Última atualização: segunda-feira, 03 de novembro de 2025
| Ordem | Aluno | Data | Artigo |
|---|---|---|---|
| 1 | Ian | 06/11/2025 | Lindley, D. V. (1982). Scoring rules and the inevitability of probability. International Statistical Review/Revue Internationale de Statistique, 1-11. |
| 2 | Karem | 06/11/2025 | Berger, J. (2006). The case for objective Bayesian analysis. |
| 3 | Antonio Correa | 06/11/2025 | Goldstein, M. (2006). Subjective Bayesian analysis: Principles and practice. |
| 4 | Laura | 06/11/2025 | Kadane, J., & Wolfson, L. J. (1998). Experiences in elicitation. Journal of the Royal Statistical Society Series D: The Statistician, 47(1), 3-19. Bonus: Garthwaite, P. H., Kadane, J. B., & O’Hagan, A. (2005). Statistical methods for eliciting probability distributions. Journal of the American statistical Association, 100(470), 680-701. |
| 5 | Lucas | 06/11/2025 | Wechsler, S., Izbicki, R., & Esteves, L. G. (2013). A Bayesian look at nonidentifiability: A simple example. The American Statistician, 67(2), 90-93. Bonus: San Martín, Ernesto. “Identifiability of structural characteristics: How relevant is it for the Bayesian approach?.” (2018): 346-373. |
| 6 | Angelo | 06/11/2025 | Lavine, M., & Schervish, M. J. (1999). Bayes factors: What they are and what they are not. The American Statistician, 53(2), 119-122. |
| 7 | Antonio Silva | 13/11/2025 | Pereira, Carlos A. de B., Julio Michael Stern, and Sergio Wechsler. “Can a significance test be genuinely Bayesian?.” (2008): 79-100. Bonus: Pereira, C. A. D. B., & Stern, J. M. (1999). Evidence and credibility: full Bayesian significance test for precise hypotheses. Entropy, 1(4), 99-110. |
| 8 | Igor | 13/11/2025 | Esteves, L. G., Izbicki, R., Stern, J. M., & Stern, R. B. (2016). The logical consistency of simultaneous agnostic hypothesis tests. Entropy, 18(7), 256. |
| 9 | Ornella | 13/11/2025 | Da Silva, G. M., Esteves, L. G., Fossaluza, V., Izbicki, R., & Wechsler, S. (2015). A bayesian decision-theoretic approach to logically-consistent hypothesis testing. Entropy, 17(10), 6534-6559. Bonus: Fossaluza, V., Izbicki, R., da Silva, G. M., & Esteves, L. G. (2017). Coherent hypothesis testing. The American Statistician, 71(3), 242-248. |
| 10 | Ariana | 13/11/2025 | Fortini, S., & Petrone, S. (2025). Exchangeability, prediction and predictive modeling in Bayesian statistics. Statistical Science, 40(1), 40-67. |
| 11 | Guilherme | 13/11/2025 | Cifarelli, D. M., & Regazzini, E. (1996). De Finetti’s contribution to probability and statistics. Statistical Science, 11(4), 253-282. |
| 12 | Fabio | 13/11/2025 | Diaconis, P. (2023). Approximate exchangeability and de Finetti priors in 2022. Scandinavian Journal of Statistics, 50(1), 38-53. |
| 13 | Heitor | 27/11/2025 | Zhang, L., McCoy, R. T., Sumers, T. R., Zhu, J. Q., & Griffiths, T. L. (2023). Deep de finetti: Recovering topic distributions from large language models. arXiv preprint arXiv:2312.14226. |
| 14 | Beatriz | 27/11/2025 | Li, F., Ding, P., & Mealli, F. (2023). Bayesian causal inference: a critical review. Philosophical Transactions of the Royal Society A, 381(2247), 20220153. |
| 15 | Leandro | 27/11/2025 | Diniz, J. B., Fossaluza, V., Alberto de Bragança Pereira, C., & Wechsler, S. (2016). Rain dance: the role of randomization in clinical trials. Open Access Journal of Clinical Trials, 21-32. Bonus: Fossaluza, V., Diniz, J. B., de Bragança Pereira, B., Miguel, E. C., & de Braganca Pereira, C. A. (2009). Sequential allocation to balance prognostic factors in a psychiatric clinical trial. Clinics, 64(6), 511-518. |
| 16 | Thiago | 27/11/2025 | Marin, J. M., Pudlo, P., Robert, C. P., & Ryder, R. J. (2012). Approximate Bayesian computational methods. Statistics and computing, 22(6), 1167-1180. Bonus: Campos, T. F., & Wechsler, S. (2012, October). ABC for kids. In AIP Conference Proceedings (Vol. 1490, No. 1, pp. 67-74). American Institute of Physics. |
| 17 | Moises | 27/11/2025 | Casella, G., & George, E. I. (1992). Explaining the Gibbs sampler. The American Statistician, 46(3), 167-174. |
| 18 | Daniela | 27/11/2025 | Chib, S., & Greenberg, E. (1995). Understanding the metropolis-hastings algorithm. The american statistician, 49(4), 327-335. |
| 19 | Joao Pedro | 01/12/2025 ? | Hoffman, M. D., & Gelman, A. (2014). The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res., 15(1), 1593-1623. |
| 20 | Vladison | 01/12/2025 ? | Fox, Charles W., and Stephen J. Roberts. “A tutorial on variational Bayesian inference.” Artificial intelligence review 38.2 (2012): 85-95. OU Tran, Minh-Ngoc, Trong-Nghia Nguyen, and Viet-Hung Dao. “A practical tutorial on variational Bayes.” arXiv preprint arXiv:2103.01327 (2021). |
| 21 | Bruno | 01/12/2025 ? | Gelman, A. (2006). Multilevel (hierarchical) modeling: what it can and cannot do. Technometrics, 48(3), 432-435. Bonus: Caps 11, 12 e 13 do Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevel/hierarchical models. Cambridge university press. |
| 22 | Alex | 01/12/2025 ? | Migon, H. S., Alves, M. B., Menezes, A. F., & Pinheiro, E. G. (2023). A review of Bayesian dynamic forecasting models: Applications in marketing. Applied Stochastic Models in Business and Industry, 39(3), 471-493. |
| 23 | Danilo | 01/12/2025 ? | Klein, N., Kneib, T., Lang, S., & Sohn, A. (2015). Bayesian structured additive distributional regression with an application to regional income inequality in Germany. |
| 24 | Renato | 01/12/2025 ? | Petrone, S. (1999). Random bernstein polynomials. Scandinavian Journal of Statistics, 26(3), 373-393. |