Cryptanalysis of the Binary Permuted Kernel Problem

Thales Bandiera Paiva Routo Terada

Institute of Mathematics and Statistics
University of Sao Paulo, Brazil

tpaiva@ime.usp.br rt@ime.usp.br

2021-06-18

Motivation

Recently, NIST expressed concerns about lack of diversity in signatures
Permuted Kernel Problem is an interesting candidate for signatures
(1) Combinatorial NP-hard problem
(2) Easy to understand and implement
(3) Relatively efficient signatures

However

- Quantum security is not sufficiently studied
- Security of the PKP for small fields is not well understood

Permuted Kernel Problem

(Generalized) Permuted Kernel Problem - PKP

- Fix a prime field order p
- Let \mathbf{A} be a matrix from $\mathbb{F}_{p}^{m \times n}$ with $n>m$
- Let \mathbf{V} be a matrix from $\mathbb{F}_{p}^{n \times \ell}$
- Find row permutation π such that $\mathbf{A} \mathbf{V}_{\pi}=\mathbf{0}$

Shamir [Sha89] showed an IDS based on a proof of knowledge of π
PKP-DSS [BFK ${ }^{+}$19] applies Fiat-Shamir transform over Shamir's IDS
Today we focus only on the problem, not in the DSS

Attacks and parameters of Binary PKP

Attacks are usually based on a time-memory tradeoff
Best attack is by Koussa et al. [KMRP19]

Parameter set	Targeted security level	After [KMRP19]	p	n	m	ℓ
Binary PKP-76 [LP12]	79	76	2	38	15	10
Binary PKP-89 [LP12]	98	89	2	42	15	11

Two opportunities for improvement:
(1) Previous approaches assume hashtables of size 2^{50} bytes ≥ 1 petabyte
(2) None of the previous works consider the Binary PKP variant [LP12]

Contribution

We present the first attack targeting binary PKP

- Does not need a huge amount of memory, unlike previous work
- We implemented the attack and tested its practical performance
- We provide both concrete and asymptotic analyses of the algorithms

Parameter set	Targeted security level	After [KMRP19]	Our attack
Binary PKP-76 [LP12]	79	76	63
Binary PKP-89 [LP12]	98	89	77

Our attack: outline

- Let w be a small integer
- Build set $\mathcal{L}_{\mathbf{A}}$ of vectors of weight w in the rowspace of \mathbf{A}
- Build set $\mathcal{L}_{\mathbf{K}}$ of vectors of weight w in $\mathbf{K}=\operatorname{ker} \mathbf{V}$ $\mathbf{A} \mathbf{V}_{\pi}=\mathbf{0} \Longrightarrow$ Every element in $\mathcal{L}_{\mathbf{A}}$ must appear permuted in $\mathcal{L}_{\mathbf{K}}$
- Find subset of $\mathcal{L}_{\mathbf{K}}$ that is equal to $\tau\left(\mathcal{L}_{\mathbf{A}}\right)$ for some permutation τ
- Get lucky so that $\tau=\pi$

Secret permutation π

Building sets of low weight vectors

In general, this is a very hard task
However, the parameters of binary PKP are very small ($m=15, n=38$)

- Stern's algorithm runs efficiently
- One can even use brute-force in some cases

For Binary PKP-76, a few minutes in SageMath are enough

Matching step

We use a simple depth-first search based algorithm with the invariant

- At each level α, the algorithm holds a matrix \mathbf{M} that is equal to the first α rows of $\mathcal{L}_{\mathbf{A}}$ up to some permutation τ

We provide a concrete analysis of the expected number of child nodes
Let \bar{q}_{α} be the fraction of vectors in \mathcal{L}_{K} that can be added in each level
We show how to estimate \bar{q}_{α} analytically or with simulations

Matching step: analysis

Binary PKP-76 parameter set with attack parameter $w=8$

Finding permutation π

After a matching is found, we want to use it to find π

- If $\mathcal{L}_{\mathbf{A}}$ has a large number of repeated columns \Rightarrow more permutations
- But the linear relation $\mathbf{A} \mathbf{V}_{\pi}=\mathbf{0}$ may be used to speed up the search Let $\ell_{\mathbf{A}}$ be the size of $\mathcal{L}_{\mathbf{A}}$

Binary PKP-76 parameter set with attack parameter $w=8$

Choosing attack parameters $\ell_{\mathbf{A}}$ and w

The attack will only be effective if

- The rowspace of \mathbf{A} has at least $\ell_{\mathbf{A}}$ vectors of weight w

The maximum possible value for $\ell_{\mathbf{A}}$ be modeled as a Binomial r.v.

- $N=\binom{n}{w}$ (Number of vectors of weight w)
- $p=2^{m-n}$ (Probability that a vector is in the rowspace $\mathcal{C}_{\mathbf{A}}$ of \mathbf{A})

With respect to w

- Parameter w must be the smallest possible so that \mathcal{L}_{K} is small
- Parameter w must be the large enough so that $\mathcal{L}_{\mathbf{A}}$ is not too small

Complexity of the attack

The work factor of the attack using parameters $\left(w, \ell_{\mathbf{A}}\right)$ is
$\mathbf{W F}_{\text {Attack }}=\mathbf{W} \mathbf{F}_{\text {LowWeightSets }}+\left(\mathbf{W F}_{\text {Search }}\right)\left(\mathbf{W F}_{\text {Perms }}\right)$
In which each term is

$$
\begin{align*}
\mathbf{W F}_{\text {LowW }}{ }^{\text {EIGHTSETS }} & \leq 2\binom{n}{w} \\
\mathbf{W F}_{\text {SEARCH }} & =\left|\mathcal{L}_{k}\right|^{\ell_{A}} \prod_{\alpha=0}^{\ell_{A}-1}\left(\frac{1}{\binom{n}{w}} \prod_{k=0}^{\alpha}\binom{n p(k, \alpha)}{w p(k, \alpha)}^{\binom{\alpha}{k}}\right) \\
\mathbf{W F}_{\text {PERMS }} & =\prod_{k=0}^{\ell_{A}}\left(\frac{\left(n p\left(k, \ell_{A}\right)\right)!}{\left(m p\left(k, \ell_{A}\right)\right)!}\right)^{\binom{\ell_{A}}{k}} \\
& \text { where } p(k, \alpha)=\left(\frac{w}{n}\right)^{k}\left(1-\frac{w}{n}\right)^{\alpha-k}
\end{align*}
$$

Asymptotic complexity

Let $n \rightarrow \infty$

- $w \approx n / 2 \Longrightarrow$ Allows some simplifications $p(k, \alpha)=2^{-\alpha}$
- $\ell_{\mathbf{A}} \approx\lceil\log n\rceil \Longrightarrow \mathbf{W F}_{\text {PERMS }}=1$

We show that the asymptotic work factor of the attack is given as

$$
\begin{aligned}
\mathbf{W F}_{\text {Attack }} & =\mathbf{W F}_{\text {LowWeightSets }}+\left(\mathbf{W F}_{\text {SEARCH }}\right)\left(\mathbf{W F}_{\text {Perms }}\right) \\
& =O\left(2^{\left(n-I-m n^{-1 / 5}\right)(\lceil\log n\rceil-1)-0.91 n+\frac{1}{2} \log n}\right)
\end{aligned}
$$

Asymptotic estimates

$$
\mathbf{W F}_{\text {AtTACK }}=O\left(2^{\left(n-I-m n^{-1 / 5}\right)(\lceil\log n\rceil-1)-0.91 n+\frac{1}{2} \log n}\right)
$$

Asymptotic comparison with Koussa's et al.

$$
\mathbf{W F}_{\text {AtTack }}^{\mathrm{Smooth}}=O\left(2^{\left(n-I-m n^{-1 / 5}\right)(\log n-1)-0.91 n+\frac{1}{2} \log n}\right)
$$

Conclusion and Future Work

We presented the first attack against binary PKP
Binary PKP should be avoided

- Use larger fields for better security

We are working on extending the analysis for small fields $(p=3,5)$

- Faster to search for matchings and valid permutations
- Low weight codewords are more rare

The attack does not apply directly for PKP-DSS

- However it may be interesting to consider backdoors in matrix \mathbf{A}

Source code is available at www.ime.usp.br/~tpaiva

References I

[BCCG92] Thierry Baritaud, Mireille Campana, Pascal Chauvaud, and Henri Gilbert, On the security of the permuted kernel identification scheme, Annual International Cryptology Conference, Springer, 1992, pp. 305-311.
[$\left.\mathrm{BFK}^{+} 19\right]$ Ward Beullens, Jean-Charles Faugère, Eliane Koussa, Gilles Macario-Rat, Jacques Patarin, and Ludovic Perret, PKP-based signature scheme, International Conference on Cryptology in India, Springer, 2019, pp. 3-22.
[KMRP19] Eliane Koussa, Gilles Macario-Rat, and Jacques Patarin, On the complexity of the Permuted Kernel Problem, IACR Cryptology ePrint Archive 2019 (2019), 412.
[LP12] Rodolphe Lampe. and Jacques Patarin., Analysis of some natural variants of the PKP algorithm, Proceedings of the International Conference on Security and Cryptography - Volume 1: SECRYPT, (ICETE 2012), INSTICC, SciTePress, 2012, pp. 209-214.
[PC93] Jaques Patarin and Pascal Chauvaud, Improved algorithms for the permuted kernel problem, Annual International Cryptology Conference, Springer, 1993, pp. 391-402.
[Pou97] Guillaume Poupard, A realistic security analysis of identification schemes based on combinatorial problems, European transactions on telecommunications 8 (1997), no. 5, 471-480.
[Sha89] Adi Shamir, An efficient identification scheme based on permuted kernels, Conference on the Theory and Application of Cryptology, Springer, 1989, pp. 606-609.

