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Abstract. In 2016, a reaction attack on the QC-MDPC McEliece scheme was
presented at Asiacrypt by Guo et al.. This attack exploits one aspect that was
not considered in the scheme’s security reduction: the probability of a decoding
failure to occur is lower when the secret key and the error used for encryption
share certain properties, which were called spectrums. By detecting decoding
failures, the attacker can obtain information on the spectrum of the secret key
and then use this information to reconstruct the key. To improve the efficiency
of the attack, we propose two different key reconstruction algorithms that are
more efficient and use less information on the secret key than Guo’s et al. one.
Furthermore, both algorithms can be trivially parallelized.

1. Introduction
In 2013, a new variant of the McEliece scheme that uses quasi-cyclic moderate-density
parity-check codes (QC-MDPC) was presented by Misoczki et al. [Misoczki et al. 2013].
This variant promises extremely compact public keys of only 4801 bits for a security
level of 80 bits, and has an apparently strong security reduction. The European initiative
PQCRYPTO, which supports the development of post-quantum cryptography, considered
this variant as a serious candidate for a post-quantum secure standard in the 2015 revision
of its paper with recommendations for post-quantum secure systems [Augot et al. 2015].

Until the end of 2016, the QC-MDPC has not suffered critical attacks. However at
Asiacrypt 2016 Guo, Johansson, and Stankovski [Guo et al. 2016] presented an efficient
reaction attack for key recovery on the QC-MDPC. This attack is based on the fact that
QC-MDPC decoders can fail. When a decoding failure occurs, the receiver asks the
sender to resend the message, which hopefully, will be encrypted with an error pattern
that the decoder will be able to correct. The main observation of the authors is that the
probability that the decoder fails when correcting the error e is significantly smaller when
e and the secret key share some certain properties.

In the McEliece scheme and its variants, Alice’s secret key is a linear code G
capable of correcting t errors with high probability, for which Alice knows an efficient
decoder. Her public key is the generator matrix of G, possibly scrambled, in such a form
that it is unfeasible for an attacker to use this matrix for building an efficient decoder for
G. To send Alice a message m, we encode m using her public key and add t intentional
errors to this encoding, giving us c. We now can safely send her c, because Alice is the
only one that has an efficient decoder for G, which she uses to obtain m from c.
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Guo’s et al. [Guo et al. 2016] attack is done in two parts. In the first part, an
attacker Eve sends a number of ciphertexts to her target Alice, and records for which
error vectors the decoder failed or succeeded, to obtain some information on Alice’s secret
key, called its spectrum. The second part is the key reconstruction, where Eve, without
interacting any further with Alice, builds Alice’s secret key with the information gathered
in the first part.

1.1. Motivation

We address the following three problems of Guo’s et al. reconstruction algorithm:

1. it cannot recover the secret key when the information about it is incomplete;
2. the number of operations needed to find the key grows very fast with respect to

the security level;
3. it is recursive in nature, and it is not obvious how to parallelize it, neither how

much one gains by doing it.

By developing more efficient key reconstruction algorithms, an attacker can re-
cover the secret key using less interaction with the secret key holder. Therefore improve-
ments in key reconstruction algorithms significantly affect the secure lifetime of a secret
key, and the parameters for different security levels.

1.2. Original contributions

Our work presents two contributions, which are key reconstruction algorithms that are
more efficient, both asymptotically and in practice, and use less information on the secret
key than needed by Guo’s et al. one. Furthermore, both algorithms can benefit from
parallel implementations. The MSc dissertation on which this paper is based, entitled
“Melhorando o ataque de reação contra o QC-MDPC McEliece”, is available at www.
ime.usp.br/~tpaiva/msc.

The first algorithm is a simple randomized extension of Guo’s et al. algorithm.
For comparison purposes, the randomized algorithm can be 3 orders of magnitude faster
than Guo’s et al. one when they are given the complete spectrum of the secret key.

The second algorithm, which we consider to be the main contribution of this work,
is significantly different from Guo’s et al. algorithm. It uses a linear relation among some
components of the secret key. Even with around 50% less information on the spectrum
than needed by Guo’s et al. algorithm, our algorithm runs faster. Its complexity is O

(
r4) ,

where r is the codimension of the QC-MDPC code. This complexity is a significant
improvement with respect to the other algorithms, for which the complexity increases
rather drastically when higher security levels are considered. A paper describing this
algorithm and comparing it with Guo’s et al. algorithm was accepted for publication
on IEICE Transactions on Fundamentals of Electronics, Communications and Computer
Sciences [Paiva and Terada 2018].

2. The QC-MDPC McEliece scheme
This section presents an overview on the QC-MDPC McEliece [Misoczki et al. 2013]
scheme and the reaction attack against it. The QC-MDPC McEliece is a variant of the
McEliece scheme that uses QC-MDPC codes, which are formally defined next.



Definition 1 (QC-MDPC) An (n, r, w)-QC-MDPC code is a quasi-cyclic linear code of
length n, co-dimension r which divides n, that has a sparse parity-check matrix H with
row weights w = O

(√
n log n

)
, and formed by n0 = n/r cyclic blocks.

The parameters suggested by Misoczki et al. [Misoczki et al. 2013] are shown in
Table 1. In this table, n0, n, r, w are the parameters of the QC-MDPC code as defined
above, and t is the maximum number of errors it can decode with a sufficiently high prob-
ability. The suggested parameters for the QC-MDPC McEliece entail extremely small
keys when compared with the key size of hundreds of megabytes for the original McEliece
scheme [Bernstein et al. 2013].

Table 1. Suggested QC-MDPC parameters for some security lev-
els [Misoczki et al. 2013]

Security n0 n r w t Key size in bits

80 2 9602 4801 90 84 4801
128 2 19714 9857 142 134 9857
256 2 65542 32771 274 264 32771

We describe how to generate keys pairs for the QC-MDPC McEliece with the
security level λ. Let n0, n, r, and w be parameters supporting this security level λ, which
can be taken from Table 1. First generate a random QC-MDPC code by choosing at
random a binary vector h from Fn

2 = {0, 1}
n such that the weight1 of h is w. Break2 h

into n0 = 2 equal parts h = [h0 | h1 ]. Then build the parity-check matrix H = [H0 |H1] ,
where each Hi is the cyclic matrix with hi as its first row. It is required that the block
Hn0−1 is invertible. If it is not, restart the key generation procedure by picking another

h at random. We now build the generator matrix as G =
[
I
��� (H−1

1 ·H0
)T ]

, and one

can check that GHT = 0 with a simple evaluation. Since each Hi is cyclic, each product(
H−1

n0−1Hi

)T
is also cyclic. The secret key is the matrix H and the public key is the matrix

G. Both matrices admit compact representation because of their cyclic blocks.

To encrypt a vector m of F(n−r)
2 , first encode m obtaining ĉ = mG. Then add a

random vector e of weight t to ĉ to get the ciphertext c = ĉ + e.

Since the ciphertext is just a corrupted codeword, decrypting c is equivalent to
correct the errors from c. This is achieved with iterative decoders [Gallager 1962], which
can be of two types: based on either hard or soft decision. Soft decision based decoders
have better error correction capability, but are less efficient. It is usual to decode QC-
MDPC codes with hard decision based decoders, because the main problem here is not
efficient communication, but secure communication. Therefore one does not need to
correct a lot of errors, but only enough to make the scheme secure.

The reaction attack is based on the observation that the probability of a failure
to occur when decoding a vector c = ĉ + e is lower when the blocks of h share some
similarities with the blocks of the error e. The important structural information of the

1The (Hamming) weight of a vector is the number of its non-null entries.
2For simplicity, we only consider the case n0 = 2, but our results can easily be extended for n0 ≥ 3.



blocks of the secret vector h which an attacker can recover from decoding failures is
called the spectrum, and it is defined next.

Definition 2 Let v = [v1, v2, . . . , vr] be an element of Fr
2. Then the spectrum of v is the

set σ(v) = {distr(i, j) : i , j, vi = 1, and v j = 1}, where distr(i, j) denotes the circular
distance3 between the positions i and j in a vector of length r.

The attack is done in two parts. In the first, the attacker collects information about
the key by sending challenge ciphertexts to the secret key holder Alice, and recording
Alice’s reactions when he tries to decode these ciphertexts. The first part is the only part
where the attacker needs to interact with the secret key holder. In the second part, the
attacker tries to reconstruct the key using the information on the spectrums of the blocks
of h previously collected. Given the spectrum of some of the blocks of h, say σ(h0), the
reconstruction algorithm presented by Guo et al. is a simple pruned depth-first search
in a tree. Its main problem is that, to run efficiently, it needs a lot of information on the
spectrum of the key, which requires lots of interactions with the secret key holder. Further,
being a depth-first search, it can be stuck in an unfruitful branch of the tree for too long.

The next sections present two algorithms for the second part of the attack.

3. A randomized key reconstruction algorithm

Our first algorithm, which is given as Algorithm 1, is a simple randomized extension of
Guo’s et al. key reconstruction algorithm. Instead of performing a depth-first search for
the key, at each level of the search tree, the algorithm chooses the next node at random.

Algorithm 1: Randomized variant of the key reconstruction algorithm
Data: n, r, w, t parameters of the QC-MDPC to be attacked

ŵ the weight of h0
s0 a distance inside σ(h0)
D0 a set of distances which are not in σ(h0)

Result: V the support of a rotation of h0
1 begin
2 do
3 V ← {1, 1 + s0}
4 F2 ← {i ∈ [br/2c] − V : distr(i, v) < D0 ∀v ∈ V}
5 l ← 2
6 while |V | < ŵ e |Fl | > 0 do
7 p← a random element from Fl
8 V ← V ∪ {p}
9 Fl ← Fl − {p}

10 Fl+1 ← {i ∈ Fl : distr(i, v) < D0 ∀v ∈ V}
11 l ← l + 1
12 while V is not the support of a rotation of h0;
13 return V

3The circular distance between two indexes is simply the minimum number of steps to get from one
position to another supposing the vector is represented by a circular array.



We now give a brief description of the algorithm. Parameters s0, which must
be a distance inside the spectrum of h0, and D0, which is a set of distances outside the
spectrum of h0, are obtained by the spectrum recovery algorithm, as described by Guo et
al. [Guo et al. 2016]. At each iteration, the algorithm starts with the set V = {1, s0+1} and
tries to complete it with ŵ − 2 indexes. To complete the support vector V , the algorithm
chooses at random an index inside the auxiliary set Fl , which contains, for each level l,
the possible positions to complete the support. That is, Fl consists of all the elements of
{1, . . . , r} which are not in V , and whose circular distance to any index in V is not in D0.

4. An iterative key reconstruction algorithm
Consider the public generator matrix of a QC-MDPC code with n0 = 2, which is given as

G =
[
I
��� (H−1

1 ·H0
)T ]

. Let B = H−1
1 H0 be the transpose of the right block of the public

generator matrix. Our main idea is to explore the relation h1B = h0, where h1 and h0
are corresponding lines of the matrices H1 and H0, respectively. Let Z0 and Z1 be sets of
indexes of some of the null entries of h0 and h1, respectively. Denote by BZ0 the matrix
consisting of the columns of B whose indexes are in Z0, which makes h1BZ0 = 0.

We can discard the entries of h1 whose indexes are in Z1, if we discard the corre-
sponding columns in BZ0 . Let Z′1 be the complement of Z1 with respect to the possible

indexes of h1. Then hZ ′1
1 BZ0

Z ′1
= 0, where hZ ′1

1 is the vector consisting of the columns of h1

whose indexes are in Z′1, and BZ0
Z ′1

is the matrix consisting of the lines from BZ0 whose

indexes are in Z′1. In other words, hZ ′1
1 is in the left kernel of the matrix BZ0

Z ′1
. Then we can

compute the kernel matrix of BZ0
Z ′1

and hope to find hZ ′1
1 in one of its columns.

Let D0 and D1 be sets of distances which are not in the spectrum of h0 and h1,
respectively. Suppose we know that s0 is in σ(h0), and we also know that the distances
d1, . . . , dl in D0. Letting ∗ denote unknown entries, we know that there must exist a shift
of h0 which has the following format

[

s0︷                              ︸︸                              ︷︸      ︷︷      ︸
d1

0 ∗ . . . ∗ 1 ∗ . . . ∗ 0︸      ︷︷      ︸
d1

∗ . . . ∗ ︸      ︷︷      ︸
d1

0 ∗ . . . ∗ 1 ∗ . . . ∗ 0︸      ︷︷      ︸
d1

∗ . . . ∗].

Further, if we consider all other di, it is possible to know the positions of a hopefully
large number of zeros in this shift of h0, which will be the set Z0. Notice that distance
s0 that is in the spectrum σ(h0) with high probability, one can take the distance with
least probability of failure estimated by the spectrum recovery algorithm. An analogous
construction can be made for Z1.

Using the construction above, we can obtain sets Z0 and Z1 which consist of posi-
tions of non-null entries of some circular shifts of h0 and h1, respectively. The problem is
that these shifts might not be by the same amount of positions, thus with high probability
hZ ′1

1 is not in the kernel of BZ0
Z ′1

. To deal with this, we fix Z′1 and iterate through the circular

rotations of the indexes in Z0. When the shift of Z0 corresponds to the shift of Z1, hZ ′1
1 can

be computed.



We now put everything together to give a full description of our algorithm to
reconstruct the key as Algorithm 2. Since the algorithm is not recursive and uses common
operations, it is straightforward to compute its complexity as O(r4).

Algorithm 2: Proposed key recovery algorithm
Data: r, w parameters of the QC-MDPC code to be broken

D0,D1 sets of distances not in the σ(h0) and σ(h1), respectively
s0, s1 distances in the spectrum of h0 and h1, respectively
B the right block of the public generator matrix

Result: h1 which is some line of the matrix H1, or ⊥ if h1 could not be found
1 Z′1 ← {i ∈ [r] : dist(1, i) < D1 and dist(s1 + 1, i) < D1}
2 BZ ′1 ← rows of B whose indexes are in Z′1
3 for p = 0 to r − 1 do
4 Z0 ← {i + p mod r : dist(1, i) ∈ D0 or dist(s0 + 1, i) ∈ D0}

5 BZ0
Z ′1
← columns of BZ ′1 whose indexes are in Z0

6 K← left kernel matrix of BZ0
Z ′1

7 if dim K = 1 then
8 v← the only row in K
9 if weight(v) ≤ w then

10 h1 ← 0 ∈ Fr
2

11 for each i = 1 to |v| do
12 h1[Z1[i]] ← v[i]
13 return h1
14 return ⊥

It is important to note that the lemma above does not say anything about the prob-
ability of the algorithm finding the key. It only states that the algorithm runs in O(r4),
whether it finds the key or not. The probability that it finds the key is the probability that
the kernel of BZ0

Z ′1
has dimension 1, which happens when Z0 and Z1 are sufficiently large.

Under the assumption that the matrix BZ0
Z ′1

behaves somewhat like a random matrix, it is
easy to show that the probability that the algorithm finds the key is lower bounded by
1 − 2r−|Z1 |−|Z0 |.

5. Performance of the proposed algorithms

We implemented both algorithms in C language and run it using an Intel i7 870 Lynnfield
CPU, at a 2.93GHz clock frequency, and 8GB of RAM. The implementation of the ran-
domized algorithm is trivial, without any optimizations. For the iterative algorithm, we
used the M4RI library [Albrecht, M. and Bard, G. 2012] for the kernel matrix computa-
tion. The source code is available at www.ime.usp.br/~tpaiva/msc.

Table 2 shows the performance of Guo’s et al. algorithm4 and both of our proposed
algorithms when they have access to the full spectrum of the code. We can see that the

4We implemented Guo’s et al. algorithm with a minor optimization [Fabšič et al. 2017] which cuts in
half the expected number of paths needed to recover the key.



randomized algorithm outperforms the other two by a large margin, while Guo’s et al.
algorithm is the slowest one. In the following tables, when entries are marked with *,
it means that it was used a simple variant5 of the iterative algorithm more suited for the
cases where there are abundant information on the spectrums.

Table 2. Performance comparison of the algorithms when full spectrums are
known, for different security parameters

Security
level
λ

n0

Average running
time of Guo’s

et al. algorithm

Average running
time of the randomized

algorithm

Average running
time of the iterative

algorithm

80 2 71.18s 0.01s 0.72s*
128 2 ∼ 24 days 0.36s 11s*
256 2 - 33s 141s*

However we are really interested in how the algorithms perform when they only
know a fraction of the distances outside the spectrums. The average of the observed
running times of our algorithms when they know a fraction of the distances outside the
spectrums is shown in Table 3. Guo’s et al. algorithm is not considered in this table
because it takes too long to finish when partial information on the spectrums is considered.

Table 3. Performance comparison of our algorithms algorithm when partial spec-
trums are known, for different security parameters

Security
level
λ

n0

Fraction of
known distances

outside the spectrum

Average running time
of the randomized

algorithm

Average running time
of the iterative

algorithm

80 2 80% 1.1s 1s*
80 2 62.93% 1h 1.3s*
80 2 45.63% - 41s

128 2 87.36% 4m 8.6s*
128 2 77.28% 50m 10s*
128 2 49.58% - 14m

256 2 94.84% 20m 2m12s*
256 2 89.99% 1h40m 2m24s*
256 2 52.34 % - 15h34m

6. Conclusion
This work presents two new algorithms for key reconstruction from the spectrums of the
rows of the secret matrix. Both algorithms are more efficient than Guo’s et al. one, and can
be trivially parallelized. But their main feature is that they can run with less information
on the private key, which means an attacker needs to interact significantly less with the
private key holder. We ran simulations6 considering the CCA2 setting for the 80 bits

5The variant consists in taking s0 = 0.
6The simulations used the HPC resources provided by the Technology Superintendence of USP.



security parameters with n0 = 2. The results were that, with 29M interactions on average,
and 60M in the worst case, we were able to successfully recover the key using either of
the proposed algorithms. This is a significant improvement on the 200M decoding trials
reported by Guo et al..

The first algorithm is a randomized variant of Guo’s et al.. Even though the ran-
domized algorithm is much more efficient, since it is also based on a search tree, it suffers
from scalability issues just like Guo’s et al. algorithm when the amount of information
on the spectrum gets lower. The second algorithm is iterative and it is based on a linear
relation among blocks of the secret key. This avoids the exponential loss in performance
when there are less information on the secret key spectrum.

An immediately interesting future work is to protect the QC-MDPC McEliece
against the reaction attack. As discussed by Guo et al. [Guo et al. 2016], a conservative
way to protect the scheme is to develop decoders that fail with probability close to 2−λ
when using parameters for the security level λ. The problem is that these decoders are far
from today’s technology, and it is not clear if we can achieve this level of precision, and
even if we could, at what cost in performance. We believe it is more realistic to develop
decoding algorithms which fail with probability independent of the similarity between
the spectrums and the error vector. Even if it fails with a non-negligible probability, the
information on the spectrum would be protected.
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