Cryptanalysis of the Binary Permuted Kernel Problem

Thales Bandiera Paiva Routo Terada

Institute of Mathematics and Statistics University of Sao Paulo, Brazil

> tpaiva@ime.usp.br rt@ime.usp.br

> > 2021-06-18

Motivation

Recently, NIST expressed concerns about lack of diversity in signatures

Permuted Kernel Problem is an interesting candidate for signatures

- Combinatorial NP-hard problem
- 2 Easy to understand and implement
- **3** Relatively efficient signatures

However

- Quantum security is not sufficiently studied
- Security of the PKP for small fields is not well understood

Permuted Kernel Problem

(Generalized) Permuted Kernel Problem - PKP

- Fix a prime field order p
- Let **A** be a matrix from $\mathbb{F}_p^{m \times n}$ with n > m
- Let **V** be a matrix from $\mathbb{F}_p^{n \times \ell}$
- Find row permutation π such that $\mathbf{AV}_{\pi} = \mathbf{0}$

Shamir [Sha89] showed an IDS based on a proof of knowledge of π

PKP-DSS [BFK⁺19] applies Fiat-Shamir transform over Shamir's IDS

Today we focus only on the problem, not in the DSS

Attacks and parameters of Binary PKP

Attacks are usually based on a time-memory tradeoff

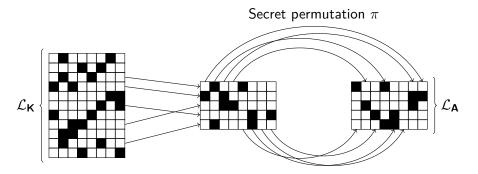
Best attack is by Koussa et al. [KMRP19]

Parameter set	Targeted security level	After [KMRP19]	p	п	т	l
Binary PKP–76 [LP12]	79	76	2	38	15	10
Binary PKP-89 [LP12]	98	89	2	42	15	11

Two opportunities for improvement:

- **1** Previous approaches assume hashtables of size 2^{50} bytes ≥ 1 petabyte
- 2 None of the previous works consider the Binary PKP variant [LP12]

Contribution


We present the first attack targeting binary PKP

- Does not need a huge amount of memory, unlike previous work
- We implemented the attack and tested its practical performance
- We provide both concrete and asymptotic analyses of the algorithms

Parameter set	Targeted security level	After [KMRP19]	Our attack
Binary PKP–76 [LP12]	79	76	63
Binary PKP–89 [LP12]	98	89	77

Our attack: outline

- Let w be a small integer
- Build set $\mathcal{L}_{\mathbf{A}}$ of vectors of weight w in the rowspace of \mathbf{A}
- Build set \mathcal{L}_{K} of vectors of weight w in $K = \ker V$ $AV_{\pi} = 0 \implies$ Every element in \mathcal{L}_{A} must appear permuted in \mathcal{L}_{K}
- Find subset of $\mathcal{L}_{\mathbf{K}}$ that is equal to $\tau(\mathcal{L}_{\mathbf{A}})$ for some permutation τ
- Get lucky so that $au=\pi$

Building sets of low weight vectors

In general, this is a very hard task

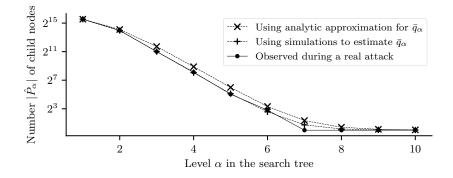
However, the parameters of binary PKP are very small (m = 15, n = 38)

- Stern's algorithm runs efficiently
- One can even use brute-force in some cases

For Binary PKP-76, a few minutes in SageMath are enough

Matching step

We use a simple depth-first search based algorithm with the invariant

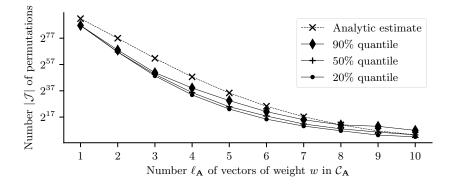

 At each level α, the algorithm holds a matrix M that is equal to the first α rows of L_A up to some permutation τ

We provide a concrete analysis of the expected number of child nodes

Let \overline{q}_{α} be the fraction of vectors in $\mathcal{L}_{\mathbf{K}}$ that can be added in each level

We show how to estimate \overline{q}_{α} analytically or with simulations

Matching step: analysis


Binary PKP-76 parameter set with attack parameter w = 8

Finding permutation π

After a matching is found, we want to use it to find $\boldsymbol{\pi}$

- If \mathcal{L}_{A} has a large number of repeated columns \Rightarrow more permutations
- But the linear relation $\mathbf{AV}_{\pi} = \mathbf{0}$ may be used to speed up the search

Let ℓ_A be the size of \mathcal{L}_A

Binary PKP–76 parameter set with attack parameter w = 8

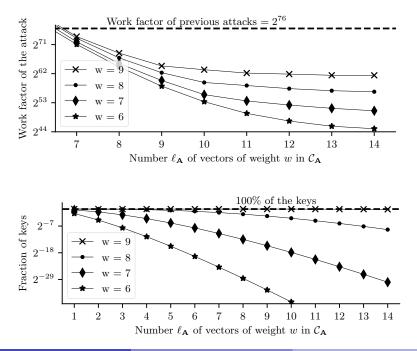
Choosing attack parameters ℓ_A and w

The attack will only be effective if

• The rowspace of **A** has at least $\ell_{\mathbf{A}}$ vectors of weight w

The maximum possible value for ℓ_A be modeled as a Binomial r.v.

- $N = \binom{n}{w}$ (Number of vectors of weight w)
- $p = 2^{m-n}$ (Probability that a vector is in the rowspace C_A of A)


With respect to w

- Parameter w must be the smallest possible so that \mathcal{L}_{K} is small
- Parameter w must be the large enough so that \mathcal{L}_{A} is **not too small**

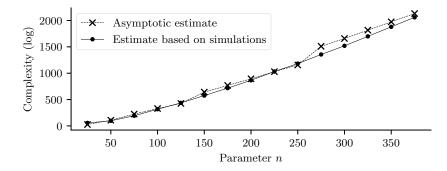
Complexity of the attack

The work factor of the attack using parameters (w, ℓ_A) is

 $WF_{\rm ATTACK} = WF_{\rm LowWeightSets} + (WF_{\rm Search}) (WF_{\rm Perms})$ In which each term is

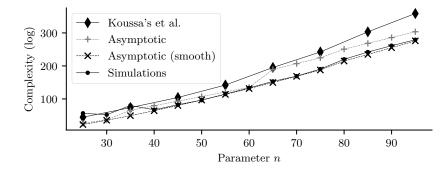
Asymptotic complexity

Let $n \to \infty$


- $w \approx n/2 \implies$ Allows some simplifications $p(k, \alpha) = 2^{-\alpha}$
- $\ell_{\mathbf{A}} \approx \lceil \log n \rceil \implies \mathbf{WF}_{\mathrm{PERMS}} = 1$

We show that the asymptotic work factor of the attack is given as

$$WF_{\text{ATTACK}} = WF_{\text{LowWeiGHTSETS}} + (WF_{\text{SEARCH}}) (WF_{\text{PERMS}})$$
$$= O\left(2^{\left(n-l-mn^{-1/5}\right)\left(\lceil \log n \rceil - 1\right) - 0.91n + \frac{1}{2}\log n}\right)$$


Asymptotic estimates

$$\mathsf{WF}_{\mathrm{ATTACK}} = O\left(2^{\left(n-l-mn^{-1/5}\right)\left(\lceil \log n \rceil - 1\right) - 0.91n + \frac{1}{2}\log n}\right)$$

Asymptotic comparison with Koussa's et al.

$$\mathsf{WF}_{\rm ATTACK}^{\rm SMOOTH} = O\left(2^{\left(n-l-mn^{-1/5}\right)\left(\log n-1\right)-0.91n+\frac{1}{2}\log n}\right)$$

Conclusion and Future Work

We presented the first attack against binary PKP

Binary PKP should be avoided

• Use larger fields for better security

We are working on extending the analysis for small fields (p = 3, 5)

- Faster to search for matchings and valid permutations
- Low weight codewords are more rare

The attack does not apply directly for PKP-DSS

 However it may be interesting to consider backdoors in matrix A Source code is available at www.ime.usp.br/~tpaiva

References I

[BCCG92] Thierry Baritaud, Mireille Campana, Pascal Chauvaud, and Henri Gilbert, *On the security of the permuted kernel identification scheme*, Annual International Cryptology Conference, Springer, 1992, pp. 305–311.

- [BFK⁺19] Ward Beullens, Jean-Charles Faugère, Eliane Koussa, Gilles Macario-Rat, Jacques Patarin, and Ludovic Perret, *PKP-based signature scheme*, International Conference on Cryptology in India, Springer, 2019, pp. 3–22.
- [KMRP19] Eliane Koussa, Gilles Macario-Rat, and Jacques Patarin, On the complexity of the Permuted Kernel Problem, IACR Cryptology ePrint Archive 2019 (2019), 412.
- [LP12] Rodolphe Lampe. and Jacques Patarin., Analysis of some natural variants of the PKP algorithm, Proceedings of the International Conference on Security and Cryptography - Volume 1: SECRYPT, (ICETE 2012), INSTICC, SciTePress, 2012, pp. 209–214.
- [PC93] Jaques Patarin and Pascal Chauvaud, Improved algorithms for the permuted kernel problem, Annual International Cryptology Conference, Springer, 1993, pp. 391–402.
- [Pou97] Guillaume Poupard, A realistic security analysis of identification schemes based on combinatorial problems, European transactions on telecommunications 8 (1997), no. 5, 471–480.
- [Sha89] Adi Shamir, An efficient identification scheme based on permuted kernels, Conference on the Theory and Application of Cryptology, Springer, 1989, pp. 606–609.