IGC- 19 /09/2019

Nome:	Q	N
Assinatura:	1	
RG:	2	
Nº USP:		
Turma: 2019216 - Teórica	4	
Professor: Edson Vargas	Total	

В

Escreva de forma organizada e clara, justificando suas respostas.

 $\mathbf{1}^{\underline{a}}$ Questão: (2,5 pontos) Seja R a região do plano xy limitada por $y=x^2-3x+1$ e y=x+1. Ache o volume do sólido obtido pela rotação da região R em torno do eixo Oy.

Solução. $y=x^2-3x+1$ e y=x+1 são iguais quando $x^2-4x=0$ o que ocorre para x=0 ou x=4. Para $0 \le x \le 4$, verifica-se que $x^2-3x+1 \le x+1$. Portanto a altura da região R é a diferença que $-x^2+4x$ e portanto o volume pedido é:

$$2\pi \int_0^4 x \left(-x^2 + 4x\right) dx = 2\pi \left(-\frac{x^4}{4} + \frac{4x^3}{3}\right)_0^4 = \frac{4^4 \pi}{6}$$

2^a **Questão:** (2,5 pontos) Seja R a região do plano xy limitada pela equação $\rho = 2 - \cos \theta$, dada em coordenadas polares (ρ, θ) . Calcule a área de R.

Solução. A área pedida é dada pela integral:

$$\frac{1}{2} \int_0^{2\pi} (2 - \cos \theta)^2 d\theta = \frac{1}{2} \int_0^{2\pi} (4 - 4 \cos \theta + \cos^2 \theta) d\theta =$$

$$= \frac{1}{2} \int_0^{2\pi} \left(4 - 4 \cos \theta + \frac{1 + \cos 2\theta}{2} \right) d\theta = \int_0^{2\pi} \left(\frac{9}{4} - 2 \sin \theta - \frac{\cos 2\theta}{4} \right) d\theta = \frac{9\pi}{2}$$

3^a Questão: Seja $f(x,y) = \frac{x^2 + y^2}{2x - 4y}$, onde $x \neq 2y$.

- a) (1,5 pontos) Ache uma equação para a curva de nível de f que contem o ponto (2,0) e ache outro ponto desta curva.
- b) (1,5 pontos) Decida se o limite $\lim_{(x,y)\to(0,0)}\frac{x^2+y^2}{2x-4y}$ existe ou não. Justifique a sua resposta.

Solução.

- (a) Como f(2,0)=1, o ponto (2,0) pertence à curva de nível 1 cuja equação pode ser escrita como $\frac{x^2+y^2}{4x-2y}=1, \text{ ou seja, } x^2+y^2=4x-2y \text{ que, completando os quadrados em } x \text{ e } y \text{ resulta em } (x-2)^2+(y+1)^2=5.$ Então o gráfico da função $y=1+\sqrt{5-(x-2)^2}$ está contido nessa curva de nível, em particular, o ponto (1,1) também está nessa curva.
- (b) Primeiro observamos que f(x,y) tende a zero quando x,y) tende a (0,0) ao longo do eixo Oy, de fato: $f(0,y) = -\frac{y}{2}$ tende a zero quando y tende a zero. Por outro lado, como visto no Item (a), a curva de nível 1 da função f, tem equação $(x-2)^2 + (y+1)^2 = 5$, uma circunferência que passa por (0,0). Então, se (x,y) tende a (0,0) ao longo dessa circunferência, temos que f(x,y) = 1, Isto mostra que o limite pedido não existe.

4^a **Questão:** (2 pontos) Considere a função $f(x,y) = (3x + \sin y)^5$ e calcule as derivadas parciais $\frac{\partial f}{\partial x}(x,y)$, $\frac{\partial f}{\partial y}(x,y)$ e $\frac{\partial^2 f}{\partial y^2}(x,y)$.

Solução.

$$\frac{\partial f}{\partial x}(x,y) = 15 (3x + \sin y)^4; \quad (0,5 \text{ pontos})$$

$$\frac{\partial f}{\partial y}(x,y) = 5 (3x + \sin y)^4 \cos y; \quad (0,5 \text{ pontos})$$

$$\frac{\partial^2 f}{\partial y^2}(x,y) = \frac{\partial}{\partial x} \left(5 (3x + \sin y)^4 \cos y\right),$$

então resulta que:

$$\frac{\partial^2 f}{\partial y^2}(x,y) = 20 (3x + \sin y)^3 \cos^2 y - 5 (3x + \sin y)^4 \sin y, \quad (1 \text{ ponto}).$$