A timing attack against HQC

Thales Bandiera Paiva Routo Terada

Institute of Mathematics and Statistics University of Sao Paulo, Brazil

> tpaiva@ime.usp.br rt@ime.usp.br

2019-08-15

Motivation

HQC encryption scheme

- Code-based scheme relying on the quasi-cyclic decoding problem
- Candidate for NIST's Post-Quantum Crypto standardization process
- Offers advantages when compared to other code-based candidates:
 - Reasonably small keys (much smaller than the original McEliece)
 - It does not use a secret sparse structure (unlike MDPC or LDPC)
 - The submitters provide a detailed analysis of the failure probability

Timing attack

- We attack the reference implementation submitted to NIST
- The attack recovers the secret key with 400M decryption timings

The HQC encryption scheme [HQC]

Setup

- Fix an [*n*, *k*]-linear code C capable of correcting a large number of errors with overwhelming probability
- The authors propose ${\mathcal C}$ as the tensor product of a BCH code and a repetition code
- For 128 bits parameters n = 22,229 and k = 256

Code $\ensuremath{\mathcal{C}}$ is a public parameter and has the following operations

- $c \leftarrow \mathsf{Encode}_{\mathcal{C}}(m) = \mathsf{Encode}_{\mathsf{Rep}}(\mathsf{Encode}_{\mathsf{BCH}}(m))$ adds redundancy to a message m
- $\mathsf{Decode}_{\mathcal{C}}(\mathbf{c} + \mathbf{e}) = \mathsf{Decode}_{\mathsf{BCH}}(\mathsf{Decode}_{\mathsf{Rep}}(\mathbf{c} + \mathbf{e}))$ recovers \mathbf{m} from the corrupted codeword, where \mathbf{e} is a sparse vector

[HQC] Melchor, Carlos Aguilar, et al. "Hamming Quasi-Cyclic (HQC)."

The HQC encryption scheme

- 1. Key Generation
 - $\mathbf{h} \xleftarrow{\$} \mathbb{F}_2^n$
 - $\mathbf{x}, \mathbf{y} \xleftarrow{\$}$ sparse vectors from \mathbb{F}_2^n
 - $\mathbf{s} \leftarrow \mathbf{x} + \mathbf{y} \cdot \mathbf{h} = \mathbf{x} + \mathbf{y} \operatorname{rot}(\mathbf{h})$
 - $K_{Pub} = (s, h)$ and $K_{Sec} = (x, y)$
 - 2. Encrypting a message $\mathbf{m} \in \mathbb{F}_2^k$
 - $\mathbf{r}_1, \mathbf{r}_2, \mathbf{e} \xleftarrow{\$}$ sparse vectors from \mathbb{F}_2^n
 - $\mathbf{u} \leftarrow \mathbf{r_1} + \mathbf{r_2} \cdot \mathbf{h}$ (advice)
 - $\mathbf{v} \leftarrow \text{Encode}_{\mathcal{C}}(\mathbf{m}) + \mathbf{s} \cdot \mathbf{r}_2 + \mathbf{e}$ (very corrupted codeword)
 - Return $\mathbf{c} \leftarrow (\mathbf{u}, \mathbf{v})$
 - 3. Decrypting a ciphertext c = (u, v)
 - $\mathbf{c}' \leftarrow \mathbf{v} + \mathbf{u} \cdot \mathbf{y} = \mathsf{Encode}_{\mathcal{C}}(\mathbf{m}) + \mathbf{x} \cdot \mathbf{r}_2 + \mathbf{r}_1 \cdot \mathbf{y} + \mathbf{e}$
 - $\hat{m} \leftarrow \mathsf{Decode}_{\mathcal{C}}(c') = \mathsf{Decode}_{\mathcal{C}}(\mathsf{Encode}_{\mathcal{C}}(m) + e')$

$$\operatorname{rot}(\mathbf{h}) = \begin{bmatrix} h_0 & h_1 & \dots & h_{n-1} \\ h_{n-1} & h_0 & \dots & h_{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ h_1 & h_2 & \dots & h_0 \end{bmatrix}$$

Information leakage

- Let $\mathbf{e}' = \mathbf{x} \cdot \mathbf{r}_2 + \mathbf{y} \cdot \mathbf{r}_1 + \mathbf{e}$
- Consider the decoding procedure used for decryption

 $\mathsf{Decode}_{\mathcal{C}}\left(\mathbf{c}'\right) = \mathsf{Decode}_{\mathsf{BCH}}\left(\mathsf{Decode}_{\mathsf{Rep}}\left(\mathsf{Encode}_{\mathcal{C}}\left(\mathbf{m}\right) + \mathbf{e}'\right)\right)$

• Decode_{BCH} is not constant time \Rightarrow The weight of the error vector left by Decode_{Rep} (Encode_C (m) + e') is **leaked**

Repetition decoding errors

• Consider a repetition block size of $n_2 = 5$

$$\begin{split} \mathbf{m} &= \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \\ \mathbf{c} \leftarrow \mathsf{Encode}_{\mathsf{Rep}}\left(\mathbf{m}\right) &= \begin{bmatrix} 00000 & 11111 & 00000 \end{bmatrix} \\ \mathbf{e}' &= \begin{bmatrix} 10010 & 00001 & 00111 \end{bmatrix} \\ \mathbf{c} + \mathbf{e}' &= \begin{bmatrix} 10010 & 11110 & 00111 \end{bmatrix} \\ \mathsf{Decode}_{\mathsf{Rep}}\left(\mathbf{c} + \mathbf{e}'\right) &= \begin{bmatrix} 0 & 1 & 1 \end{bmatrix} \end{split}$$

There are less decoding errors when

• w(e') is lower

• Few pairs of 1's separated by less than n_2 positions

Repetition decoding errors and **spectrums**

Definition (Spectrum)

The spectrum of \mathbf{v} , denoted by $\sigma(\mathbf{v})$ is the set of cyclic distances between its non-null entries, together with their multiplicities.

Example

•
$$\mathbf{v} = [10100010] \Rightarrow \sigma(\mathbf{v}) = \{\mathbf{2}: 2, \ \mathbf{4}: 1\}$$

Lower probability of repetition decoding errors when

- $\sigma(\mathbf{e}')$ does not have too many entries
- Small cyclic distances in $\sigma(\mathbf{e}')$ appear with lower multiplicity

It is possible to reconstruct a sparse vector from its spectrum

Connecting the dots

Recall $\mathbf{e}' = \mathbf{x} \cdot \mathbf{r}_2 + \mathbf{y} \cdot \mathbf{r}_1 + \mathbf{e}$

What we want

What is missing

• Show how $\sigma(\mathbf{y} \cdot \mathbf{r_1})$ relates to $\sigma(\mathbf{y})$ and $\sigma(\mathbf{r_1})$

The timing attack - 128 bits security parameters

- Consider 1 billion decoding challenges generated at random
- For each challenge record $\sigma(\mathbf{r}_1)$ and the decryption time
- $T_{y}[d] \leftarrow$ average decryption time for the challenges in which $d \in \sigma(\mathbf{r}_{1})$

Decryption time and the spectrums of \mathbf{r}_1 and \mathbf{y} (zoom)

- Consider 1 billion decoding challenges generated at random
- For each challenge record $\sigma(\mathbf{r}_1)$ and the decryption time
- $\mathbf{T}_{\mathbf{v}}[d] \leftarrow$ average decryption time for the challenges in which $d \in \sigma(\mathbf{r}_1)$

Three empirical observations

- Let *d* be a distance in $\sigma(\mathbf{r}_1)$
 - 1 If d is lower than n_2 , it causes slower decryption
 - 2 If d is also in $\sigma(\mathbf{y})$, it causes faster decryption than its neighbors which are not in $\sigma(\mathbf{y})$
 - S If d has a large number of neighbors in σ(y), it causes slower decryption

Intuition

- 1. *d* lower than n_2 causes slower decryption
 - Analyzing the product $\mathbf{r}_1 \cdot \mathbf{y}$ we get

Intuition

- 2. *d* also in $\sigma(\mathbf{y})$ causes faster decryption
 - Analyzing the product $\textbf{r}_1 \cdot \textbf{y}$ we get

This observation was used for the reaction attack on QC-MDPC [GJS16]

[GJS16] Guo, Qian, Thomas Johansson, and Paul Stankovski. "A key recovery attack on MDPC with CCA security using decoding errors." Asiacrypt 2016

Thales Paiva and Routo Terada (USP) A timing attack against HQC

Intuition

- 3. d with neighbors in $\sigma(\mathbf{y})$ causes slower decryption
 - Analyzing the product $\mathbf{r}_1 \cdot \mathbf{y}$ we get

Clustering procedure

- Input: Ty and N
- **Output:** D = a set of N distances that it thinks that are outside $\sigma(\mathbf{y})$

Performance of the key reconstruction algorithm

- 128 bits security parameters
- Varying sizes of D, the set of distances outside the spectrum
- Tested on an Intel i7 8700 CPU with 12 hyperthreads

D	Fraction of known distances outside the spectrum	Randomized GJS Median of the CPU time (s)	Original GJS Median of the CPU time (s)
9104	100%	0.51	0.98
8648	95%	0.51	10.78
8192	90%	0.50	772.64
7736	85%	0.75	6801.10
7280	80%	1.96	-
6824	75%	10.02	-
6368	70%	75.63	-
5912	65%	2767.90	-
5456	60%	-	-

Number of decryption challenges

- We used a simple clustering algorithm to get sets of (only) distances outside the spectrum of ${\boldsymbol{y}}$
- Quality(Tⁱ_y) denotes the number of distances outside the spectrum with can be successfully distinguished using Tⁱ_y
- The key can be efficiently recovered when the Quality is above 5912 (65%)

Countermeasures

Patch the scheme

- Add some errors back after Decode_{Rep}
- Needs a careful statistical analysis
- Can make BCH decoding time independent of the secret key

Use other code $\ensuremath{\mathcal{C}}$ which admits constant-time decoding

- May not be easy to guarantee negligible error probabilities
- This is of independent interest since may lead to smaller keys

Use constant-time BCH decoders [WR19]

- The first constant-time BCH decoder appeared only months ago
- Can be up to 3 times slower
- Security against power side-channels was not yet considered

[WR19] https://eprint.iacr.org/2019/155

Conclusion

- We presented the first timing attack on HQC
- The attack is validated against 128 bits CCA secure version of HQC
- This is almost not the first time BCH decoding was targeted [DTV+19]
- Constant-time BCH decoders are the main countermeasure
 - But they are very recent and come with a performance cost

[DTV+19] https://eprint.iacr.org/2019/292.pdf