
Proceedings of Machine Learning Research vol 291:1–28, 2025 38th Annual Conference on Learning Theory

Lower Bounds for Private Estimation of Gaussian Covariance Matrices under
All Reasonable Parameter Regimes

Victor S. Portella VICTORSP@IME.USP.BR
University of São Paulo, Brazil

Nicholas J. A. Harvey NICKHAR@CS.UBC.CA

University of British Columbia, Canada

Editors: Nika Haghtalab and Ankur Moitra

Abstract
One of the most basic problems in statistics is estimating the covariance matrix of a Gaussian distribution.
Over the past decade, researchers have studied the efficiency of covariance estimation in the setting of
differential privacy. The goal is to minimize the number of samples needed to achieve the desired accuracy
and privacy guarantees.

We prove lower bounds on the number of samples needed to privately estimate the covariance matrix of a
Gaussian distribution. Our bounds match existing upper bounds in the widest known setting of parameters.
Our analysis can be seen as a fingerprinting argument, one of the main techniques used to prove lower bounds
in differential privacy. Most fingerprinting arguments rely on results analogous to the celebrated Stein’s
identity from probability theory. We use a matrix extension of this identity known as the Stein-Haff identity.

1. Introduction

Differential Privacy (DP) is a widely adopted framework to perform data analysis while avoiding leakage of
sensitive information (Dwork et al., 2006). A major thrust of research in DP is developing privacy preserving
algorithms for a variety of fundamental problems in computer science and statistics. In the past few years, a
direction of particular interest has been parameter estimation of probability distributions.

Multivariate Gaussians are perhaps the canonical distribution for which to study parameter estimation.
Indeed, there has been considerable work on algorithms to estimate the mean and covariance of a Gaussian
distribution under both pure and approximate differential privacy. (A brief review of the literature is in
Section 1.2.) To understand whether these algorithms are optimal, we require lower bounds for the error under
DP. For mean estimation with a known covariance matrix there are lower bounds that match existing sample
complexity upper bounds (Kamath et al., 2019; Aden-Ali et al., 2021). However, covariance matrix estimation
under (ε, δ)-DP is a problem that, prior to our work, was not completely understood in all parameter regimes.

The current best (ε, δ)-DP sample complexity bound for estimating a d× d covariance matrix up to α
error in Frobenius norm is n = Õ(d2/α2+d2/αε+log(1/δ)/ε) samples, due to Aden-Ali et al. (2021). (For
convenience throughout this section we restrict attention to covariance matrices with all eigenvalues in Θ(1).)
Regarding lower bounds, Ω(d2/α2) samples are needed even without privacy, and at least Ω(log(1/δ)/ε) sam-
ples are necessary with (ε, δ)-DP (Karwa and Vadhan, 2018). Finally, Kamath et al. (2022a) and Narayanan
(2023, 2025) have shown n = Ω̃(d2/αε) lower bounds for some regimes of α and δ.

• High-accuracy regime: the error in Frobenius norm is α = O(1). In this regime, Kamath et al. (2022a)
shows that if1 δ = Õ(1/n), then n = Ω(d2/εα);

• Low-accuracy regime: the error in Frobenius norm is α = O(
√
d). (For larger α the problem is trivial.)

In this regime Narayanan (2023) shows that, if δ = O(1/d2), then n = Ω̃(d2/εα). This result has a
less restrictive hypothesis on α, but a more restrictive hypothesis on δ when α = ω(1) (see Figure 1).
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Figure 1: The largest value of δ (capped at Õ(1/n)) for which the lower bounds on (ε, δ)-DP estimation of
Gaussian covariance matrix match the sample complexity of Aden-Ali et al. (2021) with accuracy
α in Frobenius norm. Here we focus on the regime n = Θ(d2/αε) and ε = Θ(1). Both axes are in
log-scale, ignoring constants and log-factors. Although the results of Kamath et al. (2022a) may
allow for larger values of δ (as well as the ones of Narayanan (2023) in the high-accuracy regime),
our work recovers the results of both works for δ = Õ(1/n).

Our work completes the picture, showing n = Ω(d2/αε) under both accuracy regimes, and with
δ = O(1/n lnn), which is near the largest meaningful value of δ (see Kamath et al. 2022a, Remark 3.7
or Vadhan 2017, §1.6). Moreover, our bound on n has no extraneous logarithmic factors and requires no
regularity conditions on the mechanism. Finally, we believe our analysis technique suggests a more general
strategy to obtain lower bounds for approximate DP mechanisms.

1.1. Our contributions

Our lower bounds are based on the mechanism’s error α estimating a random2 covariance matrix Σ that is
“well-conditioned”, by which we mean that all eigenvalues are in [0.09, 10].

Theorem 1.1 (Main Theorem) There is a random positive definite matrix Σ in Rd×d with eigenvalues in
[0.09, 10] such that the following holds. Let M : (Rd)n → Rd×d be (ε, δ)-DP with ε ∈ (0, 1) and

δ ≤ 1

3n ln(en)
. (1)

Let α2 denote the expected squared Frobenius norm error of M in estimating Σ with n samples from the
normal distribution N (0,Σ). If α ∈ [2−d,

√
d

15 ], then

n = Ω
( d2
εα

)
.

In our formal result (Section 2.3), Σ has support on all positive semidefinite matrices, but α is the error
conditioned on Σ being well-conditioned (see (5)); the mechanism’s performance may be arbitrarily poor
otherwise. The statement above follows by restricting the random matrix Σ to the well-conditioned region.

1. Their results hold for δ = Õ(d2/n), but we often focus attention on δ = Õ(1/n) since (ε, δ)-DP loses meaning for larger δ.
2. Although mechanisms for this problem are designed to work with inputs drawn from a distribution with a fixed covariance matrix
Σ, we will choose Σ randomly so that it is unknown to the mechanism. Randomizing the parameters the mechanism aims to
estimate is usually a fundamental part of fingerprinting arguments. The distribution on Σ is specified in Section 2.1.
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The above lower bounds are quantitatively stronger than previous work (Kamath et al., 2022a; Narayanan,
2023), have no polylog factors, and do not require any regularity conditions on the mechanism. The proof
relies on a fingerprinting lemma argument, a powerful strategy to obtain lower bounds in differential privacy
(see Section 1.2 for an overview of the origins of the strategy). Previous fingerprinting arguments often rely
on the celebrated Stein’s identity (Stein, 1971) or analogous results for non-Gaussian distributions. This
ultimately requires the distribution on the parameters being estimated (the entries of Σ in our case) to be
independent, which restricts the distributions we can choose, an issue also discussed by Kamath et al. (2022a).
We circumvent this limitation with a mathematically clean argument involving a generalization of Stein’s
identity, known as the Stein-Haff identity (Haff, 1979). We believe these techniques suggest a general strategy
to prove fingerprinting arguments via Stokes’ theorem, avoiding the need for independence.

Follow-up Work. Since a preliminary version of this work was made available online, Lyu and Talwar
(2024) extended our fingerprinting arguments to a broad class of problems. One of our key contributions is
using the Stein-Haff identity—a consequence of Stokes’ theorem—to enable the use of distributions on Σ
with non-independent entries in our fingerprinting argument. Lyu and Talwar (2024) later developed a general
framework for fingerprinting arguments for a wide class of DP problems. As in our work, their approach
allows for non-independent randomization of the parameters being estimated, using Stokes’ theorem to
overcome limitations of traditional fingerprinting arguments.

1.2. Related Work

Covariance Matrix Estimation. To learn a Gaussian it is sufficient (Ashtiani and Liaw, 2022, §2.1) and
(in some sense) necessary (Arbas et al., 2023, Thm. 1.8) to estimate the mean and covariance matrix. For
learning Gaussians under approximate differential privacy, Karwa and Vadhan (2018) showed polynomial-
time algorithms to learn unbounded one dimensional Gaussians. Following their work, there were a series
of works on Gaussian covariance estimation under approximate DP (Aden-Ali et al., 2021; Tsfadia et al.,
2022; Liu et al., 2022; Ashtiani and Liaw, 2022; Kamath et al., 2022b; Hopkins et al., 2023), concentrated
DP (Kamath et al., 2019), and pure DP (Bun et al., 2021; Hopkins et al., 2023). See Hopkins et al. (2023,
Table 1) for a summary of the results on Gaussian covariance estimation. The best sample complexity known
to approximate a Gaussian covariance estimation up to α error in Mahalanobis norm under (ε, δ)-DP is
n = Õ(d2/α2+d2/αε+log(1/δ)/ε) due to Aden-Ali et al. (2021), with a polynomial time algorithm recently
proposed by Hopkins et al. (2023). Karwa and Vadhan (2018, Thm. 1.4) shows an Ω(log(1/δ)/ε) lower
bound for learning one dimensional Gaussians, and Kamath et al. (2019, Theorem 56) shows an Ω(d/αε)
lower bound for learning spherical Gaussians. Thus, it only remains to show a Ω(d2/αε) lower bound to
conclude that the currently best-known sample complexities are not improvable (up to poly-logarithmic
factors). A related problem is estimating the empirical covariance matrix out of worst-case (bounded) data
(e.g., Dwork et al., 2014; Dong et al., 2022, see Narayanan 2023, §6 for a discussion on the connections with
Gaussian covariance estimation).

Lower Bounds in DP. Even before the inception of DP, researchers had devised lower bounds on the
accuracy of algorithms that avoid data re-identification (Dinur and Nissim, 2003). Since then there has been
a long line of work on lower bounds for DP algorithms, such as packing arguments for pure (i.e., (ε, 0)-)
DP (Hardt and Ullman, 2014), reconstruction arguments using discrepancy theory (Muthukrishnan and
Nikolov, 2012), information theoretical tools (Acharya et al., 2021), or fingerprinting techniques.

Fingerprinting Techniques. Fingerprinting codes (Boneh and Shaw, 1998; Tardos, 2008) were first used in
DP by Bun et al. (2018) to prove lower bounds for answering counting queries on data from the hypercube.
Several works then built upon these ideas to obtain lower bounds for approximate DP algorithms for a
variety of problems: statistical queries (Hardt and Ullman, 2014; Steinke and Ullman, 2015), private subspace
estimation (Dwork et al., 2014), mean of vectors with ±1 entries (Steinke and Ullman, 2016), and other
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problems under very weak accuracy guarantees (Peter et al., 2024). A problem with fingerprinting codes is that
they usually have a non-trivial construction and, because of that, are used nearly as black-boxes. Dwork et al.
(2015) was one of the first works to boil down the main techniques to simpler calculations on the expected
value of some “correlation statistics”. This general strategy was later called the “Fingerprinting Lemma”
by Bun et al. (2017). Peter et al. (2024) thoroughly discusses the main differences between fingerprinting
codes and fingerprinting lemmas.

Beyond i.i.d. Priors in Fingerprinting Lemmas. Many of the previous fingerprinting proofs required
randomizing the parameters independently of each other, which is not well suited for more structured problems
such as covariance estimation. For Gaussian covariance estimation, Kamath et al. (2019) shows lower bound
under pure DP with techniques similar to fingerprinting arguments. For the proof, they choose the entries of
the inverse covariance matrix randomly and independently, restricting their results to the high-accuracy regime
defined earlier. Kamath et al. (2022a) generalizes this argument: they propose a generalized fingerprinting
lemma for parameter estimation of exponential family distributions under approximate DP. They use these
general tools to obtain the first tight lower bounds for (ε, δ)-DP Gaussian covariance estimation, and carefully
handle δ, ultimately allowing δ = Õ(d2/n) in their results. Their argument still requires a distribution
with independent entries (and bounded support) over the natural parameters of the exponential family
parameterization, which restrict their results for covariance estimation to the high-accuracy regime.

Our lower bounds for covariance estimation use a fingerprinting argument with a statistic proposed by Cai
et al. (2023) but with a different analysis strategy.3 The distribution we use over covariance matrices is a
Wishart distribution, which has unbounded support and non-independent entries. Key to our analysis is a
generalization of Stein’s identity known as the Stein-Haff identity (Haff, 1979). This relates to the fact that
many of previous fingerprinting lemmas used results analogous to the Stein identity for specific (sometimes
discrete) one-dimensional distributions (e.g., Dwork et al., 2015, Lemma 14, Kamath et al., 2019, proof of
Lemma 6.8, and Cai et al., 2023, Sec. 2.2.2). Moreover, our analysis technique suggests a general strategy
to handle general prior distributions over high-dimensional parameters using Stokes’ Theorem. Indeed, as
discussed in Section 1.1 above, this strategy was subsequently pursued by Lyu and Talwar (2024). These
connections are discussed further in Section 3.

During the development of our work, Narayanan (2023) proved an n = Ω̃(d2/εα) lower bound (losing
some polylog factors due to reductions employed in the proof) in the low-accuracy (α = O(

√
d)) regime when

δ = O(1/d2). They elegantly use a Bayesian argument, relying on the fact that the inverse Wishart distribution
is the conjugate prior of the Wishart distribution. While this regime of δ allows for δ = Õ(1/n) in the
high-accuracy regime, it restricts δ to be strictly smaller than 1/n when α = ω(1), as discussed in the journal
version (Narayanan, 2025, §1.B) and illustrated in Figure 1. Our result allows δ as large asO(1/n lnn) even in
the low-accuracy regime. Although both our work and Narayanan (2023) use fingerprinting-type arguments,
the technical approaches are unrelated. The Bayesian viewpoint of Narayanan (2023) on fingerprinting
arguments is of independent interest and opens new directions for deriving lower bounds in DP.

1.3. Notation

We write a ≲ b if there is some universal constant C > 0 such that a ≤ Cb. We denote by Sd and Sd+ the set
of symmetric and the set of positive semi-definite d× d matrices, respectively, and the Frobenius norm by
∥·∥F . We let E [ · ] denote an unconditional expectation, and E|Σ [ · ] denote an expectation conditioned on
Σ. The notation Pr [ · ] and Pr|Σ[·] are defined analogously. Finally, let M : (Rd)n → Sd+ be a measurable
function throughout.

3. Specifically, Cai et al. (2023, Prop. 2.2) only holds when the parameters are independent (although not explicitly stated).
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2. Lower Bounds on DP Mechanisms via Fingerprinting

Let us use the setting of Gaussian covariance estimation to discuss more in depth fingerprinting arguments
in general and the details of our approach. Throughout the paper, let x1, . . . , xn be i.i.d. random vectors in
Rd with distribution N (0,Σ) and density p(· |Σ), where Σ ∈ Sd+. Let M be a mechanism that estimates Σ
when given as input the matrix X ∈ Rd×n whose columns are x1, . . . , xn.

The main intuition behind fingerprinting arguments is that, if M(X) predicts Σ somewhat accurately, it
should have some correlation with x1, . . . , xn. This intuition is not true in general since the mechanism that
always outputs Σ is perfectly accurate and completely independent of its input. Yet, if Σ is unknown to the
mechanism (e.g., if it is chosen randomly in the right way), this intuition can often be formalized.

The argument uses the quantity A(z,M(X)), a “correlation statistic” of z ∈ Rd with M(X). It should
have the property that, for random Σ,

(i) E [ |A(z,M(X))| ] is small if z is independent of X and M;

(ii) E [A(z,M(X)) ] is large if z = xi for a uniformly random i ∈ [n];

Property (i) is usually guaranteed by the design of A. Property (ii) often requires a more careful analysis
and choice of the distribution of Σ, and this is the property usually called “Fingerprinting Lemma” in earlier
works. None of the above properties depend on differential privacy: DP comes into play to show that, in fact,
the expected statistics in both cases above are close to each other. Intuitively, if M is differentially private,
it cannot be too correlated with xi for any i ∈ [n]. In this paper we will barely even use the definition of
(ϵ, δ)-DP because it is only used inside Theorem 2.1, which we use as a black box.

We use a statistic proposed in the “score attack” framework of Cai et al. (2023) defined by

A(z,M(X)) := ⟨M(X)− Σ,∇Σ ln p(z |Σ)⟩, (2)

where4 ∇Σ ln p(z |Σ) ∈ Sd+ is known as the score function in the statistics literature. It is worth noting that
the score attack statistic for Gaussian mean estimation nearly matches the statistic used in other works (e.g.,
see Dwork et al., 2015; Bun et al., 2017 for exact matches or Kamath et al., 2019, Lemma 6.8 for a near
match). The next theorem summarizes properties of the above statistic shown by Cai et al. (2023). Note that
in the next theorem, T is a parameter that can be optimized to improve the upper bound.

Theorem 2.1 (Properties of the score attack statistic, Cai et al., 2023) For all random Σ ∈ Sd+,

n∑
i=1

E|Σ [A(xi,M(X)) ] =
∑

i,j∈[d] : i≥j

∂

∂Σij
g(Σ)ij , where g := E|Σ [M(X) ] . (3)

Moreover, if M is (ε, δ)-DP with ε ∈ (0, 1) and δ > 0, then for all T and
n∑

i=1

E|Σ [A(xi,M(X)) ] ≤
n∑

i=1

(
2εαΣ

√
λmax(I(Σ)) + 2δT +

∫ ∞

T
Pr|Σ[|A(xi,M(X))| ≥ t] dt

)
,

where αΣ := E|Σ[ ∥M(X)− Σ∥2F ]1/2 and I(Σ) is the Fisher information matrix of p(· |Σ).

The inequality above is useful to show that score attack statistics in (i) are roughly upper bounded by
αΣ

√
λmax(I(Σ)) and uses that scenarios (i) and (ii) are not too far apart. Identity (3) roughly shows that (ii)

will be Ω(d2) if g(Σ) = E|Σ [M(X) ] ≈ Σ (the right-hand side of (3) is exactly d(d+ 1)/2 if g(Σ) = Σ).
Yet, one needs to carefully pick the distribution of Σ to formalize this intuition.

4. The score function in this case should be the gradient of p as a function of only the lower triangular entries of Σ to account
for symmetry. Yet, we can in this case use the matrix gradient. These details are important as well when discussing the Fisher
information. We defer the details to Appendix C.
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2.1. Proof Overview

Let us overview how the framework above can be used to prove Theorem 1.1. Note that Theorem 2.1 does
not require Σ to be random. The challenge is to randomize Σ in a way that we can meaningfully lower bound
the right-hand side of (3). We will choose Σ to have a Wishart distribution with appropriate parameters, then
show both an upper and a lower bound on the expected statistics

∑n
i=1 E [A(xi,M(X)) ].

• A lower bound of Ω(d2) is proven in Lemma 2.2.
• An upper bound of roughly O(nϵα) is proven in Lemma 2.4.

The complete proof of Theorem 1.1, given in Section 2.3, straightforwardly combines these bounds.

2.2. Distribution on Σ

As discussed as the beginning of this section, for the lower bound in Theorem 2.1 (or any fingerprinting
argument) to be non-trivial we need to carefully select a distribution on the covariance matrix Σ. We will use
one of the most natural distributions over Sd+, the (normalized) Wishart distribution.

The normalized Wishart Distribution. Let G be a d×D random standard Gaussian matrix, and let

Σ :=
1

D
GGT with D = 2d. (4)

The distribution of GGT is known as the Wishart distribution (of dimension d) with D degrees of freedom.
We refer to the distribution of Σ as above as the normalized Wishart distribution with D degrees of freedom.
The choice D = 2d is to ensure that Σ has constant condition number with high probability.

Although natural, this distribution was not used in previous fingerprinting arguments. Kamath et al.
(2022a) proposes the Generalized Fingerprinting Lemma (for exponential families). As stated, it requires the
distribution of each of the coordinates of Σ−1 to be independent and uniform over a bounded interval, which
already rules out a Wishart distribution, even if truncated to be bounded. This also forces the distribution to be
such that the diameter E[ ∥Σ− E [Σ ]∥2F ] is O(1), which makes their bounds only hold on the high-accuracy
regime. Narayanan (2023) uses a Wishart distribution for the inverse covariance matrix Σ−1, which has
diameter Θ(d). However, their analysis requires δ = O(1/d2) to get a tight upper bound on his correlation
statistics (which are not the statistics A defined in (2)). In our case, we also want a distribution with diameter
Θ(d) for which, simultaneously, we can meaningfully lower bound the expected value of (3). As we shall see,
the choice of the Wishart distribution leads to an elegant analysis.

Error of the Mechanism. Let W :=
{
A ∈ Sd+ : 0.09I ⪯ A ⪯ 10I

}
be the set of what we shall call

well-conditioned matrices. Define the expected error α2 of M by

α2 := E
[
α2
Σ | Σ ∈ W

]
where α2

Σ := E|Σ

[
∥M(X)− Σ∥2F

]
. (5)

Readers familiar with the Mahalanobis norm will note that, under the event Σ ∈ W , the error in Mahalanobis
norm is the same as ∥M(X)− Σ∥F up to constants. Thus, lower bounds using α imply lower bounds on
mechanisms with guarantees under the Mahalanobis norm.

To use the lower bound from the framework of Theorem 2.1, the next lemma (the “Fingerprinting Lemma”
of our argument) will show non-trivial lower bounds for Σ as described in (4). We note that the boundedness
of M(X) is a technicality discussed in Appendix A and, for our purporses, can be assumed without loss of
generality (see the proof of Theorem 1.1 in Section 2.3).

Lemma 2.2 (Main Lower Bound) Assume M(X) ⪯ βuI for βu > 0. If α ≤
√
d/15 and d ≥ 20, then

n∑
i=1

E [A(xi,M(X)) ] ≥ d2

4
.
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The main technical step in applying the upper bound from Theorem 2.1, whose proof we defer to
Section 4, yields the following lemma.

Lemma 2.3 (Main Upper Bound, Fixed Σ) Let βu > 0 be an arbitrary constant. Assume that δ satisfies
(1), that M(X) is (ε, δ)-DP, and that M(X) ⪯ βuI . Then, for sufficiently large n,

n∑
i=1

E|Σ [A(xi,M(X)) ] ≤ 2nε
αΣ

λmin(Σ)
+ 36

(
βu

λmin(Σ)
+ 1

)
d3/2.

2.3. Completing the proof of Theorem 1.1

Our upper bound (Lemma 2.3) holds for all Σ. To obtain a bound depending only on the problem parameters
(n, d, etc.) we will let Σ follow a normalized Wishart distribution as described above.

Lemma 2.4 (Upper Bound with Random Σ) Assume M(X) is (ε, δ)-DP with δ ≤ 1/3n ln(en) and that
M(X) ⪯ 10I . Then there is a constant C > 0 such that, for large enough n,

n∑
i=1

E [A(xi,M(X)) ] ≤ Cnε(α+ 2−d) + 2400 · d3/2.

We give a sketch below, and a complete proof in Appendix B.1.
Proof [Sketch] Taking the expectation with respect to Σ on the inequality of Lemma 2.3 yields5

n∑
i=1

E [A(xi,M(X)) ] ≤ 2nεE

[
αΣ

λmin(Σ)

]
︸ ︷︷ ︸

O(α+2−d)

+36

(
10E

[
1

λmin(Σ)

]
+ 1

)
︸ ︷︷ ︸

O(1)

d3/2.

For the second term, a standard bound for Wishart matrices is E
[
λ−1
min(Σ)

]
≤ 6.5 (see Lemma D.8).

The first term requires care because αΣ is random since it depends on Σ. Most of the contribution of
this term is on the event E := {Σ ∈ W} since Pr[Σ ̸∈ W] is exponentially small. On the event E we have

1/λmin(Σ) = O(1), so the contribution is O(1) · E [1E · αΣ ] ≤ O(1) ·
√
E
[
1E · α2

Σ

]
= O(α).

Combining our main lower bound (Lemma 2.2) and main upper bound (Lemma 2.4), it is straightforward
to obtain our main theorem.

Theorem 1.1. Let M : (Rd)n → Sd+ be (ε, δ)-DP where ε ∈ (0, 1) and δ ≤ 1/3n ln(en). Suppose that
α ∈ [2−d,

√
d

15 ]. Then

n = Ω
( d2
εα

)
.

Proof Without loss of generality, we may assume that the output of M lies in W by projecting the output
M(X) onto W . Doing so does not increase αΣ for any Σ ∈ W (and hence does not increase α) since
projection onto convex sets does not increase the Euclidean distance, and the Frobenius norm is a Euclidean
norm.

Let Σ have the Wishart distribution described in Section 2.2. Then Lemmas 2.2 and 2.4 imply that

d2

5
≤

n∑
i=1

E [A(xi,M(X)) ] ≤ Cnε(α+ 2−d) + 2400d3/2 ≤ 2Cnεα+ 2400d3/2,

since α ≥ 2−d. Rearranging, we obtain n ≥ (d2/5− 2400d3/2)/2Cϵα, which is Ω(d2/εα) as required.

5. Here we are implicitly using the tower property of conditional expectations, that E
[
E|Σ [ · ]

]
= E [ · ] .
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3. Lower Bound on the Correlation Statistics via the Stein-Haff Identity

In this section we shall prove our main lower bound on the correlation statistics, formally stated in Lemma 2.2.
The main idea is to lower bound (3) using a result known as the Stein-Haff identity, which extends Stein’s
identity for Gaussian random variables to Wishart matrices. As we shall see, this suggests a strategy for
fingerprinting arguments with non-independent parameters via the use of Stokes’ Theorem.

First, we require some notation. Define the d× d matrix of differential operators DΣ by

DΣ(i, j) =
(1 + 1[i = j])

2
· ∂

∂Σij
. ∀i, j ∈ [d],

where we set 1[P ] to be 1 if the predicate P is true, and 0 otherwise. Crucially, we identify Σij and Σji

when differentiating. In other words, we see any function of a symmetric matrix Σ as a function of its
lower triangular entries. This operator is the one that leads to the correct definition of a gradient over Sd+
(see Srinivasan and Panda 2023 or Appendix C.1). Surprisingly, even in prominent parts of the literature
there is disagreement about the proper notion of a gradient that takes into account matrix symmetry. In this
paper we treat these details carefully with the hope that it is instructive to the reader.6 For this section, it helps
to note that if g : Sd+ → Sd+ is differentiable, then ⟨DΣ, g(Σ)⟩

∑
i≥j ∂Σijg(Σ)ij is the divergence of g as a

function of the lower triangular entries of Σ.
The next theorem is an extension of the classical Stein’s identity (Stein, 1971; Stein et al., 2004) from

normal random variables to Wishart random variables, and we shall state it in terms of general Wishart
distributions. That is, we say that Σ ∼ Wd(D;V ) for non-singular V ∈ Sd+ if Σ = GGT where G is a Rd×D

matrix whose columns are i.i.d. vectors each with distribution N (0, V ).

Theorem 3.1 (Stein-Haff Identity, Haff, 1979, Thm. 2.1) Assume g : Sd+ → Sd+ satisfy some mild regular-
ity conditions (see Appendix A), and let Σ ∼ Wd(D;V ) for some non-singular V ∈ Sd+. Then

E [ ⟨DΣ, g(Σ)⟩ ] =
1

2
E
[
⟨V −1 − (D − d− 1)Σ−1, g(Σ)⟩

]
.

The original proof of this identity uses Stokes’ Theorem and using the fact that

DΣ · pW(Σ) = 1
2(V

−1 − (D − d− 1)Σ−1)pW(Σ) (6)

where pW is the density of the Wishart distribution. The high level idea is to handle the left-hand side with
integration by parts, moving the differential operator from g to the density of the Wishart distribution. This
can be seen as a direct generalization of the integration by parts proof of the classical Stein’s identity. A
proof can be found in Haff (1979) and, using modern notation and tools, in Tsukuma and Kubokawa (2020,
§5). Furthermore, this suggests a general avenue to prove lower bounds on the score statistics even when the
parameters are not independent: use Stokes’ theorem to write the expected divergence into an expression the
depends on the gradient of the density, and then manipulate this expression to connect g(Σ) to the accuracy
of M. That is exact what we do in Lemma 3.2. Following a preliminary version of this work available online,
Lyu and Talwar (2024) extend the idea of using Stokes’theorem to lower bound the score statistics to other
problems in differential privacy.

Lemma 3.2 Let g : Sd+ → Sd+ be continuously differentiable and bounded, and let Σ ∼ Wd(D;V ) for a
non-singular V ∈ Sd+. Then

E [ ⟨DΣ, g(Σ)⟩ ] ≥
d(d+ 1)

2
− 1

2

√
E
[
∥Σ− g(Σ)∥2F

]
·
√
E
[
∥(D − d− 1)Σ−1 − V −1∥2F

]
.

6. Care with symmetry is not a contribution of our work. Kamath et al. (2022a) handle symmetry similarly and our approach closely
follows Srinivasan and Panda (2023); Magnus and Neudecker (1980). We defer a detailed discussion to Appendix C.
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In particular, if V = 1
DI and D = 2d we have

E [ ⟨DΣ, g(Σ)⟩ ] ≥
d(d+ 1)

2
− 2d1.5

√
E
[
∥Σ− g(Σ)∥2F

]
.

Proof By the Stein-Haff identity, we have

E [ ⟨DΣ, g(Σ)⟩ ] =
1

2
E
[
⟨V −1 − (D − d− 1)Σ−1, g(Σ)⟩

]
=

1

2
E
[
⟨V −1 − (D − d− 1)Σ−1, g(Σ)− Σ⟩+ ⟨V −1 − (D − d− 1)Σ−1,Σ⟩

]
.

Using the fact that E [Σ ] = DV we have

E
[
⟨V −1 − (D − d− 1)Σ−1,Σ⟩

]
= E

[
Tr(ΣV −1 − (D − d− 1)I)

]
= Tr(DI − (D − d− 1)I) = d(d+ 1).

Finally, the desired inequality follows since, by Cauchy-Schwartz,

E
[
⟨V −1 − (D − d− 1)Σ−1, g(Σ)− Σ⟩

]
≥−

√
E
[
∥Σ− g(Σ)∥2F

]√
E
[
∥(D − d− 1)Σ−1 − V −1∥2F

]
.

Moreover, since Σ follows a Wishart distribution, many properties of Σ−1, such as the expectation and
variance of its entries, are well known. (See Lemma D.3.) Specifically, E

[
Σ−1

]
= 1

D−d−1V
−1 and, thus,

E
[ ∥∥(D − d− 1)Σ−1 − V −1

∥∥2
F

]
= (D − d− 1)2

∑
i,j∈[d]

E
[
(Σ−1

ij − 1
D−d−1V

−1
ij )2

]
= (D − d− 1)2

∑
i,j∈[d]

Var
[
Σ−1
ij

]
.

Now consider the case that V = 1
DI with D = 2d. Then V −1

ij = 1[i = j]D for all i, j ∈ [d]. Combined with
the variance formulas from D.3, we get

(D − d− 1)2
∑

i,j∈[d]

Var
[
Σ−1
ij

]
= d · 2D2

(D − d− 3)
+ d(d− 1) · (D − d− 1)D2

(D − d− 3)(D − d)

= d · 2 · 4d2

(d− 3)
+ d(d− 1) · (d− 1)4d2

(d− 3)d

= 4d3
(

2

(d− 3)
+

(d− 1)2

(d− 3)d

)
≤ 16d3,

since we assume that d ≥ 5. This inequality holds since the left-hand side is decreasing for d ≥ 5: the
derivative of 2

(d−3) +
(d−1)2

(d−3)d is −3d2−2d+3
(d−3)2d2

, and the numerator is negative for d ≥ 5.

We are now in place to prove the main lower bound (Lemma 2.2).
Proof (of Lemma 2.2) Define g(Σ) = E|Σ [M(X) ]. By Theorem 2.1, together with the lower bound proven
in Lemma 3.2, we have

n∑
i=1

E [A(xi,M(X)) ] =
∑

i,j∈[d] : i≥j

E
[ ∂

∂Σij
g(Σ)ij

]
= E [ ⟨DΣ, g(Σ)⟩ ]

≥ d(d+ 1)

2
− 2d1.5

√
E
[
∥Σ− g(Σ)∥2F

]
.
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Note that by the conditional Jensen’s inequality and the definition of α2
Σ from (5) we have

E[ ∥g(Σ)− Σ∥2F ] ≤ E[ ∥M(X)− Σ∥2F ] = E
[
α2
Σ

]
.

By assumption, d ≥ 20 and α2 ≤ d/(15)2 ≤ d/200. Thus, by Lemma B.1 we have

E
[
α2
Σ

]
≤ α2 +

d

200
≤ d

100
.

Combining the above facts yields

d(d+ 1)

2
− 2d1.5

√
E
[
∥Σ− g(Σ)∥2F

]
≥ d(d+ 1)

2
− 2d2

10
≥ 3d2

10
≥ d2

4
.

4. Upper Bound on the Correlation Satistics

This section proves Lemma 2.3, an upper-bound on the correlation statistics when M is differentially private.
These bounds are parameterized the covariance matrix Σ and, thus, are random variables. We shall do so by
using the upper bound of Theorem 2.1, which depends on the tails of the correlation statistics. We give tail
bounds for this statistics in the following lemma.

Lemma 4.1 Assume M(X) ⪯ βuI and set γ := 1 + βu/λmin(Σ). Then, for any i ∈ [n] and T ≥ 6γd3/2,∫ ∞

T
Pr|Σ(|A(xi,M(X))| ≥ t) dt ≤ 9γ

√
d exp

(
− T

9γ
√
d

)
.

Proof To simplify notation, let Ai = |A(xi,M(X))| and z := Σ−1/2xi. Note that z has the distribution
N (0, I). Then,

Ai = |⟨M(X)− Σ,∇Σ p(xi |Σ)⟩| (by definition in (2))

= |⟨M(X)− Σ,Σ−1xxTΣ−1 − Σ−1⟩| (by Proposition C.2)

= |⟨Σ−1/2M(X)Σ−1/2 − I, zzT − I⟩| (cyclic property of trace)

≤
∥∥∥Σ−1/2M(X)Σ−1/2 − I

∥∥∥
F
·
∥∥∥zzT − I

∥∥∥
F

≤
√
d

(
βu

λmin(Σ)
+ 1

)
︸ ︷︷ ︸

=γ

·
∥∥∥zzT − I

∥∥∥
F
, (7)

using the triangle inequality and Σ−1/2M(X)Σ−1/2 ⪯ βuΣ
−1 ⪯ βu

λmin(Σ)I .
To complete the proof, it suffices to prove a tail bound on (7). To begin, observe that zzT − I has

eigenvalues ∥z∥22 − 1 with multiplicity 1, and −1 with multiplicity d− 1, so∥∥∥zzT − I
∥∥∥
F

=

√
(∥z∥22 − 1)2 + d− 1 ≤

√
∥z∥42 + d.

Therefore,

Pr|Σ[Ai ≥ t ] ≤ Pr|Σ

[
γ
√
d ·
√

∥z∥42 + d ≥ t
]
= Pr|Σ

[
∥z∥22 ≥

√
t2

γ2d
− d

]
.

10
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For any t ≥ 6γd3/2, we may write t ≥ t/2 + 6γd3/2/2. Squaring then dividing by γ2d, we get

t2

γ2d
≥ t2

4γ2d
+

36d2

4
≥ 2

9
· t2

γ2d
+ 8d2 + d = 18x2 + 8d2 + d,

where we have defined x = t/9γ
√
d. Thus, we have

Pr|Σ[Ai ≥ t ] ≤ Pr|Σ

[
∥z∥22 ≥

√
t2

γ2d
− d

]
≤ Pr|Σ

[
∥z∥22 ≥

√
8d2 + 18x2

]
≤ e−x,

by Corollary D.2. We assume T ≥ 6γd3/2, so∫ ∞

T
Pr|Σ[Ai ≥ t ] dt ≤

∫ ∞

T
exp

(
− t

9γ
√
d

)
dt = 9γ

√
d exp

(
− T

9γ
√
d

)
.

We are now in position to prove Lemma 2.3.

Proof (of Lemma 2.3) Let z ∼ N (0,Σ) be independent of X and X ′
i be identical to the matrix X except

with its i-th column replace by z. By Theorem 2.1 we have, for any T > 0,

n∑
i=1

E|Σ [A(xi,M(X)) ] ≤ 2εnαΣ

√
λmax(I(Σ)) + 2nδT +

n∑
i=1

∫ ∞

T
Pr|Σ[Ai ≥ t] dt

where, as before, we let Ai = |A(xi,M(X))|. Let us first bound the latter 2 terms in the right-hand side.
Set T := 9γd3/2 ln(1/δ) where γ := βu/λmin(Σ) + 1. Since δ ≤ 1/e, we have T ≥ 6γd3/2. Thus, by
Lemma 4.1 we have

2nδT +
n∑

i=1

∫ ∞

T
Pr|Σ[Ai ≥ t] dt ≤ 9γn

(
2d3/2δ ln(1/δ) +

√
d exp

(
− d ln(1/δ)

))
≤ 18γnd3/2(δ ln(1/δ) + δ) ≤ 36γd3/2

since δ ln(1/δ) ≤ 1/n for all n ≥ 1, by our choice of δ in (1).
To complete the proof of the desired inequality, note that Lemma C.5 yields

2εnαΣ

√
λmax(I(Σ)) ≤ 2εn

αΣ

λmin(Σ)
.
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Appendix A. Conditions for the Stein-Haff Identity

Let us now describe the conditions a function g : Sd+ → Sd+ ought to satisfy for the Stein-Haff identity
(Theorem 3.1) to hold, where Sd++ is the set of positive definite matrices. These are fairly mild yet technical
conditions, thus one may skip this section is such details are not of interest. Ultimately, we will see we only
need to assume that the mechanism M is measurable in order to use the Stein-Haff identity.

In this section we will not require the function g to be defined for singular matrices, as they will not
arise in our application of the identity. For the remainder of this section let pW be the density of the Wishart
distribution Wd(D;V ) for some non-singular V ∈ Sd++. That is, for all Σ ∈ Sd+ define

pW(Σ) :=
1

2Dd/2 det(V )D/2Γd(D/2)
· det(Σ)(D−d−1)/2 exp

(
−1

2
Tr(V −1Σ)

)
.

The conditions in Haff (1979, Theorem 2.1) state that

(i) For any strictly positive numbers ρ1, ρ2, the function g · pW should be continuously differentiable (or at
least Lipchitz continuous) over the set

B(ρ1, ρ2) :=
{
A ∈ Sd+ : ρ1 < ∥A∥F < ρ2

}
.

Note that the matrices in B(ρ1, ρ2) can be singular.

(ii) Define B(ρ) :=
{
A ∈ Sd+ : ∥A∥F = ρ

}
. We need g to not grow too fast at the boundaries of Sd+, in

the sense that

lim
ρ→0

supA∈B(ρ) ∥g(A)∥F
ρ1−dD/2

= 0 and lim
ρ→+∞

supA∈B(ρ) ∥g(A)∥F
ρ1−dD/2 exp(γρ)

= 0 for every γ > 0.

Let us now verify that the function g : Sd++ → Sd+ given7 by

g(Σ) := E [M(X) | Σ ] =

∫
Rd×n

M(X) ·
( n∏
i=1

p(xi |Σ)
)
dX, ∀Σ ∈ Sd++ (8)

satisfy the above conditions, where p(· |Σ) is the density of a normal distribution with mean 0 and covariance
matrix Σ, and M is a mechanism that is measurable and such that M(X) ∈ W (we can assume this last
condition holds since, if it does not, we may project onto W as argued in the proof of Theorem 1.1). Recall that
W =

{
A ∈ Sd+ : 0.09I ⪯ A ⪯ 10I

}
. In this case, g(A) ∈ W for any A ∈ Sd+. Therefore, condition (ii) is

easily satisfied since supA∈Sd+
∥g(A)∥F is bounded by 10

√
d.

Condition (i) is used to guarantee that we can apply Stokes’ theorem (or a special case of it, the Gauss
divergence theorem) to the function g · pW over Sd+ (or, actually, on B(ρ1, ρ2) and then take the limits with
ρ1 vanishing and ρ2 tending to infinity) and requires care to verify. Note that B(ρ1, ρ2) is not an open set
(it is an open ball intersected with Sd+, and there may be singular matrices in this ball). Thus, we need the
existence of a continuously differentiable extension of g · pW over an open set D ⊇ B(ρ1, ρ2) with D ⊆ Sd.
This is often not immediate since g could be defined only over the set of positive definite matrices (e.g.,
g(Σ) = Σ−1) and its value (or even only the value of its derivatives) would tend to infinity for any sequence
approaching the boundary of Sd+. Luckily, pW decreases fast enough at the boundary of Sd+ that we can easily
extend g · pW over the entire set of symmetric matrices by setting its value to zero.

7. One could define the function g over Sd
+, but for Σ singular the distribution N (0,Σ) does not have a density over Rd. In this

case, reasoning about differentiability of g with respect to Σ would be more challenging.
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Intuitively, as λmin(Σk) goes to 0, we have that pW(Σk) goes to 0 as fast as λmin(Σk)
D−d−1, while the

derivative of g(Σ) will tend to infinity at a speed similar to λmin(Σk)
−1. We formally show the details of this

continuously differentiable extension in the next theorem. If the reader is convinced by the intuitive argument
just given, then the proof of the next theorem may be skipped.

Theorem A.1 Let g be defined as in (8) and define F : Sd → Sd+ by

F (Σ) :=

{
g(Σ) · pW(Σ), if Σ ≻ 0,

0 otherwise.

Then F is continuously differentiable.

Proof Let i, j ∈ [d]. Since M is bounded (that is, always in W) and pW(Σ) = 0 for Σ ∈ Sd+ \ Sd++, one can
easily verify that F is continuous. Let us show that ∂ΣijF (Σ) exists and is continuous over Sd. Over Sd \ Sd+
we clearly have ∂ΣijF (Σ) = 0. Let us first derive the derivatives at Σ ∈ Sd++, and then show that the limit at
the boundary is 0.

First note that
∂ΣijF (Σ) = g(Σ) · ∂Σij (pW(Σ)) + ∂Σij (g(Σ))pW(Σ). (9)

To compute ∂Σij (g(Σ)) = ∂Σij E|Σ [M(X) ], we will exchange the order of the differential and integration
(the expectation). To do so, we may the Leibniz integral rule (see, e.g., Folland (1999, Theorem 2.27)),
which requires us to check that the partial derivative of the integrand in the right-hand side (8) is bounded in
absolute value by an integrable function for any Σ on an open ball contained in Sd++. That is, we will show

(10)given Σ ∈ Sd++ and ε > 0 small enough, there is a function H(X) and a constant
C > 0 (that may depend on Σ and d) such that, for any Σ ∈ Sd++ with

∥∥Σ− Σ
∥∥
F
< ε,

we have

∂Σij

(
M(X) ·

( n∏
k=1

p(xk |Σ)
))

≤ CH(X) and
∫
H(X) dX <∞.

Fix Σ ∈ Sd++ and let ε > 0 be small enough such that Bε := {Σ ∈ Sd :
∥∥Σ− Σ

∥∥2
F
< ε} ⊆ Sd++. Let

Σ ∈ Bε. For any x ∈ Rd define s(x)ij := ∂Σij (ln p(x |Σ)) = ∂Σij (p(x |Σ))/p(x |Σij). Then,

∂Σij

(
M(X) ·

( n∏
k=1

p(xk |Σ)
))

= M(X) · ∂Σij

( n∏
k=1

p(xk |Σ)
)

= M(X) ·
n∑

k=1

∂Σijp(xi |Σ)
(∏
r ̸=i

p(xr |Σ)
)

= M(X) ·
( n∑
k=1

s(xk)ij

)( n∏
k=1

p(xk |Σ)
)
.

To conclude the proof of (10), it suffices to show that (each entry of) the above expression is upper-bounded
by an integrable function of x1, . . . , xn with respect to the Lebesgue measure. For that, it suffices to show that
E|Σ [M(X)s(xk)ij ] is finite with x1, . . . , xk ∼ N (0,Σ). Notice that any entry of M(X)s(xk)ij is upper
bounded by its maximum eigenvalue. Using the formula for s(x) (see Proposition C.2 and Lemma C.1) and
the fact that M(X) ⪯ 10I we have

λmax(M(X) · s(xk)ij) ≲ |s(xk)ij | ≲ λmax

(
Σ−1xkx

T
kΣ

−1 − Σ−1
)

= λmax(Σ
−1)(λmax((Σ

−1/2xk)(Σ
−1/2xk)

T)− 1)

= λmax(Σ
−1)(∥Σ−1/2xk∥22 − 1),
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where, as usual, the ≲ omits global constants. Since xk ∼ N (0,Σ), we have Σ−1/2xk ∼ N (0, I) and, thus,
E[
∥∥Σ−1/2xk

∥∥2
2
] = d. Moreover, since Σ ∈ Bε, we have the (loose) bound λmax(Σ

−1) ≤ dελmax(Σ
−1

).
This finishes the proof of (10).

Thus, applying the Leibniz integral rule, we can exchange differentiation and integration, obtaining

∂Σijg(Σ) = E|Σ

[
M(X) ·

n∑
k=1

s(xk)ij

]
(11)

Additionally, the dominated convergence theorem (which is applicable due to (10)) also implies that the
above function is continuous on Sd++.

Next, let us derive an expression for ∂ΣijpW(Σ). Recalling the formula for the gradient8 of pW in (6) is
given by

∇pW(Σ) =
1

2
(V −1 − (D − d− 1)Σ−1)pW(Σ). (12)

Therefore, ∂ΣijpW is continuous on Sd++. This, together with the continuity of ∂Σijg and (9), implies that
∂ΣijF is continuous on Sd++.

It only remains to show continuity of ∂ΣijF (Σ) at the boundary bd(Sd+) := Sd+ \ Sd++. Let (Σk)
+∞
k=1 be a

convergent sequence in Sd++ such that limk→∞Σk = Σ ∈ bd(Sd+). We shall show that

lim
k→∞

∂Σij (g(Σk))pW(Σk) = lim
k→∞

g(Σk)∂Σij (pW(Σk)) = 0. (13)

This, together with the expression in (9) implies that ∂ΣijF (Σ) = 0, as desired. For the remainder of the
proof, we shall write a ≲ b if a ≤ C · b where C is a constant that is independent of the sequence Σk (the
constant C may depend on parameters such as d and n). Then, for any index k,∥∥∂Σij (g(Σk))pW(Σk)

∥∥
F

≤
n∑

r=1

E|Σ

[
∥M(X)s(xr)ij∥2F

]1/2
pW(Σk) (By (11) and Jensen’s ineq.)

≲
n∑

r=1

E|Σ
[
s(xr)

2
ij

]1/2
pW(Σk) (M(X) is bounded)

≲ E|Σ
[
s(x1)

2
ij

]1/2
pW(Σk) (x1, . . . , xn are i.i.d.)

= I(Σk)
1/2
ij,ij · pW(Σk) (By the def. of Fisher info. from (18))

≲ λmax(I(Σk))
1/2 · pW(Σk)

≤ λmin(Σk)
−1 · pW(Σk) (Lemma C.5).

For any matrix A ∈ Sd, let λ1(A), · · · , λd(A) be the eigenvalues of A in non-increasing order. Since
Σk → Σ as k → ∞, we have λr(Σk) → λr(Σ) for every r ∈ [d]. In particular, we have the limit
limk→∞

∏
r<n λr(Σk) =

∏
r<n λr(Σ). Therefore, if D > d− 2

λmin(Σk)
−1 · pW(Σk) ≲ λmin(Σk)

−1 · det(Σk)
D−d−1 = det(Σk)

D−d−2
∏
r<n

λr(Σk)

k→∞−→ det(Σ)︸ ︷︷ ︸
=0

D−d−2 ∏
r<n

λr(Σ) = 0.

8. See Section C.1 for a discussion on gradients for functions of symmetric matrices and Lemma C.1 for a result showing that the
partial derivatives are scaled entries of the gradient.
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So far we have analyzed one of the limits in (13). The other limit can be analyzed by similar arguments,
also under the assumption that D > d− 2. Using the formula for the gradient in (12), but omitting details for
the sake of conciseness, we obtain∥∥g(Σ) · ∂Σij (pW(Σ))

∥∥
F

≲ (∥V ∥F +
∥∥Σ−1

k

∥∥
F
) · pW(Σk) ≲

pW(Σk)

λmin(Σ)

k→∞−→ 0.

This concludes the proof of (13).

Appendix B. Omitted proofs

B.1. Omitted material from Section 2

Proof (of Lemma 2.4) Taking the expectation with respect to Σ on the inequality of Lemma 2.3, then using
the tower property of conditional expectation, yields

E

[
n∑

i=1

E|Σ [A(xi,M(X)) ]

]
=

n∑
i=1

E [A(xi,M(X)) ]

≤ 2nεE

[
αΣ

λmin(Σ)

]
+ 36

(
10E

[
1

λmin(Σ)

]
+ 1

)
d3/2.

A standard bounds for Wishart matrices (see Lemma D.8) is that E
[
λ−1
min(Σ)

]
≤ 6.5, so the second term on

the right-hand side is at most 36 · 66 · d3/2. Thus, it remains to show that there is a constant C > 0 such that

E [αΣ/λmin(Σ) ] ≤ 10α+ C2−d. (14)

We will do so by separately bounding E [ (αΣ/λmin(Σ)) · 1E ] and E [ (αΣ/λmin(Σ)) · 1Ē ], where E is the
event {Σ ∈ W}. Under E we have λmin(Σ) ≥ 0.09 ≥ 1/12 and, by the definition of α (see (5)), we have
E [αΣ · 1E ] ≤ E [αΣ | E ] = α. Therefore, E [ (αΣ/λmin(Σ)) · 1E ] ≤ 12α. For the other term, first we can
use the fact that M(X) ⪯ 10I to get

αΣ =

√
E|Σ

[
∥M(X)− Σ∥2F

]
≤
√

E|Σ

[
∥M(X)− Σ∥2F

]
≤
√
E|Σ

[
2 ∥M(X)∥2F + 2 ∥Σ∥2F

]
≤
√
2d(102 + λmax(Σ)2) ≤

√
2d(10 + λmax(Σ)).

Define κ(Σ) := λmax(Σ)/λmin(Σ). Then,

E

[
αΣ

λmin(Σ)
· 1Ē

]
≤ 10

√
2dE

[
λmin(Σ)

−1 · 1Ē
]
+
√
2dE [κ(Σ) · 1Ē ] .

Let us start by noticing that Lemmas D.6 and D.8 together yield

Pr
[
Ē
]
≤ Pr [λmin(Σ) < 0.09 ] + Pr [λmax(Σ) > 10 ] ≤ 2√

d
2−d. (15)

Using the tail bound (20) we have

E

[
1

λmin(Σ)
· 1Ē

]
=

∫ ∞

0
Pr

[
1

λmin(Σ)
≥ t ∧ Ē

]
≤ 4e · Pr

[
Ē
]
+

∫ ∞

4e
Pr
[
λmin(Σ)

−1 > t
]
dt

≤ 4e · Pr
[
Ē
]
+

∫ ∞

4e

1√
2πd

(2e)d+1 1

td+1
dt = 4e · Pr

[
Ē
]
+

1√
2πd

1

d

(2e)d+1

(4e)d

≲
1√
d
2−d +

1√
d
2−d ≤ 2√

d
2−d,
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where in the last step we used d ≥ 2e. Similarly, using the tail bound in Lemma D.10,

E [κ(Σ) · 1Ē ] ≤ 104 Pr
[
Ē
]
+

∫ ∞

104

(13)d+1

√
2π

· 1

t(d+1)/2
dt

≲
1√
d
2−d +

∫ ∞

104
(13)d+1 · 1

t(d+1)/2
dt

=
1√
d
2−d + 13

2

d+ 1

13d

(104)(d−1)/2

≲
1√
d
2−d +

1

d

(
13

102

)d

≤ 1√
d
2−d +

1√
d
2−d.

Putting everything together yields

E

[
αΣ

λmin(Σ)
· 1Ē

]
≲

√
d · 1√

d
2−d ≤ 2−d,

which finishes the proof of (14).

B.2. Omitted material from Section 3

Lemma B.1 For α and αΣ defined as in (5) we have

E
[
α2
Σ

]
= E

[
∥M(X)− Σ∥2F

]
≤ α2 + 600d · 2

−d

√
d
.

In particular, if d ≥ 19, then E
[
α2
Σ

]
≤ α2 + d/200.

Proof Define the event E := {Σ ∈ W}. Then, by the definition of α,

E
[
α2
Σ

]
= E

[
α2
Σ1E

]
+ E

[
α2
Σ1Ē

]
≤ α2 + E

[
α2
Σ1Ē

]
.

Moreover, similarly to what we did in the proof of Lemma 2.4, we have

E
[
α2
Σ1Ē

]
≤ E

[
2d(102 + λmax(Σ)

2)1Ē
]
= 200dPr

[
Ē
]
+ dE

[
λmax(Σ)

2
1Ē
]

(15)
≤ 200d

2√
d
2−d + dE

[
λmax(Σ)

2
1Ē
]

Let us now give an O(2−d/
√
d) upper bound the latter term. We have,

E
[
λmax(Σ)

2
1Ē
]
≤ 80 · Pr

[
Ē
]
+

∫ ∞

80
Pr
[
λmax(Σ)

2 ≥ t
]
dt

= 80 · Pr
[
Ē
]
+

∫ ∞

8
Pr
[
λmax(Σ) ≥

√
72 + s

]
ds

≤ 80 · Pr
[
Ē
]
+

∫ ∞

8
Pr

λmax(Σ) ≥
√

72/2︸ ︷︷ ︸
=6

+
√
s/2

ds
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≤ 80 · Pr
[
Ē
]
+

∫ ∞

8
exp

(
−d

√
s

2
√
2

)
ds (By Lemma D.6)

≤ 80 · Pr
[
Ē
]
+

4
√
2(d

√
8 + 2

√
2)

d2
exp

(
−d

√
8

2
√
2

)

≤ 80 · Pr
[
Ē
]
+

16(d+ 1)

d2
e−d

≤ 160 · 1√
d
2−d +

160

9d
e−d (d ≥ 9)

≤ 160 · 10

9
√
d
2−d.

Thus,

E
[
α2
Σ1Ē

]
≤ d · 2

−d

√
d

(
400 +

1600

9

)
≤ 600d · 2

−d

√
d

In particular, one may verify that for d ≥ 19 we have 600
√
d2−d ≤ 1/200

Appendix C. Score and Fisher Information of Gaussian with Unknown Covariance

In this section we shall rigorously derive the formulas for the score function and the Fisher information
matrix, with respect to the parameter Σ ∈ Sd+, for the Gaussian density

p(x |Σ) = 1

(2π)d/2 det(Σ)1/2
exp
(
−1

2
xTΣ−1x

)
, ∀x ∈ Rd.

Since the function is meant to be evaluated only for symmetric, positive definite matrices Σ, one should take
into account the symmetry of Σ when manipulating the derivatives and gradients of p(· |Σ) with respect to Σ
(see, e.g., the discussions in Srinivasan and Panda, 2023).

If fact, these results are already known (see Magnus and Neudecker, 1980, §5 or Barfoot, 2020), but
they are not always derived with the adequate amount of rigor. Furthermore, one may find a variety of
different versions of the Fisher information, both depending on the parameterization and how one takes
symmetry in account during differentiation. It shall be important for us to rigorously derive the score and
Fisher information to then connect these results to the Stein-Haff identity in Section 3. Moreover, we shall
derive a formula for the Fisher information directly from its definition as the covariance matrix of the score,
without making use of its connection to the second derivative of the score (which needs care when taking
symmetry into account).

We shall first discuss how to properly take the symmetry in differentiation. Then we shall derive the
formulas of the score function (including differentiating between “matrix score” and the classical score
function) and the Fisher information matrix of the Gaussian density.

C.1. Gradients of Functions of Symmetric Matrices

Let F : Sd → R be a real valued function over symmetric matrices. (Later we will focus on the function
Σ ∈ Sd+ 7→ ln p(x |Σ).) Due to symmetry, we may actually consider F to be a function of the lower triangular
portion of the matrix, that is, restricted to Sd, the function F is a real function over a space isomorphic to
Rd(d+1)/2. Formalizing this turns out to be crucial to correctly define and compute the score function and
Fisher information matrices of a Gaussian with unknown covariance.

More formally, define
([d]
k

)
:= { S ⊆ [d] : |S| = k }. For any matrix A ∈ Rd×d (not necessarily

symmetric), we shall denote the vector containing the entries in the lower triangular portion of A by vech(Σ)
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which we parameterize it in the natural way by
(
[d]
2

)
∪
(
[d]
1

)
. Formally, for any matrix A ∈ Rd×d we define

the vector vech(A) :
(
[d]
2

)
∪
(
[d]
1

)
→ R by

vech(A){i,j} := Aij ∀i, j ∈ [d] with i ≥ j.

Analogously, we define the d2 dimensional vector9 vec(A) ∈ R[d]×[d] by

vec(A)(i,j) := Aij , ∀i, j ∈ [d].

The idea of the duplication matrix (Magnus and Neudecker, 1980) will be useful in navigating these
different spaces. The Duplication matrix is the matrix D : ([d]× [d])× (

(
[d]
2

)
∪
(
[d]
1

)
) → {0, 1} given by

D((r, s), {i, j}) = 1[{r, s} = {i, j}], ∀i, j, r, s ∈ [d].

In words, for any matrixA ∈ Rd×d, the vectorD vech(A) is the d2 dimensional vector comprised of the lower
triangle entries of A, with the off-diagonal entries duplicated. If A is symmetric then D vech(A) = vec(A).
Following Srinivasan and Panda (2023), define the symmetric gradient of F by10

∇symF (A) =
1

2
(∇F (A) +∇F (A)T), (16)

where ∇F (A) ∈ Rd×d is the traditional gradient of F , that is, (∇F (A))ij is the derivative of F evaluated
at A not taking into account symmetry. This definition is far from arbitrary: Srinivasan and Panda (2023)
show that ∇symF (Σ) is the gradient that satisfies the definition of Frechét derivative over Sd, the space of
symmetric d× d matrices. This identity shall be useful later to compute the score function of a Gaussian with
respect to the covariance matrix using traditional matrix calculus.

Finally, the following lemma connects the symmetric gradient of F and the gradient of the function f
given by f(vech(A)) := F (A) for any A ∈ Sd. Namely, it shows that ∇symF is defined in such a way such
that ⟨∇symF (A), B⟩ agrees with ∇f(vech(A))T vech(B).

Lemma C.1 Let F : Sd → R and f : R(
[d]
2 )∪(

[d]
1 ) → R be such that F (A) = f(vech(A)) for all A ∈ Sd.

Then, for all i, j ∈ [d] and any A ∈ Sd, we have

∇symF (A)ij =
(1 + 1[i ̸= j])

2
∇f(vech(A)){i,j}.

In particular, for any symmetric matrix B we have ⟨B,∇symF (A)⟩ = vech(B)T∇f(vech(A)).

Proof This is a combination of Srinivasan and Panda (2023, Theorem 3.8) and the formula for the pseudo-
inverse of D given by Magnus and Neudecker (1980, Lemma 3.6.iv).

9. For the sake of preciseness, we shall for this section differentiate the space Rd×d of d× d matrices and the space R[d]×[d] of
vectors indexed by ordered pairs of elements in [d] so that we can use vector operations in elements of R[d]×[d] without requiring
us to overload notation in the space of matrices.

10. This definition requires F to be well-defined and differentiable over non-symmetric matrices. Srinivasan and Panda (2023) also
show how to write this gradient when we have a function F that is only defined over symmetric matrices and cannot be extended
to Rd×d.
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C.2. Score Function Derivation

Let us start by discussing the definition and derivation of the score function of the Gaussian distribution
N (0,Σ) with respect to the covariance matrix Σ ∈ Sd+. As discussed in the previous section, to properly take

into account the symmetry of the covariance matrix Σ, we should look at the function fx : R(
[d]
2 )∪(

[d]
1 ) → R

defined by
fx(vech(Σ)) := ln p(x |Σ), ∀Σ ∈ Rd×d, ∀x ∈ Rd, (17)

where we let fx(vech(Σ)) evaluate to +∞ whenever p(x |Σ) is not well-defined. Then, the score function
of p(x |Σ) with respect to Σ is s(x) := (∇fx)(vech(Σ)). Here we use extra parentheses to make it clear
that the latter expression if the gradient of fx evaluated at vech(Σ), not the gradient of f ◦ vech evaluated at
Σ. One issue that could slightly complicate the computation of the score is that we know the formulas for
p(x |Σ) in matrix notation, and differentiating with respect to each entry individually could be cumbersome.
Moreover, as demonstrated by Srinivasan and Panda (2023), for any i, j ∈ [d], we probably have s(x){i,j} =
(∇fx)(vech(Σ)){i,j} ̸= ∇Fx(Σ)ij where

Fx(Σ) := ln p(x |Σ) ∀Σ ∈ Rd×d, ∀x ∈ Rd

and the gradient ∇Fx(Σ) does not take into account symmetry (that is, it is the gradient of Fx as a function
from Rd×d to R). In the literature symmetry has been taken into account in different ways that may disagree
with each other, and we refer the interested reader to the discussion in Srinivasan and Panda (2023).

Nonetheless, the identity in (16) allows us to compute the symmetric gradient using matrix calculus rules,
and Lemma C.1 allows us to compute the actual score function from the symmetric gradient. In the next
proposition, we show that the symmetric gradient and the classical gradient (that does not take into account
symmetry) luckily agree in your case and have a simple formula.

Proposition C.2 Let Σ ∈ Sd+ be positive definite and x ∈ Rd. Then,

∇symFx(Σ) = ∇Fx(Σ) =
1

2
(Σ−1xxTΣ−1 − Σ−1).

Proof First, note that

ln p(x |Σ) = −1

2
xTΣ−1x− 1

2
ln detΣ− d

2
ln 2π.

Therefore, to compute the score function ∇Σ ln p(x |Σ) it suffices to compute the gradient of each of the
terms above individually. The last term is constant with respect to Σ, so its derivative is zero. Moreover, can
compute the gradients (with respect to Σ) of each term above. Namely,by equations 57 and 61 of Petersen
and Pedersen (2008) we have

∇
(
xTΣ−1x

)
= −Σ−1xxTΣ−1 and ∇(ln detΣ) = Σ−1.

Putting everything together yields the formula we desired. Moreover, since the gradient is already symmetric,
the identity (16) yields the first equation in the claim.

C.3. Fisher Information Derivation

In the previous section we have obtained a formula for the “matrix score function” which, thanks to
Lemma C.1, allows us to obtain a formula for the actual score function. In this section we shall derive a
formula for the Fisher information matrix. As mentioned at the beginning of this section, although the formula
for the Fisher information is known in the literature, we did not find a direct proof from the definition of
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Fisher information. Moreover, since the use of derivatives and gradients of symmetric gradient has not always
been rigorous in previous work, we include a rigorous derivation of the formula.

The Fisher information matrix of the Gaussian distribution N (0,Σ) with respect to Σ ∈ Sd+ is the
(d(d+ 1)/2)× (d(d+ 1)/2) dimensional matrix given by

I ≡ I(Σ) := E
[
(∇fx)(vech(Σ))(∇fx)(vech(Σ))T

]
where x ∼ N (0,Σ), (18)

where fx is the log-density defined in (17). To compute a formula for I , we will need the following corollary
of Isserli’s Formula (Isserlis, 1918).

Lemma C.3 For any B ∈ Rd×d and x ∼ N (0,Σ) we have

E
[
xxTBxxT

]
= Σ(B +BT)Σ + ΣTr(BΣ).

Proof By Isserli’s Theorem (Isserlis, 1918), for any i, j, r, s ∈ [d] we have

E [xixrxsxj ] = ΣirΣsj +ΣisΣrj +ΣijΣrs.

Therefore, for any i, j ∈ [d], we have

E
[
xxTBxxT

]
ij
=
∑

r,s∈[d]

E [xixrBr,sxsxj ] =
∑

r,s∈[d]

Brs(ΣirΣsj +ΣisΣrj +ΣijΣrs)

=
∑

r,s∈[d]

Brs(ΣirΣsj +ΣisΣrj) + Σij

∑
r,s∈[d]

BrsΣrs︸ ︷︷ ︸
=Tr(BΣT)=Tr(BΣ)

.

Finally, if ei ∈ {0, 1}d denotes the indicator vector given by ei(j) := 1[i = j] for any j ∈ [d], then∑
r,s∈[d]

Brs(ΣirΣsj +ΣisΣrj) =
∑

r,s∈[d]

Σis(Bsr +Brs)Σrj = eTi Σ(B +BT)ΣeTj ,

which concludes the proof of the desired identity.

Finally, let us derive the formula for the Fisher information matrix I. We note that the next theorem can
be found in the literature (e.g., Magnus and Neudecker 1980, Lemma 5.2). Yet, most of the derivations rely
on looking at the second derivate of the log-density, which requires care to properly take symmetry into
account. Ours is a direct derivation from the definition of Fisher information. In the next proposition, A⊗B
denotes the Kronecker product of the matrices A and B with appropriate dimensions.

Proposition C.4 Let Σ ∈ Sd+ be non-singular. Then,

I(Σ) = 1

2
DT(Σ−1 ⊗ Σ−1)D

Proof Let x ∼ N (0,Σ). Define the (matrix) score function S(x) := ∇Σ(ln p(x |Σ)), by Proposition C.2,
we have S(x) = 1

2(Σ
−1xxTΣ−1 − Σ−1). Note, however, that the definition of Fisher information depends

on the vector score s(x) := ∇fx(Σ). By Lemma C.1, we have (abusing notation when indexing s(x))

s(x)ij = (1 + 1[i ̸= j])S(x)ij , ∀i, j ∈ [d]
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Therefore, for any i, j, r, s ∈ [d] we have

Iij,rs = E [ s(x)ijs(x)rs ] = (1 + 1[i ̸= j])(1 + 1[r ̸= s]) E [S(x)ijS(x)rs ]

=
(1 + 1[i ̸= j])(1 + 1[r ̸= s])

4
· E
[
(Σ−1xxTΣ−1 − Σ−1)ij(Σ

−1xxTΣ−1 − Σ−1)rs

]
.

Let ei ∈ {0, 1}m (for dimension m > 0 clear from context) denote the indicator vector given by ei(j) :−
1[i = j] for any j ∈ [m]. For ease of notation, define Ψ := Σ−1 and ψi := Σ−1ei for each i ∈ [d]. Then we
have

E
[
(Σ−1xxTΣ−1 − Σ−1)ij(Σ

−1xxTΣ−1 − Σ−1)rs

]
=E

[
(ψT

i xx
Tψj −Ψij)(ψ

T
r xx

Tψs −Ψrs)
]

=E
[
ψT
i xx

Tψjψ
T
r xx

Tψs

]
−Ψij · E

[
ψT
r xx

Tψs

]
−Ψrs · E

[
ψT
i xx

Tψj

]
+ΨijΨrs

=ψT
i E

[
xxTψjψ

T
r xx

T
]
ψs −ΨijΨrs,

where in the last equation we used that E[xxT ] = Σ and the fact that ψT
p Σψq = Ψpq for any p, q ∈ [d]. By

Lemma C.3 with B = ψjψ
T
r yields

ψT
i E

[
xxTψjψ

T
r xx

T
]
ψs = ψT

i (Σ(ψjψ
T
r + ψrψ

T
j )Σ + ΣTr(ψjψ

T
r Σ))ψs

= ψT
i (Σ(ψjψ

T
r + ψrψ

T
j )Σ + ΣΨrj)ψs

= ΨijΨrs +ΨirΨjs +ΨisΨrj .

Therefore, we conclude that

E
[
(Σ−1xxTΣ−1 − Σ−1)ij(Σ

−1xxTΣ−1 − Σ−1)rs

]
= ΨijΨrs +ΨirΨjs +ΨisΨrj −ΨijΨrs

= ΨirΨjs +ΨisΨrj

= (Ψ⊗Ψ)ij,rs + (Ψ⊗Ψ)ij,sr

=
1

2
vec
(
eie

T
j + eje

T
i

)T
(Ψ⊗Ψ)vec

(
ere

T
s + ese

T
r

)
where in the last equation we used that Ψ is symmetric and, thus, ΨirΨjs + ΨisΨrj = ΨjrΨis + ΨjsΨri.
Finally, assuming without loss of generality that i ≤ j, the claim follows since

(1 + 1[i ̸= j])

2
vec(eie

T
j + eje

T
i ) = vec(eie

T
j + eje

T
i − eiej ⊙ I) = D vech(eie

T
j ),

where ⊙ the last equation follows from the definition of the duplication matrix and since i ≤ j (see Magnus
and Neudecker, 1980, Def. 3.2a)

Lemma C.5 Let Σ ≻ 0. Then I(Σ) = 1
2D

TΣ−1 ⊗Σ−1D where ⊗ denotes the Kronecker product between
matrices. In particular, we have λmax(I(Σ)) ≤ λmin(Σ)

−2.

Proof From Proposition C.4 we have

I(Σ) = 1

2
DTΣ−1 ⊗ Σ−1D.
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Moreover, one may note that ∥Dx∥22 ≤ 2 ∥x∥22 for any x ∈ Rd(d+1)/2. Therefore,

λmax(I(Σ)) = max
{

1
2x

TDTΣ−1 ⊗ Σ−1Dx : x ∈ Rd(d+1)/2, ∥x∥2 ≤ 1
}

≤ max
{
zTΣ−1 ⊗ Σ−1z : x ∈ Rd(d+1)/2, ∥z∥2 ≤ 1

}
= λmax(Σ

−1 ⊗ Σ−1)

Finally, the result then follows by Horn and Johnson (1991, Thm. 4.2.12) which shows that the set of all
eigenvalues of Σ−1 ⊗ Σ−1 is

{
λi(Σ

−1) · λj(Σ−1) : i, j ∈ [d]
}

.

Appendix D. Mathematical Background

D.1. Results from Probability and Statistics

We will use the following tail bound for the χ2 distribution.

Lemma D.1 (Laurent and Massart, 2000, Lemma 1) Let Z ∼ χ2(d) and x > 0. Then

Pr
[
Z − d ≥ 2

√
dx+ 2x

]
≤ e−x.

We now derive a corollary of this bound that will be more convenient for our purposes.

Corollary D.2 Let Z ∼ χ2(d) and x > 0. Then

Pr
[
Z ≥

√
8d2 + 18x2

]
≤ e−x.

Proof We have

0 ≤ (2d− 3x)2 = 4d2 − 12dx+ 9x2

= (8d2 + 18x2)− (4d2 + 12dx+ 9x2)

= (8d2 + 18x2)− (2d+ 3x)2.

Rearranging and using the AM-GM inequality, we have

(8d2 + 18x2)1/2 ≥ 2d+ 3x = d+ 2x+ (d+ x) ≥ d+ 2x+ 2
√
dx.

Thus, Pr
[
Z ≥ (8d2 + 18x2)1/2

]
≤ Pr

[
Z ≥ d+ 2

√
dx+ 2x

]
≤ e−x by Lemma D.1.

D.2. Properties of Wishart matrices

In this section we collect known results for Wishart matrices and derive corollaries for the normalized Wishart
distribution as the one of Σ in (4). First, for the lower bound in Section 3 we shall need a few properties of
the inverse Wishart distribution, which are collected in the following lemma.

Lemma D.3 (Haff, 1979, Theorem 3.2) Let Σ ∼ Wd(D;V ) for some non-singular V ∈ Sd+ and with
D > d+ 3. Then E

[
Σ−1

]
= 1

D−d−1V
−1. Moreover, for every distinct i, j ∈ [d] we have

Var
[
Σ−1
ii

]
=

2(V −1
ii )2

(D − d− 1)2(D − d− 3)
and

Var
[
Σ−1
ij

]
=

(D − d+ 1)(V −1
ij )2 + (D − d− 1)V −1

ii V −1
jj

(D − d− 1)2(D − d− 3)(D − d)
.
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Let us know collect a few facts about the normalized Wishart distribution, mainly regarding concentrations
of its eigenvalues.

Proposition D.4 Let Σ := 1
DGG

T with the entries of G ∈ Rd×D being i.i.d. standard Gaussians. Then

E [Σ ] = I and E
[
∥Σ− I∥2F

]
= d2/D. In particular, if D = 2d then E

[
∥Σ− I∥2F

]
= d/2.

Proof Let gi ∼ N (0, I) be the i-th row of G. Then Σij =
1
D ⟨gi, gj⟩. Since gi is independent of gj for i ̸= j,

one can see that E [Σ ]ij = I . Moreover,

E
[
∥Σ− I∥2F

]
=
∑

i,j∈[d]

E

[
1

D
(⟨gi, gj⟩ − 11[i = j])2

]
=

1

D2

∑
i,j∈[d]

E
[
(⟨gi, gj⟩ −D11[i = j])2

]

If i = j, then E
[
(⟨gi, gj⟩ −D11[i = j])2

]
= D since it is exactly the variance of a χ2(D) distribution.

For i ̸= j, we have

E
[
⟨gi, gj⟩2

]
=

D∑
k=1

E
[
gi(k)

2gj(k)
2
]︸ ︷︷ ︸

=1·1=1

+

d∑
r,s∈[D],r ̸=s

E [ gi(r)gj(r)gi(s)gj(s) ]︸ ︷︷ ︸
=0

= D.

Therefore, E
[
∥Σ− I∥2F

]
= d2D/D2 = d2/D as desired.

The following theorem gives us tail bounds on the singular values of a random Gaussian matrix, which
will yield sub-exponential tails for λmax(Σ).

Theorem D.5 (Wainwright 2019, Thm. 6.1) Let Σ ∈ Rd×d be positive definite and let G be a d × D
random matrix with i.i.d. columns each with distribution N (0,Σ). Then, for all δ > 0,

Pr

[
σmax(G

T)√
D

≥ λmax(Σ
1/2)(1 + δ) +

√
Tr(Σ1/2)

D

]
≤ exp

(
−D

2
· δ2
)
,

where σmax(G
T) is the maximum singular value of GT. Moreover, if D > d, then

Pr

[
σmin(G

T)√
D

≤ λmin(Σ
1/2)(1− δ)−

√
Tr(Σ1/2)

D

]
≤ exp

(
−D

2
· δ2
)
,

where σmin(G
T) is the minimum singular value of GT.

Lemma D.6 Let G be a d×D random matrix with D = 2d and i.i.d. entries each with distribution N (0, 1).
Define the matrix W := 1

DGG
T. Then, for any δ > 0 we have

Pr
[
λmax(Σ) ≥ 6 + 2δ2

]
≤ Pr

[
λmax(Σ) ≥

(
1 +

1√
2
+ δ

)2
]
≤ exp(−dδ2). (19)

In particular, we have

Pr [λmax(Σ) ≥ 10 ] ≤ e−2d ≤ 1√
d
e−d.
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Proof The first inequality in (19) holds since (1+1/
√
2+δ2) ≤ 2(1+1/

√
2)2+2δ2 ≤ 6+2δ2. The second

inequality in (19) follows directly from Theorem D.5 by noticing that each column of G has distribution
N (0, I). Thus, since I1/2 = I and Tr(I) = d = D/2, we have

Pr

[
λmax(Σ) ≥

(
1 +

1√
2
+ δ

)2
]
= Pr

( 1√
D

· σmax(G
T)

)2

≥

((
1 +

√
Tr(I1/2)

D

)
+ δ

)2
 .

In particular, define δ :=
√
10− 1− 1/

√
2. Then, using the last inequality and the fact that δ2 ≤ 2,

Pr [λmax(Σ) ] = Pr

[
λmax(Σ) ≥

(
1 +

1√
2
+ δ

)2
]
≤ exp(−dδ2) ≤ e−2d,

as desired.

For our purposes, the tails bounds from Theorem D.5 are too weak to usefully bound λmin(Σ). The
reason for that is that the tail bound on Pr [λmin(Σ) < t ] does not vanish as t goes to 0, although we know
λmin(Σ) > 0 almost surely. In other words, we want to provide tail bounds on 1/λmin(Σ). Thus, to better
control λmin(Σ) and the condition number λmax(Σ)/λmin(Σ) we will use results by Chen and Dongarra
(2005).

Lemma D.7 (Chen and Dongarra 2005, Lemma 4.1) Let W be a d × d Wishart matrix with D degrees
of freedom. Then, for any t > 0

Pr

[
λmin(W ) ≤ D

t2

]
<

1

Γ(D − d+ 2)

(
D

t

)D−d+1

=
1

(D − d+ 1)!

(
D

t

)D−d+1

.

Lemma D.8 Define Σ := 1
DGG

T where G is a d×D random matrix with i.i.d. standard Gaussian entries
with D = 2d and d ≥ 10. Then

Pr

[
1

λmin(Σ)
≥ t

]
≤ (2e)d+1

√
2πd

1

td+1
. (20)

In particular, Pr [λmin(Σ) < 0.09 ] ≤ d−1/22−d. Moreover, we have

E

[
1

λmin(Σ)

]
≤ 2e+ 1 ≤ 6.5.

Proof Since D ·Σ = GGT follows a Wishart distribution with D degrees of freedom, Lemma D.7 yields for
any t > 0 the bound

Pr

[
1

λmin(Σ)
≥ t

]
≤ 1

(D − d+ 1)!

(
D

t

)D−d+1

=
1

(d+ 1)!

(
2d

t

)d+1

.

Using a non-asymptotic estimate of Stirling’s approximation, we have

(d+ 1)! ≥
√

2π(d+ 1)

(
d+ 1

e

)d+1

≥
√
2πd

(
d

e

)d+1

.

Therefore,

Pr

[
1

λmin(Σ)
≥ t

]
≤ 1√

2πd

(
2ed

d+ 1

)d+1 1

td+1
≤ 1√

2πd
(2e)d+1 1

td+1
,
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which proves (20). In particular, we have

Pr [λmin(Σ) ≤ 0.09 ] ≤ Pr

[
λmin(Σ) ≤

1

4e

]
≤ 1√

2πd

(
2e

4e

)d+1

=
1√
2πd

− 2−(d+1) ≤ 1√
d
2−d.

Finally, we can use (20) to upper bound E [ 1/λmin(Σ) ] by

E

[
1

λmin(Σ)

]
≤
∫ ∞

0
Pr

[
1

λmin(Σ)
≥ t

]
dt ≤ 2e+

∫ ∞

2e
Pr

[
1

λmin(Σ)
≥ t

]
dt.

For the last integral in the right-hand side, we have∫ ∞

2e
Pr

[
1

λmin(Σ)
≥ t

]
dt ≤

∫ ∞

2e

1√
2πd

(2e)d+1 1

td+1
dt =

∫ ∞

1

1√
2πd

1

yd+1
· 2e dy =

2e√
πd

1

d
≤ 1,

where in the last inequality we used d ≥ 10 ≥ 2e.

Lemma D.9 (Chen and Dongarra 2005, Theorem 4.5) Let W be a d× d Wishart matrix with D degrees
of freedom. Then, there is a constant C ≤ 6.414 independent of d and D such that, for any t > 0,

Pr

[√
λmax(W )

λmin(W )
>

D

D − d+ 1
· t

]
<

1√
2π

(
C

t

)D−d+1

.

Lemma D.10 Let Σ follow a normalized Wishart distribution as in (4). Then

Pr

[
λmax(Σ)

λmin(Σ)
> t

]
<

(13)d+1

√
2π

· 1

t(d+1)/2

Proof Define κ(Σ) := λmax(Σ)/λmin(Σ). Since D = 2d, we have D/(D − d + 1) = 2d/(d + 1) ≥ 2.
Thus, for all t > 0 it follows from Lemma D.9 that

Pr [κ(Σ) > t ] = Pr

[√
κ(Σ) >

2d

d+ 1
· d+ 1

2d
·
√
t

]
≤ Pr

[√
κ(Σ) >

2d

d+ 1
· 1
2
·
√
t

]
<

1√
2π

(
C√
t/2

)d+1

,

where C ≤ 6.414 is as in Lemma D.9. The final bound follows by noting that 2 · C ≤ 13.
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