R. L. Winkler (2003). An Introduction to Bayesian Inference and Decision. 2a edição. Probabilistic Publishing.
C. A. B. Pereira e M. A. G. Viana (1982). Elementos de Inferência Bayesiana. 5º SINAPE. IME – USP.
D. A. Berry (1996). Statistics: a Bayesian Perspective. Duxburry Press.
P. Lee (2012). Bayesian Statistics: an Introduction. 4a edição. Wiley.
P. D. Hoff (2009). A first course in Bayesian Methods. Springer.
S. J. Press (1989). Bayesian Statistics: Principles, Models, and Applications. John Wiley.
H. S. Migon, D. Gamerman e F. Louzada (2014). Statistical Inference: An Integrated Approach. 2a edição. Chapman and Hall/CRC.
P. G. Kinnas e H. A. Andrade (2010). Introdução a Análise Bayesiana (com R). maisQnada.
J. Albert (2007). Bayesian Computation with R. Springer.
J. R. Marin, C. P. Robert (2007). Bayesian Core: a Practical Approach to Computational Bayesian Statistics. Springer.
REFERÊNCIAS ADICIONAIS
Fundamentos de Probabilidade, Inferência e Teoria da Decisão
D. V. Lindley (2013). Understanding Uncertainty (revised edition). Wiley.
D. V. Lindley (1985). Making Decisions. 2a edição. Wiley.
L. Rifo (2021). Probabilidade e Estatística: Aspectos de tomadas de decisões e incertezas para o Ensino Fundamental e Médio. SBM.
J. B. Kadane (2011). Principles of Uncertainty. Chapman & Hall/CRC.
M. H. DeGroot (2005). Optimal Statistical Decisions. John Wiley & Sons.
G. Parmigiani e L. Inoue (2009). Decision Theory: Principles and Approaches. Wiley.
A. O’Hagan (1994). Bayesian Inference. London. Arnold.
C.D. Paulino, M. A. A. Turkman, B. Murteira, G. L. Silva (2018). Estatística Bayesiana. 2a edição. Lisboa. Fundação Calouste Gulbenkian.
G. E. P. Box e G. C. Tiao (2014). Bayesian Inference in Statistical Analysis. Wiley.
V. Barnett (1999). Comparative Statistical Inference. 3a edição. John Wiley & Sons.
F. Biagini, M. Campanino (2016). Elements of Probability and Statistics - An Introduction to Probability with de Finetti’s Approach and to Bayesian Statistics. Springer.
S. B. McGrayne (2011). The theory that would not die: how Bayes’ Rule cracked the Enigma Code, hunted down Russian submarines, and emerged triumphant from two centuries of controversy. Yale University Press.
S. Kotz e N. L. Johnson (1993). Breakthroughs in Statistics, Volume I. Springer.
S. Kotz e N. L. Johnson (1993). Breakthroughs in Statistics, Volume II. Springer.
S. Kotz e N. L. Johnson (2013). Breakthroughs in Statistics, Volume III. Springer.
S. M. Stigler (1982). Thomas Bayes’s Bayesian Inference. Journal of the Royal Statistical Society, Series A, 145, 250-258.
S. M. Stigler (1983). Who Discovered Bayes’s Theorem? The American Statistician, 37(4), 290-296. [Revised in Statistics on the Table]
D. Heath e W. Sudderth (1976). De Finetti's theorem in exchangeable sequences. The American Statistician, 30, 188-189.
S. Wechsler (1993). Exchangeability and Predictivism. Erkenntnis, 38(3), 343-350.
P.L. Iglesias, R.H. Loschi, C.A.B. Pereira e S. Wechsler (2009). A note on extendibility and predictivistic inference in finite populations. Brazilian Journal of
Probability and Statistics, 23(2), 216-226.
K. Rice, L. Ye (2022). Expressing Regret: A Unified View of Credible Intervals. The American Statistician, 76 (3), 248 – 256.
Thulin, M. (2014). Decision-theoretic justifications for Bayesian hypothesis testing using credible sets. Journal of Statistical Planning and Inference, 146, 133-138.
C. A. B. Pereira e S. Wechsler (1993). On the Concept of P-value. Revista Brasileira de Probabilidade e Estatística, 7(2), 159-177.
C.A.B. Pereira e J.M. Stern (1999). Evidence and credibility: Full bayesian significance test for precise hypotheses. Entropy, 1, 99-110.
C.A.B. Pereira, J.M. Stern e S.Wechsler. Can a significance test be genuinely bayesian? Bayesian Analysis, 3,79–100.
N. Oliveira, C. A. B. Pereira, M. A. Diniz, A. Polpo (2018). A discussion on significance indices for contingency tables under small sample sizes. PLoS One. v. 13, p. e0199102, issn: 1932-6203, 2018.
M. Lavine e M. J. Schervish (1999). Bayes factors: what they are and what they are not. The American Statistician, 53, 119-122.
M. J. Schervish (1996). P values: what they are and what they are not. The American Statistician, 50, 203-206.
E. L. Lehmann (1993). The Fisher, Neyman-Pearson Theories of Testing Hypotheses: One Theory or Two? Journal of the American Statistical Association, 88(424), 1242-1249.
K. Rice (2012). A Decision-Theoretic Formulation of Fisher’s Approach to Testing. The American Statistician, 64 (4), 345 – 349.
S. M. Stigler (1972). Completeness and Unbiased Estimation. The American Statistician, 26(2), 28-30.
S. Wechsler, R. Izbicki e L. G. Esteves (2013). A Bayesian Look at Nonidentifiability: A Simple Example. The American Statistician, 67(2), 90-93.
Statistical Science, Volume 19, Número 1 (2004). Special issue on Bayesian Statistics.
J. Diniz, V. Fossaluza, C. A. B. Pereira, S. Wechsler (2016). Rain dance: the role of randomization in clinical trials. Open Access Journal of Clinical Trials, v. 8, 21-32.
V. Fossaluza, R. Izbicki, G. M. da Silva e L. G. Esteves (2017). Coherent Hypothesis Testing. The American Statistician, 71(3), 242 – 248.
S. Hansen, K. Rice (2023). Coherent tests for interval null hypotheses. The American Statistician, 77(1), 20 – 28.
Esteves, L. G., Izbicki, R., Stern, J. M., and Stern, R. B. (2016). The Logical Consistency of Simultaneous Agnostic Hypothesis Tests. Entropy, 18(7), 256.
V. Coscrato, R. Izbicki and R. B. Stern (2020). Agnostic tests can control the type I and type II errors simultaneously. BJPS, 34(2), 230 – 250.
Volume especial The American Statistician (2019): Statistical Inference in the 21st Century: A World Beyond p < 0.05. The American Statistician: Vol 73, No sup1 tandfonline.com.
Aspectos computacionais e aplicações
C. A. B. Pereira, A. Polpo (2013). Estatística Bayesiana com Aplicações a Dados Categóricos e de Sobrevivência. RBras.
J. K. Kruschke (2010). Doing Bayesian Data Analysis: A Tutorial with R and BUGS.
J. M. Marin e C. Robert (2016). Bayesian Essentials with R. 2ª edição. Springer.
R. Izbicki e T. M. Santos (2020). Aprendizado de máquina: uma abordagem estatística. Livro. Site.
A. Damiani, B. Milz, C. Lente, D. Falbel, F. Correa, J. Trecenti, N. Luduvice, W. Amorim. Ciência de Dados em R.
D. Gamerman e H. F. Lopes (2006). Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference. 2a edição. Chapman & Hall/CRC.
G. Casella e E. I. George (1992). Explaining the Gibbs Sampler. The American Statistician, 46(3), 167-174.
G. Casella e E. I. George (2001). Explaining the Perfect Sampler. The American Statistician, 55(4), 299-305.
S. Chib e E. Greenberg (1995). Understanding the Metropolis-Hastings Algorithm. The American Statistician, 49(4), 327-335.
T. F. Campos e S. Wechsler (2012). ABC for kids. AIP Conference Proceedings, 1490(1), 67-74.