Cryptanalysis of the Binary Permuted Kernel Problem

Thales Bandiera Paiva Routo Terada

Institute of Mathematics and Statistics University of Sao Paulo, Brazil

tpaiva@ime.usp.br
rt@ime.usp.br

2021-06-23

The problem

Binary Permuted Kernel Problem [LP12]

- Let **A** be a binary $m \times n$ matrix
- Let **V** be a binary $n \times \ell$ matrix
- Find a row permutation π such that $\mathbf{AV}_{\pi} = \mathbf{0}$

PKP is believed to be secure against quantum computers

Shamir [Sha89] showed an IDS based on a proof of knowledge of π

PKP-DSS [BFK⁺19] applies Fiat-Shamir transform over Shamir's IDS

• But uses *p*-ary matrices and $\ell = 1$

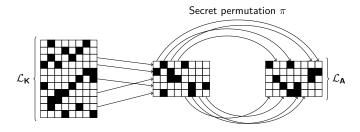
Contribution

We present the first attack targeting binary PKP

- Low memory requirements, unlike previous work (petabytes)
- We implemented the attack and tested its practical performance
- We provide both concrete and asymptotic analyses of the algorithms

Parameter set	Targeted security level	After [KMRP19]	Our attack
Binary PKP–76 [LP12]	79	76	63
Binary PKP-89 [LP12]	98	89	77

Important limitation: The attack only works for Binary PKP


Outline of our attack

- 1 Let w and ℓ_A be a small integers
- 2 Build sets
 - \mathcal{L}_{A} of ℓ_{A} vectors of weight *w* in the rowspace \mathcal{C}_{A} of A
 - \mathcal{L}_{K} of vectors of weight w in $\mathsf{K} = \ker \mathsf{V}$, that is $\mathsf{K}\mathsf{V} = \mathbf{0}$

Since $AV_{\pi} = 0$ then each vector in \mathcal{L}_{A} must appear in \mathcal{L}_{K} permuted by π^{-1}

3 Find subset **M** of \mathcal{L}_{K} such that $\tau(M) = \mathcal{L}_{A}$ for some column permutation τ

4 Get lucky so that $au = \pi$

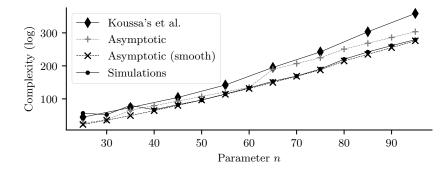
Example for w = 2 and $\ell_A = |\mathcal{L}_A| = 5$

Complexity of the attack

For the attack to work, rowspace $\mathcal{C}_{\boldsymbol{\mathsf{A}}}$ must contain $\ell_{\boldsymbol{\mathsf{A}}}$ vectors of weight w

- Small w means \mathcal{L}_{K} is smaller, which makes attack faster
- But if w is too small then \mathcal{L}_{A} may have lots of repeating columns \implies Exponential number of permutations to test (unless ℓ_{A} large)

Performance when attacking BPKP-76


w	ℓ_{A}	Fraction of keys	Predicted work factor (matrix-vector products)	Empirical estimate (clock cycles)
5	14	0	2 ^{39.46}	2 ^{34.39}
6	11	$2^{-43.32}$	2 ^{49.75}	2 ^{47.58}
7	10	$2^{-17.86}$	2 ^{55.84}	2 ^{48.62}
8	9	$2^{-2.88}$	2 ^{62.28}	2 ^{60.54}
9	9	$2^{-0.00}$	2 ^{64.16}	2 ^{62.31}

Asymptotic complexity

The attack works when $w \approx n/2$ and $\ell_A \approx \log n$ for 100% of keys with

$$\mathsf{WF}_{\mathrm{ATTACK}} = O\left(2^{\left(n-\ell-mn^{-1/5}\right)\left(\lceil \log n \rceil - 1\right) - 0.91n + \frac{1}{2}\log n}\right)$$

Can be smoothed by considering $\log n$ instead of $\lceil \log n \rceil$

Conclusion and Future Work

Binary PKP should be avoided

- Use larger fields for better security
- We are working on extending the analysis for small fields (p = 3, 5)
 - Faster to search for matchings and valid permutations
 - Low weight codewords are more rare
- The attack does not apply directly for PKP-DSS
 - However it may be interesting to consider backdoors in matrix A

Source code is available at

- www.ime.usp.br/~tpaiva
- https://github.com/thalespaiva/attack-on-binary-pkp

References I

[BCCG92] Thierry Baritaud, Mireille Campana, Pascal Chauvaud, and Henri Gilbert, *On the security of the permuted kernel identification scheme*, Annual International Cryptology Conference, Springer, 1992, pp. 305–311.

- [BFK⁺19] Ward Beullens, Jean-Charles Faugère, Eliane Koussa, Gilles Macario-Rat, Jacques Patarin, and Ludovic Perret, *PKP-based signature scheme*, International Conference on Cryptology in India, Springer, 2019, pp. 3–22.
- [KMRP19] Eliane Koussa, Gilles Macario-Rat, and Jacques Patarin, On the complexity of the Permuted Kernel Problem, IACR Cryptology ePrint Archive 2019 (2019), 412.
- [LP12] Rodolphe Lampe. and Jacques Patarin., Analysis of some natural variants of the PKP algorithm, Proceedings of the International Conference on Security and Cryptography - Volume 1: SECRYPT, (ICETE 2012), INSTICC, SciTePress, 2012, pp. 209–214.
- [PC93] Jaques Patarin and Pascal Chauvaud, Improved algorithms for the permuted kernel problem, Annual International Cryptology Conference, Springer, 1993, pp. 391–402.
- [Pou97] Guillaume Poupard, A realistic security analysis of identification schemes based on combinatorial problems, European transactions on telecommunications 8 (1997), no. 5, 471–480.
- [Sha89] Adi Shamir, An efficient identification scheme based on permuted kernels, Conference on the Theory and Application of Cryptology, Springer, 1989, pp. 606–609.