ε∣
is small then the set Lε =

{
x ∈ Sn−1 with f (x)≤ ε

}
is contractible.

Lemma 7 Suppose n ≥ 2, f : ℝn 7→ ℝ is piecewise linear, z ∈ ℝn and w ∈ Sr, where Sr is the set in equation (4).
Consider the hyperplane H which contains w and is orthogonal to w− z. If z is downards-regular for f then w
is downards-regular for the restriction of f to H. If z is deformationally regular for f then w is deformationally
regular for the restriction of f to H.

Corollary 1 Suppose n ≥ 2 and f : ℝn 7→ ℝ is piecewise linear. If theorem 1 holds for all piecewise linear
functions g : ℝn−1 7→ ℝ and z ∈ ℝn is downards-regular for f then Sr is a locally flat (n− 2) piecewise linear
sub manifold of S(z,r). Analogously, if deformational regularity implies PL-ordinarity for every piecewise linear
function g : ℝn−1 7→ ℝ and z ∈ ℝn is deformationally regular then Sr is a locally flat (n−2) piecewise linear sub
manifold of S(z,r).

Proof of theorem 1. Let us assume that z = 0 and f is homogeneous. The proof is by induction in n, starting
with n = 1. In this case f must be strictly monotone, because 0 is not a local minimizer and lemma 6 implies
that 0 is not a local maximizer either (otherwise L0 would be equal to S0, which is not contractible). Therefore,
there exist a,b with the same sign such that f (x) = ax for x ≤ 0 and f (x) = bx for x ≥ 0. If a,b > 0 then the
homeomorphism h : ℝ 7→ℝ given by h(x) = x/a for x < 0 and h(x) = x/b for x≥ 0 shows that 0 is PL-ordinary. If
a,b < 0 then h : ℝ 7→ ℝ given by h(x) = x/b for x < 0 and h(x) = x/a for x≥ 0 shows that 0 is PL-ordinary.

For 2≤ n≤ 4, let us assume that theorem 1 holds for (n−1) and prove it for n. Applying corollary 1 to (n−1)
we conclude that S1 is a locally flat piecewise linear (n−2) sub manifold of Sn−1. Lemma 2 shows that S1 has the
same homology as Sn−2 and, for n = 4, lemma 3 show that S1 is simply connected. These observations allows to
use the piecewise linear Poincaré theorem to conclude that S1 is piecewise linearly homeomorphic to Sn−2. Since
conjecture 1 is valid for n−1≤ 3 we conclude from lemma 5 that z is PL-ordinary. □

Proof of theorem 2. Suppose z is T-ordinary. Lemma 3 implies that Sr is simply connected and corollary 1
implies that Sr is a piecewise linear manifold. Therefore, the piecewise linear Poincaré theorem for m = 3 implies
that Sr is piecewise linearly homeomorphic to S3. Corollary 1 also shows that Sr is locally flat and if conjecture 1
is correct for m = 4 then S can be flattened by a piecewise linear homeomorphism and lemma 5 implies that z is
PL-ordinary. In resume, if conjecture 1 is correct for m = 4 then T-ordinarity implies PL-ordinarity for n = 5.

We now show that if T-ordinarity implies PL-ordinarity for n= 5 then conjecture 1 is correct for m= 4. Suppose
S ⊂ S4 is a sub complex of a rectilinear a triangulation T of S4 such that S is piecewise linearly homeomorphic to
S3 and locally flat. Consider unique the piecewise linear homogeneous function f : ℝ5 7→ℝ such that f (x) = 0 for
x ∈ S and f (v) = 1 for the vertices of T which are not in S. Applying lemma 4 to f we conclude that z = 0 is T-
ordinary and, under the assumption that T-ordinarity implies PL-ordinarity, we conclude that z = 0 is PL-ordinary.
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Lemma 5 shows that S can be flattened by a piecewise linear homeomorphism. This is the statement of conjecture
1 for m = 4 and we are done. □

Proof of theorem 3. Take n = 5. Theorem 1 and corollary 1 show that Sr is a piecewise linear (n−2) manifold
locally flat in Sn−1. Lemma 2 shows that Sr has the same homology as Sn−2 and Lemma 3 show that Sr is simply
connected. Therefore, the piecewise linear Poincaré’s theorem for m = n−2 implies that Sr is piecewise linearly
homeomorphic to Sn−2 and lemma 4 yields the thesis of theorem 3. □

Proofs of theorems 4-7. It is known [11] that if the piecewise linear Poincaré conjecture is correct for m = 4
then conjecture 1 also hold for m = 4. Therefore, if the piecewise linear Poincaré’s conjecture is correct for m = 4
then the proof of theorem 3 provides an inductive argument to prove theorems 6 and 7. Theorems 4 and 5 can be
proved in the same way because the piecewise linear Poincaré conjecture and conjecture 1 are valid for m > 4. □

3.1 Proofs of the lemmas and corollary
In this section we prove the lemmas and corollaries stated in the introduction and in the previous section.

Proof of lemma 1. We only need to show that downards-regularity implies Morse-regularity. Suppose the
neighborhood V in definition 2 is compact. To prove lemma 1 it suffices to show that there exists τ > 0 and a
continuous function h : [0,τ] 7→ [0,σ ] such that f (Φ(x,h(t))) ≤ f (x)− t. A first attempt to build h would be to
consider the inverse of g : [0,σ ] 7→ ℝ given by

g(t) = inf{ f (x)− f (Φ(x,s)) , x ∈V, s ∈ [t,σ ] } .

The function g is continuous, increases monotonically, g(t) > 0 for t > 0 by the compactness of V and g(0) = 0
and g(t) ≤ f (x)−Φ(x, t). Unfortunately, g’s inverse may not exist because it may be constant in some intervals.
To fix g, define

tn = sup{t ∈ [0,σ ] with g(t)≤ g(σ)/n} .

The sequence {tn,n ∈ ℕ} decreases monotonically to 0 and we can define q : [0,σ ] 7→ [0,g(t2)] by q(0) = 0 and

q(t) = g(tk+2)+
t− tk+1

tk− tk+1
(g(tk+1)−g(tk+2)) .

The function q is continuous, strictly increasing, q(0) = 0 and q(t) ≤ g(t) for t ∈ [0,σ ]. Thus, its inverse exists,
is continuous and satisfies q(s) ≤ g(s) ≤ f (x)− f (Φ(x,s)). Replacing s by q−1(t) for t ∈ [0,g(t2)] we obtain
f
(
Φ(x,q−1(t))

)
≤ f (x)− t. □

Proof of lemma 2. Lemma 2 follows from lemma 6 and the next one, which we prove at the end of this section:

Lemma 8 Suppose f : Sm 7→ ℝ is piecewise linear and z,w ∈ Sm are such that f (z) = 0 and f (w)< 0. If for all ε

with ∣ε∣ small Lε = {x ∈ Sm with f (x)≤ ε} is contractible then f−1(0) has the same homology as Sm−1. □

Proof of lemma 3. Assume that z = 0 and f (z) = 0 and consider h and ε as in equation (1). Since h is an
homeomorphism there exists δ > 0 such that Bn(δ ) ⊂ h(Bn(ε)). Let us denote by A the interior of Bn(δ ) and
define C as A∩ f−1(0). Equation (1) shows that h−1 maps C into a subset D = h−1(C) of the (n−1) dimensional
hyperplane H = {x ∈ ℝn with xn = 0}. Since h is a homeomorphism and A is open, D = H ∩ h−1(A) is an open
neighborhood of 0 in H. By f ’s homogeneity, if y∈C and λ ∈ [0,1] then λy∈C. This shows that C is contractible.
As a consequence D = h−1(C) is contractible. Since D is an open subset set of H and H has dimension n−1≥ 3,
we have that D−{0} is simply connected. As a consequence, C−{0}= h−1(D−{0}) is also simply connected.
Notice that C−{0} is homeomorphic to Z× (0,δ ) and π1(Z) = π1(Z)×{0} = π1(C−{0}) = {0}. Therefore, Z
is simply connected. □

Proof of lemma 4. Let us assume that z = 0, f is homogeneous and r = 1. In particular, Sr = S1 and
S(z,r) = Sn−1. The weak piecewise linear Schöenflies theorem in page 47 of [11] implies that there exists an home-
omorphism g : Sn−1 7→ Sn−1 and s,z ∈ Sn−1− S such that g(S) = En−2 and g is piecewise linear in Sn−1−{s,z},
in the sense that there exist locally finite triangulations T of Sn−1−{s,z} and U of Sn−1−{g(s),g(z)} such that
g is affine in each simplex of σ ∈ T and g(σ) ∈U . By refining T and U if necessary, we can also assume that
q : Sn−1−{g(s),g(z)} 7→ ℝ given by q(x) = f

(
g−1(x)

)
is linear in each simplex of U . Let h : Bn 7→ ℝn be the
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unique homogeneous function such that h(g(s)) = sg(s)n/ f (s), h(g(z)) = zg(z)n/ f (z), g is piecewise linear in ∣U ∣
and if v is a vertex of U then h(v) = v if v ∈ En−2 and h(v) = vng−1(v)/ f

(
g−1(v)

)
if v ∕∈ En−2. The continuity

of g at s,z implies that h is continuous. The same argument used in lemma 5 shows that the restriction of h to
∣U ∣ is an homeomorphism and it follows that h is an homeomorphism in Sn−1 = ∣U ∣ ∪ {g(s),g(z)}. Finally, by
the construction of h and the homogeneity of f we have that f (h(x)) = xn if x is a vertex of U or x ∈ {g(s),g(z)}.
Since q is piecewise linear this implies that f (h(x)) = xn for all x ∈ Sn−1. By homogeneity, h satisfies equation (1)
for all x ∈ Bn and z = 0 is T-ordinary. □

Proof of lemma 5. Given a simplicial complex T and a sub complex σ ⊂ T , the link of σ in T is

lk(σ ,T ) = {τ ∈ T such that τ ∩σ = /0 and µ ∪σ ∈ T for some µ ∈ S} (5)

and the convex hull of σ is denoted by ∣σ ∣. For v ∈ ℝn−{0}, we define v = v/∥v∥
∞

and if σ =
{

v1, . . . ,vk
}
⊂

ℝn−{0} then we write σ = {v1, . . . ,vk}. We assume that z = 0, f is homogeneous and T is rectilinear simplicial
complex with ∣T ∣= Sn−1 such that f is linear in each simplex σ ∈ T . We also assume that f does not change signs
in the edges of T , ie. if {a,b} ∈ T then f (a) and f (b) do not have opposite signs.

We now show that if z = 0 is PL-ordinary then S1 = Sn−1∩ f−1(0) can be piecewise linearly flattened to En−2.
Let ε and h be as in definition 1. By reducing ε if necessary, we may assume that there exists a triangulation Th of
Sn−1(ε) such that h is linear in ∣{0}∪σ ∣ for each σ ∈ Th and h(σ) is contained in one face of Sn−1. Therefore, for
each (n−1) dimensional simplex σ =

{
v1, . . . ,vn

}
∈ Th there exists a nonsingular matrix Aσ such that h(x) = Aσ x

for x ∈ ∣{0}∪σ ∣ and a vector cσ such that f (y) = ct
σ y for y ∈ h(σ). Thus, equation (1) leads to

f (h(x)) = ct
σ Aσ x = xn (6)

for x ∈ ∣{0}∪σ ∣. Since the interior of ∣{0}∪σ ∣ is not empty equation (6) implies that ct
σ Aσ = en. Since f does

not change signs across the edges of T , we have that either vi
n ≥ 0 for i = 1, . . . ,n or vi

n ≤ 0 for i = 1, . . . ,n. For
σ ∈ Th consider gσ : ∣σ ∣ 7→ ℝn given by

gσ (x) = AσV σ DσV−1
σ x,

where V is the matrix with kth column equals to vk and Dσ is the diagonal matrix with kth diagonal entry equals to
dσ

kk = 1/∥Aσ vk∥∞
. Notice that

gσ (vk) = AσV σ DσV−1
σ vk = AσV σ Dσ ek =

1∥∥Aσ vk
∥∥

∞

AσV σ ek =
1∥∥Aσ vk
∥∥

∞

Aσ vk ∈ Sn−1. (7)

By convexity and the fact h(σ) is contained in one face of Sn−1 we conclude that gσ (σ)⊂ Sn−1. Using that x ∈ σ

if and only if x =V σ y(x) for y(x) in the unit simplex of ℝn we get

gσ (x) = AσV σ Dσ y(x).

Now, if δ > 0 is small enough then δV σ Dσ y(x) ∈ ∣{0}∪σ ∣ and, as a consequence,

δgσ (x) ∈ h(∣{0}∪σ ∣) . (8)

Therefore,

f (gσ (x)) =
1
δ

f (δgσ (x)) =
1
δ

δct
σ AσV σ Dσ y(x) = et

nV σ Dσ y(x) =
n

∑
k=1

vk
ndkkyk(x).

Since vk
n have the same sign for all k and dkk > 0 we have that f (gσ (x)) = 0 if and only if yk(x) = 0 for all k such

that vk
n ∕= 0. Therefore, if x ∈ ∣σ ∣ then

f (gσ (x)) = 0 ⇔ x =V σ y(x) ∈ En−2. (9)

To prove that the {gσ ,σ ∈ T} lead to a well defined piecewise linear map g : Sn−1 7→ Sn−1 given by

g(x) = gσ (x) for some σ with x ∈ ∣σ ∣

6



it suffices to show that gσ and gτ coincide in σ ∩ τ , because they are linear in ∣σ ∩ τ∣. But this is a direct con-
sequence of the continuity of h. In fact, consider a vertex v ∈ σ ∩ τ . Since h is continuous at v we have that
Aσ v = Aτ v. This leads to Aσ v = Aτ v and equation (7) shows that gσ (v) = gτ(v). Finally, to prove that g is a
homeomorphism notice that each gσ is injective and equation (8) and the injectivity of h imply that g is globally
injective. Brouwer’s invariance of domain theorem implies that g

(
Sn−1

)
= Sn−1. As a consequence, g is surjective

and (9) leads to g
(
En−2

)
= Sn−1 ∩ f−1(0). Therefore, g−1 is a piecewise linear homeomorphism that flattens S1

and we finished the first part of this proof.
Let us now show that if there exists a piecewise linear homeomorphism g : Sn−1 7→ Sn−1 with g

(
En−2

)
= S1

then z = 0 is PL-ordinary. Let TS be a triangulation of Sn−1 such that g is linear in each simplex σ ∈ TS and such
that g(σ) is contained in some simplex of T . As before, for each (n−1) dimensional simplex σ ∈ TS there exists
a non singular matrix Aσ and a vector cσ such that, for x ∈ ∣σ ∣,

g(x) = Aσ x and f (g(x)) = ct
σ Aσ x.

By hypothesis, f (g(x)) = 0 if and only if x ∈ En−2. Therefore, ct
σ Aσ x = 0 if and only x ∈ En−2. Now, for each

σ ∈ TS define hσ : ∣{0}∪σ ∣ 7→ ℝn by
hσ (x) = AσVσ DσV−1

σ x

where Vσ is the matrix with kth column equals to vk and Dσ is the diagonal matrix with diagonal entry dσ
kk = 1 if

vk ∈ En−2 and dσ
kk = vk

n/(c
t
σ Aσ vk) if vk ∕∈ En−2. It follows that if

ε = min

{
δ
∥∥vk
∥∥

∞∥∥AσVσ DσV−1
σ vk

∥∥
∞

, for σ ∈ TS and vk ∈ σ

}
,

and vk ∈ σ then wk = εvk/
∥∥vk
∥∥

∞
is such that hσ (wk) ∈ Bn(δ )⊂

∪
σ∈TS
∣{0}∪σ ∣ and

f
(

hσ (εwk)
)
=

ε

∥vk∥
∞

ct
σ AσVσ DσV−1

σ vk =
εvk

n

∥vk∥
∞

= wk
n. (10)

Since f (hσ (x)) is linear and the wk span ∣{0} ∪σ ∣ it follows that f (hσ (x)) = xn for all x ∈ ∣{0} ∪σ ∣ ∩Bn(ε).
Finally, the same arguments used in the first part of this proof shows that

h(x) = hσ (x) for some σ ∈ TS with x ∈ ∣{0}∪σ ∣

yields a well defined homeomorphism h : Bn(ε) 7→ h(Bn(ε)). Equation (10) yields equation (1). □
Proof of lemma 6. Let σ > 0 and Φ : Bn(σ)× [0,σ ] 7→ ℝn be such that Φ(x,0) = x and f (Φ(x, t))< f (x) and

define h : L0 7→ ℝn by

h(x, t) =
Φ((σ − t)x, t)
∥Φ((σ − t)x, t)∥

∞

. (11)

Notice that if x ∈ L0 then Φ(x,0) = x ∕= 0 and if t ∈ (0,σ ] then

f (Φ((σ − t)x, t))< f ((σ − t)x)≤ 0. (12)

Therefore, Φ is well defined and continuous and Φ(L0, [0,σ ])⊂ L0. Moreover, w= h(x,σ) =Φ(0,σ)/∥Φ(0,σ)∥
∞

does not depend on x. Therefore, h contracts L0 to w. For ε > 0 small Lε deformation retracts to L0. Thus, Lε is
contractible for ε ≥ 0 small. To handle ε < 0 we take δ < 0 such that if ε ∈ [δ ,0) then Lε deformation retracts
into Lδ . Equation (12) and f (Φ(x,0)) = f (x)≤ δ for x ∈ Lδ imply that µ = supx∈Lδ ,t∈[0,σ ] f (h(x, t))< 0. We can
contract Lε for ε ∈ [µ,0) by first deformation retracting Lε in Lδ and then using h to contract Lδ through Lµ . □

Proof of lemma 7. Let us assume that z = 0, f is homogeneous, r = 1 and w is a vertex of a triangulation T of
Sn−1. Let lk(w,T ) be the link of w in T (see equation (5)). For each σ ∈ lk(w,T ) let us denote by Cσ the cone

Cσ = {αx, with α ∈ [0,∞) and x ∈ ∣{w}∪σ ∣} .
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By refining T if necessary, we can assume that for each σ ∈ T there exists aσ ∈ℝn such that x∈Cσ ⇒ f (x) = at
σ x.

In particular, if σ ∈ lk(w,T ) then 0 = f (w) = at
σ w. The ortogonal projection of x in H is

P(x) = x+λ(x)w for λ(x) =
wt(w− x)

wtw
. (13)

If σ = {v1, . . . ,vk} ∈ lk(w,T ) then x ∈Cσ if and only if x = β0(x)w+∑
k
i=1 βi(x)vi for β0(x) , . . . ,βi(x)≥ 0 and

λ(x) = 1−β0(x)−
k

∑
i=1

βi(x)
wtvi

wtw
and P(x) = θ(x)w+

k

∑
i=1

βi(x)vi for θ(x) = 1−
k

∑
i=1

βi(x)
wtvi

wtw
.

Therefore, if x ∈Cσ and θ(x)≥ 0 then P(x) ∈Cσ and

f (P(x)) = at
σ P(x) = at

σ (x+λ(x)w) = at
σ x+λ(x)at

σ w = at
σ x = f (x).

Applying this argument to all σ ∈ lk(w,T ) we conclude that there exists δ > 0 such that if ∥x−w∥
∞
≤ δ then

f (P(x)) = f (x). As a consequence, if Φ is the deformation which assures the downards-regularity of w for f in
definition 2 then Φ̃(x, t) = P(Φ(x, t)) certifies the downards-regularity of w for the restriction of f to H. The same
argument applies to deformational regularity, because ∥Px−Py∥

∞
≤ ∥P∥

∞
∥x− y∥

∞
. □

Proof of corollary 1. We prove the part of corollary 1 regarding downards-regularity. The same argument
applies to deformational regularity. We assume that z = 0 is downards-regular, f is piecewise linear and homoge-
neous and r = 1. Given w ∈ S1 = Sn−1∩ f−1(0), let Hw be the (n−1) dimensional hyperplane Hw which contains
w and is ortogonal to w and let us call by fw the restriction of f to Hw. Lemma 7 shows that w is downards-regular
for fw. By the hypothesis, theorem 1 applies to fw and w is PL-ordinary for fw. Let then ε > 0 and the piecewise
linear homeomorphism hw : Bn−1(ε) 7→ Hw be as in definition 1 for w and fw:

hw(0) = w and fw(hw(x)) = xn−1.

Since w ∈ Sn−1 we have ∣wi∣= 1 for some i and there exist γw ∈ (0,1) such that ∣w j∣ ≤ γw if ∣w j∣ ∕= 1. By reducing
ε , we may assume that if w j ∕= 0 then w j and hw(x) j have the same sign and

1/2≤
hw(x) j

w j
=

∣∣∣∣hw(x) j

w j

∣∣∣∣≤ 1+
1− γw

2
≤ 3/2 (14)

and if w j = 0 then
∣∣hw(x) j

∣∣< 1. As a consequence, the piecewise linear function ρ : Bn−1(ε) 7→ ℝ given by

ρw(x) = max{∣hw(x)i∣ for i with ∣wi∣= 1} (15)

is such that ∣1−ρw(x)∣ ≤ (1− γw)/2. Consider the piecewise linear function gw : Bn−1(ε) 7→ ℝn given by

gw(x) = hw(x)+(1−ρw(x))w.

Since ρw(0) = 1 we have that gw(0) = w and we claim that gw(x) ∈ Sn−1 for all x ∈ Bn−1(ε). In fact, if wi = 0 then
∣gw(x)i∣= ∣hw(x)i∣< 1. If 0 < ∣wi∣< 1 then

∣gw(x)i∣= ∣wi∣
∣∣∣∣hw(x)i

wi
+1−ρw(x)

∣∣∣∣≤ γw

(
hw(x)i

wi
+ ∣1−ρw(x)∣

)
≤ γw(2− γw)≤ 1,

because t(2− t)≤ 1 for t ∈ [0,1]. If ∣wi∣= 1 then

∣gw(x)i∣= ∣wi∣
∣∣∣∣hw(x)i

wi
+1−ρw(x)

∣∣∣∣= ∣∣∣∣1+(hw(x)i

wi
−ρw(x)

)∣∣∣∣≤ 1,

because −1≤
(

hw(x)i
wi
−ρw(x)

)
≤ 0 by equations (14) and (15). Finally, there exists i(x) such that

∣∣wi(x)
∣∣= 1 and

ρw(x) = hw(x)i(x)/wi(x) and for such i(x)

∣∣gw(x)i(x)
∣∣= ∣∣wi(x)

∣∣ ∣∣∣∣hw(x)i(x)

wi(x)
+1−ρw(x)

∣∣∣∣= 1.
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Therefore, gw is a piecewise linear function from Bn−1(ε) to Sn−1. The injectivity of hw and the orthogonality
of w and hw(x)−w imply that gw is injective and Brower’s invariance of domain implies that gw : Bn(ε/2) 7→
gw(Bn(ε/2)) is a piecewise linear homeomorphism. Consider now the projection P and λ defined in equation (13).
Notice that, since wthw(x) = 0,

λ (gw(x)) =
wt (w−hw(x)− (1−ρw(x))w)

wtw
= ρw(x).

The same argument used in lemma 7 shows that if δw ∈ (0,ε/2) is small enough then, for x ∈ Bn−1(δ ),

f (gw(x)) = f (hw(x)) = xn−1.

Therefore, Vw = gw
(
Bn−1(δw)

)
is a neighborhood of w in Sn−1 and taking hw : Vw 7→ ℝn−1 as the inverse of

the restriction of gw to Bn−1(δw) we get that hw(Vw ∩ f−1(0)) ⊂ ℝn−2×{0}. As a conclusion, for each w ∈ S1
we have a neighborhood Vw of w in Sn−1 and a piecewise linear homeomorphism hw : Vw 7→ hw(Vw) such that
hw(Vw∩S1)⊂ ℝn−2×{0}. This shows that S1 is a locally flat, piecewise linear, (n−2) sub manifold of Sn−1. □

Proof of lemma 8. All ε’s below are small and positive and we define Aε = L−ε . The sets Aε are not empty,
because w ∈ Aε , and proper, because z ∕∈ Aε . Alexander duality (see page 254 of [4]) applied to Aε implies that
H̃k(Sm−Aε) = {0} for all k. Since Sm−Aε deformation retracts to T = {x ∈ Sm with f (x)≥ 0} we obtain that
H̃k(T ) = {0} for all k. Moreover, T ∩Lε deformation retracts to f−1(0). Therefore, it suffices to show that T ∩Lε

has the same homology as Sm−1. The first set in the decomposition

Sm = {x ∈ Sm with f (x)> 0}∪{x ∈ Sm with f (x)< ε}

is contained in the interior of T and the second lies in the interior of Lε and the Mayer-Vietoris sequence

⋅ ⋅ ⋅ → H̃k+1(T )⊕ H̃k+1(Lε)→ H̃k+1(Sm)→ H̃k(T ∩Lε)→ H̃k(T )⊕ H̃k(Lε)→ . . .

yields 0→ H̃k+1(Sm)→ H̃k(T ∩Lε)→ 0. Therefore, Hk(T ∩Lε) = Hk+1(Sm) = Hk
(
Sm−1

)
. □

A Morse’s flawed definition
The definition of T-ordinary point by Morse in page 1 of [9] is flawed. He proposed the following:

Definition 6 Let M be a topological n manifold and let f : M 7→ ℝ be a continuous function. A point z ∈ X is
topologically ordinary, or T-ordinary, if there exists an homeomorphism h : Bn 7→ h(Bn)⊂M as in (1).

According to this definition no point z ∈ ℝ is T-ordinary for the function f : ℝ 7→ ℝ given by

f (x) =
1

9π
arctan(x) .

In fact, f (ℝ) ⊂ (−2/9,2/9) and there is no pair y,z ∈ ℝ such that f (y) = f (z)+ 2/3 and equation (1) cannot be
satisfied by any y = h(x) and z for x = 2/3 ∈ B1! This shows that, due to its lack of scale invariance, Morse’s
definition is misleading.
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189-209, 1994.

[7] A. Ioffe and A. Lewis, Critical points of simple functions, Optimization, 57, 1, 3–16, 2008.

[8] E. Luft, On the combinatorial Schoenflies conjecture, Proc. Amer. Math. Soc. 16, 1008-1011, 1965.

[9] M. Morse, Topologically non-degenerate functions in a compact n-manifold. J. Analyse Math. 7, 243, 1959.

[10] M. Morse, Functional Topology and Abstract Variational Theory, The Annals of Mathematics, Second Series,
vol. 38, n 2, 386–449. 1937.

[11] C. Rourke and B. Sanderson, Introduction to piecewise-linear topology, Springer-Verlag, 1972.

10


