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Abstract. The HQC public-key encryption scheme is a promising code-
based submission to NIST’s post-quantum cryptography standardization
process. The scheme is based on the decisional decoding problem for
random quasi-cyclic codes. One problem of the HQC’s reference imple-
mentation submitted to NIST in the first round of the standardization
process is that the decryption operation is not constant-time. In particu-
lar, the decryption time depends on the number of errors decoded by a
BCH decoder. We use this to present the first timing attack against HQC.
The attack is practical, requiring the attacker to record the decryption
time of around 400 million ciphertexts for a set of HQC parameters
corresponding to 128 bits of security. This makes the use of constant-time
decoders mandatory for the scheme to be considered secure.
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1 Introduction

Hamming Quasi-Cyclic (HQC) [18] is a code-based public-key encryption scheme.
It is based on the hardness of the quasi-cyclic syndrome decoding problem,
a conjectured hard problem from Coding Theory. It offers reasonably good
parameters, with better key sizes than the classical McEliece scheme [2,5,17], but
without relying on codes with a secret sparse structure, such as QC-MDPC [19]
and QC-LDPC [3].

One of the most interesting features HQC provides is a detailed analysis of the
decryption failure probability, which makes it possible to choose parameters that
provably avoid reaction attacks [9,12] that compromise the security of QC-LDPC
and QC-MDPC encryption schemes. This makes it one of the most promising code-
based candidates in NIST’s Post-Quantum standardization process. However, the
negligible probability of decoding failure comes at the expense of low encryption
rates.

The scheme uses an error correction code 𝒞 as a public parameter. The secret
key is a sparse vector, while the public key is its syndrome with respect to a
⋆ T. B. Paiva is supported by CAPES. R. Terada is supported by CNPq grant number
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systematic quasi-cyclic matrix chosen at random, together with the description of
this matrix. To encrypt a message, the sender first encodes it with respect to the
public code 𝒞, then adds to it a binary error vector which appears to be random
for anyone who is not the intended receiver. The receiver, using the sparseness
of her secret key, is able transform the ciphertext in such a way to significantly
reduce the weight of the error vector. Then, the receiver can use the efficient
decoding procedure for 𝒞 to correct the remaining errors of the transformed
ciphertext to recover the message.

The code 𝒞 proposed by Aguilar-Melchor et al. [18] is a tensor code between
a BCH code and a repetition code. One drawback of the HQC implementation
submitted to NIST is that the decoder [14] for the BCH code is not constant-time,
and depends on the weight of the error it corrects. This makes the decryption
operation vulnerable to timing attacks.

The use of non-constant-time decoders has been exploited to attack code-
based schemes such as QC-MDPC [8], and recently, RQC [1], which is a variant of
HQC in the rank metric that uses Gabidulin codes [10], was shown vulnerable to
timing attacks [6]. However, timing attacks exploiting non-constant-time decoders
are not exclusive to code-base schemes, and the use of BCH codes in LAC [16]
has been shown to leak secret information from timing [7].

Contributions. We present the first timing attack on HQC. The attack follows
Guo et al. [12] idea: first we show how to obtain information, which is called the
spectrum, on the secret key by timing a large number of decryptions, and then
use the information gathered to reconstruct the key. We analyze in detail the
reason behind the information leakage. As a minor contribution, we show that
a randomized variant of Guo’s et al. algorithm for key reconstruction is better
than their recursive algorithm when the attacker has partial information on the
secret key’s spectrum. This is useful to reduce the number of decryption timings
the attacker needs to perform.

Shortly after this paper was accepted for publication, Wafo-Tapa et al. [24]
published a preprint in the Cryptology ePrint Archive in which they also present
a timing attack against HQC. Our attack is stronger in the sense that we target
the CCA secure version of HQC, while they target only the CPA secure version.
However, their paper comes with a countermeasure, which consists of a constant-
time BCH decoder with a low overhead.

Paper organization. In Section 2, we review some background concepts for
understanding HQC and our attack. The HQC is described in Section 3. The
attack is presented in Section 4. Some mathematical and algorithmic aspects of the
attack are analyzed in detail in Section 5. In Section 6, we analyze the practical
performance of the attack against concrete HQC parameters. We conclude in
Section 8.

2 Background
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Definition 1 (Linear codes). A binary [𝑛, 𝑘]-linear code is a 𝑘-dimensional

linear subspace of F𝑛
2 , where F2 denotes the binary field.

Definition 2 (Generator and parity-check matrices). Let 𝒞 be a binary

[𝑛, 𝑘]-linear code. If 𝒞 is the linear subspace spanned by the rows of a matrix G
of F𝑘×𝑛

2 , we say that G is a generator matrix of 𝒞. Similarly, if 𝒞 is the kernel

of a matrix H of F(𝑛−𝑘)×𝑛
2 , we say that H is a parity-check matrix of 𝒞.

Definition 3 (Weight). The Hamming weight of a vector v, denoted by w(v),
is the number of its non-null entries.

Definition 4 (Support). The support of a vector v, denoted by supp(v), is
the set of indexes of its non-null entries.

We use zero-based numbering for the vectors indexes as we believe it allows
more concise descriptions in some of the algorithms and analysis.

Definition 5 (Cyclic matrix). The cyclic matrix defined by a vector v =
[𝑣0, . . . , 𝑣𝑛−1], is the matrix

rot(v) =

⎡⎢⎢⎢⎣
𝑣0 𝑣𝑛−1 . . . 𝑣1
𝑣1 𝑣0 . . . 𝑣2
...

...
. . .

...

𝑣𝑛−1 𝑣𝑛−2 . . . 𝑣0

⎤⎥⎥⎥⎦ .

Definition 6 (Vector product). The product of two vectors u, v ∈ F𝑛
2 is

given as

u · v = u rot(v)𝑇 =
(︀
rot(v)u𝑇

)︀𝑇 = v rot(u)𝑇 = v · u.

Definition 7 (Syndrome decoding problem). Consider the following input:

a random binary matrix H ∈ F𝑘×𝑛
2 , a random vector s ∈ F𝑘

2, and an integer

𝑤 > 0. The syndrome decoding problem asks for a v of weight 𝑤 such that

vH𝑇 = s.
The quasi-cyclic syndrome decoding problem is a restriction of the syndrome

decoding problem, in which H is a block matrix consisting of cyclic blocks.

The syndrome decoding problem is proven to be NP-hard [4]. Despite no com-
plexity result on the quasi-cyclic variant, it is considered hard since all known
decoding algorithms that exploit the cyclic structure have only a small advantage
over general decoding algorithms for the non-cyclic case.

Definition 8 (Circular distance). The circular distance between the indexes

𝑖 and 𝑗 in a vector of length 𝑛 is

dist𝑛(𝑖, 𝑗) =
{︃

|𝑖 − 𝑗| if |𝑖 − 𝑗| ≤ ⌊𝑛/2⌋,

𝑛 − |𝑖 − 𝑗| otherwise.
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We next define the spectrum of a vector, which is a crucial concept for the
rest of the paper. The importance of the spectrum for the attack comes from the
fact that it is precisely the spectrum of the key that can be recovered by the
timing attack. Intuitively, the spectrum of a binary vector v is the set of circular
distances that occur between two non-null entries of v.

Definition 9 (Spectrum of a vector). Let v = [𝑣0, 𝑣1, . . . , 𝑣𝑛−1] be an element

of F𝑛
2 . Then the spectrum of v is the set

𝜎(v) = {dist𝑛(𝑖, 𝑗) : 𝑖 ̸= 𝑗, 𝑣𝑖 = 1, and 𝑣𝑗 = 1}.

In some cases, it is important to consider the multiplicity of each distance 𝑑, that
is the number of pairs of non-null entries that are at distance 𝑑 apart. In such

cases, we abuse notation and write (𝑑 : 𝑚) ∈ 𝜎(v) to denote that 𝑑 appears with

multiplicity 𝑚 in vector v.

Definition 10 (Mirror of a vector). Let v = [𝑣0, 𝑣1, . . . , 𝑣𝑛−1] be an element

of F𝑛
2 . Then the mirror of v is the vector

mirror(v) = [𝑣𝑛−1, 𝑣𝑛−2, . . . , 𝑣0].

We sometimes abuse notation and write mirror(𝑉 ), where 𝑉 is the support of a

vector v, to represent the support of the mirror of v.

Notice that the spectrum of a vector is invariant with respect to its circular
shifts and its mirror.

Guo et al. [12] showed that it is possible to reconstruct a sparse vector from
its spectrum. To solve this problem, they propose an algorithm that consists
of a simple pruned depth-first search. Its description is given as Algorithm 1.1
The main argument by Guo et al. for the efficiency of their algorithm is that
unfruitful branches are pruned relatively early in the search.

Let 𝛼 be the fraction of the ⌊𝑛/2⌋ possible distances that are not in 𝐷, that
is 𝛼 = 1 − |𝐷|/⌊𝑛/2⌋. For each new level in the search tree, it is expected that a
fraction 𝛼 of the possible positions in the previous level survive the sieve imposed
by line 10. Let MaxPaths be the total number of paths that Guo’s et al. [12]
algorithm can explore. Then

MaxPaths =
𝑤−1∏︁
ℓ=2

max
(︀
1, ⌊𝑛/2⌋𝛼ℓ

)︀
= ⌊𝑛/2⌋𝜑𝛼𝜑(𝜑+3)/2,

where ℓ represents the level in the search tree, and 𝜑 is the level at which each
node has an expected number of child nodes lower than or equal to 1. Notice
that, on average, the mirror test in line 5 cuts in half the number of paths the
algorithm needs to explore until it finds the key. From the remaining paths, we

1 Here we present a slightly more general version of Guo’s et al. reconstruction algorithm
that does not require the key’s spectrum to be completely determined, but the idea
is the same.
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Algorithm 1: GJS key reconstruction algorithm [12]
Data: 𝑛, 𝑤 the length and weight of the secret vector y

𝐷 a set of distances outside 𝜎(y)
𝑠 a distance inside 𝜎(y)
𝑉 the partially recovered support of a shift of y (initially set to {0, 𝑠},
where 𝑠 ∈ 𝜎(y)) is known

Result: V the support of some shift of y, or ⊥ if 𝜎(y) is an invalid spectrum
1 begin

2 if |𝑉 | = 𝑤 then

3 if 𝑉 is the support of a shift of y then

4 return 𝑉

5 else if mirror(𝑉 ) is the support of a shift of y then

6 return mirror(𝑉 )
7 else

8 return ⊥
9 for each position 𝑗 = 1, . . . , 𝑛− 1 which are not in 𝑉 do

10 if dist𝑛(𝑣, 𝑗) ̸∈ 𝐷 for all 𝑣 in 𝑉 then

11 Add 𝑗 to 𝑉
12 ret← recursive call with the updated set 𝑉
13 if ret ̸=⊥ then

14 return 𝑉
15 Remove 𝑗 from 𝑉

16 return ⊥

expect that half of them have to be taken until the key is found. Therefore,
considering WFGJS to be the average number of paths the algorithm explores
until a key is found, we have

WFGJS = 1
4MaxPaths = 1

4⌊𝑛/2⌋𝜑𝛼𝜑(𝜑+3)/2.

3 The HQC Encryption Scheme

3.1 Setup

On input 1𝜆, where 𝜆 is the security parameter, the setup algorithm returns the
public parameters 𝑛, 𝑘, 𝛿, 𝑤, 𝑤r, 𝑤e, from parameters table such as Table 1. For
these parameters, an [𝑛, 𝑘] linear code 𝒞, with an efficient decoding algorithm
𝛹 capable of correcting random errors of weight up to 𝛿 with overwhelming
probability, is fixed. Parameters 𝑤, 𝑤r and 𝑤e correspond to the weights of the
sparse vectors defined and used in the next sections.

3.2 Key Generation

Let H ∈ F𝑛×2𝑛
2 be a quasi-cyclic matrix selected at random, in systematic form,

that is H = [ I | rot(h) ], for some vector h. Let x, y ∈ F𝑛
2 be sparse vectors with
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Table 1: Suggested parameters for some security levels [1].
Instance Security 𝑛1 𝑛2 𝑛 ≈ 𝑛1𝑛2

2 𝑘 = 𝑘1 𝑤 𝑤r = 𝑤e 𝑝fail

Basic-I 128 766 29 22,229 256 67 77 2−64

Basic-II 128 766 31 23,747 256 67 77 2−96

Basic-III 128 796 31 24,677 256 67 77 2−128

Advanced-I 192 796 51 40,597 256 101 117 2−64

Advanced-II 192 766 57 43,669 256 101 117 2−128

Advanced-III 192 766 61 46,747 256 101 117 2−192

Paranoiac-I 256 766 77 59,011 256 133 153 2−64

Paranoiac-II 256 766 83 63,587 256 133 153 2−128

Paranoiac-III 256 796 85 67,699 256 133 153 2−192

Paranoiac-IV 256 796 89 70,853 256 133 153 2−256

weight w(x) = w(y) = 𝑤. Compute

s = [x|y]H𝑇 = x + y · rot(h)𝑇 = x + y · h.

The public and secret key are 𝐾Pub = [s|h] and 𝐾Sec = [x|y], correspondingly.
From this construction, it is easy to see the relation between recovering the

secret key from the public key and the quasi-cyclic syndrome decoding problem.

3.3 Encryption

Let m ∈ F𝑘
2 be the message to be encrypted. First, choose two random sparse

vectors r1, r2 ∈ F𝑛
2 such that w(r1) = w(r2) = 𝑤r. Then choose a random sparse

vector e ∈ F𝑛
2 such that w(e) = 𝑤e. Let

u = [r1|r2]H𝑇 = r1 + r2 · h, and v = mG + s · r2 + e.

Return the ciphertext c = [u|v].

3.4 Decryption

Compute c′ = v + u · y. Notice that

c′ = mG + s · r2 + e + (r1 + r2 · h) · y
= mG + (x + y · h) · r2 + e + (r1 + r2 · h) · y
= mG + x · r2 + r1 · y + e.

Intuitively, since x, y, r1, r2, and e all have low weight, we expect e′ =
x · r2 + r1 · y + e to have a relatively low weight. This is made precise by Aguilar-
Melchor et al. [1], where they propose the public parameters to ensure that w(e′)
is sufficiently low for it to be corrected out of c′ with overwhelming probability.

Therefore we can use the decoder 𝛹 to correct the errors in c′ and obtain
c′′ = 𝛹(c′) = mG. We finally get m by solving the overdetermined linear system
mG = c′′.
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3.5 Security and Instantiation

In general, schemes based on syndrome decoding have to take care to avoid
generic attacks based on Information Set Decoding [20,22,23]. Furthermore, the
quasi-cyclic structure of the code used to secure the secret key can make the
scheme vulnerable to DOOM [21], or other structural attacks [11, 15].

To instantiate the scheme, the authors propose parameters for which they
prove very low decryption error probability and resistance to the attacks men-
tioned. This error analysis allows the HQC to achieve IND-CCA2 security using
the transformation of Hofheinz et al. [13].

Of particular interest for our timing attack, is the way that code 𝒞 is chosen.
Their proposal is to build the tensor code 𝒞 = 𝒞1 ⊗ 𝒞2, where the auxiliary codes
are chosen as follows. 𝒞1 is a BCH(𝑛1, 𝑘1, 𝛿1) code of length 𝑛1, dimension 𝑘1.
𝒞2 is a repetition code of length 𝑛2 and dimension 1, that can decode up to
𝛿2 =

⌊︀
𝑛2−1

2
⌋︀
. Therefore, to encode a message m with respect to 𝒞 is equivalent to

first encode it using the BCH code 𝒞1, and then encode each bit of the resulting
codeword with the repetition code 𝒞2.

The suggested parameters for this instantiation are shown in Table 1. In this
table, column 𝑝fail contains an upper bound for the probability of a decryption
failure for each instance of the scheme. The size of the public keys and ciphertexts
correspond to 2𝑛 bits.

4 Timing Attack Against HQC

In the decryption algorithm, the decoder 𝛹 is used to correct the errors in the
word

c′ = mG + x · r2 + r1 · y + e,

where the attacker knows every element, except for the secret key consisting
of x and y. For the original instantiation, where 𝒞 is the tensor product of a
BCH code and a repetition code, the decoder 𝛹 consists of a sequence of two
operations: first apply a repetition code decoder 𝛹2, and then apply the BCH
code decoder 𝛹1. That is 𝛹(c′) = 𝛹1(𝛹2(c′)).

The timing attack is based on the fact the BCH decoder implemented by
Aguilar-Melchor et al. [18] is not constant-time, and is slower when there are
more errors to be corrected. In other words, the decryption time leaks the number
of errors that the repetition code (RC) decoder 𝛹2 was not able to correct.

Figure 1 shows the essentially linear relation between the decryption time
and the number of errors corrected by the BCH decoder. We emphasize that the
time considered is for complete decryption, not only the BCH decoding step. The
weight distribution is centered between 9 and 10, thus error weights larger than
22 are rare (around 1%).

Let e′ be the error vector that 𝛹2 will try to correct, that is e′ = x·r2+r1 ·y+e.
We note that it is useful to consider Guo’s et al. [12] observation, used in their
attack on QC-MDPC, that the weight of the product of two binary sparse vectors
a · b is lower when the spectrums of a and b share more entries. However,
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Fig. 1: The average decryption time for different weights of the errors corrected
by the BCH decoder, considering 10 million decryption operations.

this observation is not sufficient to enable us to accurately distinguish between
distances in and out of the spectrum, because we are not just interested in the
weight of e′, but mainly in the probability that it has enough non-null entries in
the same repetition blocks to cause 𝛹2 to leave decoding errors.

When the number of RC decoding errors for 𝛹2(mG + e′) is high, it means
that e′ has a lot of non-null entries that are at a distance lower than the repetition
block size 𝑛2. Therefore, if we understand how r1 and y influence the number of
entries lower than 𝑛2 in 𝜎 (r1 · y), we can use our knowledge on r1 together with
the decryption time to obtain information on y.3

We make three observations that relate the spectrum of e′ to the spectrums of
r1 and y, (alternatively r2 and x). These are presented in the next section based
on empirical data, and their mathematical nature is explained in Section 5.1.

The timing attack then consists of two parts. In the first part, called the
spectrum recovery, the attacker sends Alice a great number of ciphertexts and
records the decryption times for each one. This step runs until it is gathered
sufficient information on the spectrums of y (or x) for him to build a large
set 𝐷 of distances outside the spectrum, and to obtain a distance 𝑠 ∈ 𝜎(y)
(respectively, 𝜎(x)). In the second part, the set 𝐷 and distance 𝑠 are passed to
the key reconstruction algorithm.

It is important to notice that the the attacker needs only to recover one of x
or y, because he can use the linear relation s = x + y · h to easily recover one
from the other.

In the next sections, the two parts are presented in detail.

3 This sentence remains valid if we substitute y and r1 by x and r2, respectively.
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4.1 Spectrum Recovery

This is the part where timing information is used. Let Alice be the target secret
key holder. The attacker sends Alice valid ciphertexts, and records the time she
takes to decrypt each challenge. Since the attacker generated all ciphertexts,
then, for each one of them, he knows r1 and r2. The idea is that the attacker
iteratively builds two arrays, Tx and Ty, such that Tx[𝑑] (Ty[𝑑]) is the average
of the decryption time when 𝑑 is in the spectrum of r2 (resp. r1).

The algorithm for spectrum recovery is given as Algorithm 2. Notice that we
are not choosing the vectors r1, r2, which are assumed to be random. Therefore
CCA2 conversions [13] do not protect the scheme against this attack.

Algorithm 2: Estimating the decryption time for each possible distance
in 𝜎(x) and 𝜎(y)

Data: The HQC public parameters and Alice’s public key
𝒯 returns the target’s decryption time for the challenge passed as
argument
𝑀 number of decoding challenges

Result: Tx, Ty average decryption time for candidate distances in 𝜎(x) and
𝜎(y), respectively

1 begin

2 a𝑦, b𝑦, a𝑥, b𝑥 ← zero-initialized arrays with ⌊𝑛/2⌋ entries each
3 for each decoding trial 𝑖 = 1, 2, . . . , 𝑀 do

4 m← a random message in F𝑘
2

5 c← encryption of m using vectors r1 and r2 randomly chosen
6 𝑡 = 𝒯 (c)
7 for each distance 𝑑 in 𝜎(r1) do

8 a𝑦[𝑑]← a𝑦[𝑑] + 𝑡
9 b𝑦[𝑑]← b𝑦[𝑑] + 1

10 for each distance 𝑑 in 𝜎(r2) do

11 a𝑥[𝑑]← a𝑥[𝑑] + 𝑡
12 b𝑥[𝑑]← b𝑥[𝑑] + 1
13 Tx, Ty ← zero-initialized array with ⌊𝑛/2⌋ positions
14 for each distance 𝑑 in {1, 2, . . . , ⌊𝑛/2⌋} do

15 Tx[𝑑]← a𝑥[𝑑]/b𝑥[𝑑]
16 Ty[𝑑]← a𝑦[𝑑]/b𝑦[𝑑]
17 return Tx and Ty

To maximize the information obtained from each decryption timing, the
proposed spectrum recovery procedure targets 𝜎(x) and 𝜎(y) simultaneously.
This is interesting for the attacker since it may be the case that, after a number
of challenges, the output Tx does not have sufficient information on x for it to
be reconstructed, but Ty is sufficient to recover y.

Figure 2 shows the output of the spectrum recovery algorithm Ty for 𝑀 = 1
billion decryption challenges. On the left of the figure, we see that distances lower
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than 𝑛2 have a significantly higher average decryption time. The figure shows
that, in general, distances inside the spectrum of y appears to have lower average
decryption time. However, there is no clear line to classify a distance 𝑑 as inside
or outside 𝜎(y), based only on Ty[𝑑], since this value appears to also depend on
the neighbors of 𝑑.

Figure 3 shows another interval of the same data, but with one vertical line
for each distance in the spectrum. This enables us to see that regions where there
are more distances inside the spectrum appear to have higher average decryption
time.
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Fig. 2: The average decryption time Ty[𝑑] for each distance 𝑑 that can occur in
r1, for 𝑀 = 1 billion.

Summarizing the analysis of the figures, we make the following three informal
observations that allow us to distinguish between distances inside and outside
the spectrums.

1. When 𝑑 decreases from 𝑑 = 𝑛2 − 1 to 𝑑 = 1, the value of Ty[𝑑] increases,
getting significantly higher than the rest of the values in Ty.

2. When 𝑑 ∈ 𝜎(y), the value of Ty[𝑑] is lower than the average in the neighbor-
hood of 𝑑.

3. When 𝑑 has a large number of neighbors in 𝜎(y), the value of Ty[𝑑] tends to
be higher.

The reasons why we observe such behavior are analyzed in detail in section 5.1.
Similarly to the GJS algorithm (Algorithm 1), our key reconstruction algorithm

for the next part of the attack works with two inputs: a set 𝐷 of distances outside
the spectrum, and a distance 𝑠 inside the spectrum. Figure 2 suggests that, when
a sufficiently large number of decryption challenges are timed, it is easy to get a
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Fig. 3: A closer look at the behavior of Ty[𝑑] for each distance 𝑑. The gray vertical
lines represent distances inside 𝜎(y).

distance inside the spectrum with high probability by just taking the distance
𝑠 such that Ty[𝑠] is the minimum value in the array. However, it is not trivial
to find a sufficiently large set 𝐷 from Ty. For this, we propose a routine called
BuildD, which is describe next.

BuildD: Building the Set of Distances not in 𝜎(y) from Ty. We propose
to use the following simple algorithm, that takes as input a value 𝜇 and the
decryption times estimation Ty, and outputs 𝜇 distances which it classifies as
out of 𝜎(y). The idea is to select the 𝜇 values of 𝑑 such that Ty[𝑑] are among
the highest of their corresponding neighborhood.

Let 𝜂 be some small positive integer for which the probability that {𝑑, 𝑑 +
1, . . . , 𝑑 + 𝜂 − 1} ⊂ 𝜎(y) is negligible for all values of 𝑑. The value 𝜂 will be the
size of the neighborhood, which must contain at least one distance outside the
spectrum. This value can be estimated by generating 𝑁 random vectors, then
computing the minimum value 𝜂 for which 𝜂 consecutive distances always contain
at least one distance not in the vectors corresponding spectrums. For the Basic-I
parameters, we obtained 𝜂 = 11 for 𝑁 = 10000.

For each 𝑑, we compute the difference between Ty [d] and the highest value of
Ty in the window {𝑑 − ⌊𝜂/2⌋, . . . , 𝑑 + ⌈𝜂/2⌉ − 1}. If the window contains invalid
distances, we just truncate it to exclude them. In other words

𝜌(𝑑) =
(︂

max
𝑖∈𝑊𝑑

Ty[𝑖]
)︂

− Ty[𝑑],

where 𝑊𝑑 is the intersection between {𝑑 − ⌊𝜂/2⌋, . . . , 𝑑 + ⌈𝜂/2⌉ − 1} and the set
of possible distances. The algorithm sorts the possible distances with respect to
𝜌(𝑑), and returns the 𝜇 values of 𝑑 such that 𝜌(𝑑) are the lowest ones.
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Let BuildD(Ty, 𝜇) be the output of the algorithm just described for the given
inputs. Since the key reconstruction only works if 𝐷 is a large set of distances
not in the spectrum, it is natural to define the quality of the input Ty as

Quality(Ty) = max {𝜇 : BuildD(Ty, 𝜇) ∩ 𝜎(y) = ∅} .

Figure 4 helps us visualize why this algorithm works. For 𝑀 = 1 billion
decryptions, it is easy to see that the distances between Ty[𝑑] and max𝑖∈𝑊𝑑

Ty[𝑖]
should be smaller when 𝑑 is not in the spectrum of y. However, it is not clear
yet how many decryptions are necessary for the algorithm to be able to build
sufficiently large sets 𝐷, that is, to obtain high values for Quality(Ty). This is
considered in the experimental analysis in Section 6.2.
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Fig. 4: Illustration of the values max𝑖∈𝑊𝑑
Ty[𝑖] for each distance 𝑑, considering

windows of size 𝜂 = 11, after 𝑀 = 1 billion decryptions.

4.2 Reconstructing y from partial information on its spectrum

We propose the key reconstruction algorithm given as Algorithm 3, which is a
simple randomized extension of Guo’s et al. algorithm. Instead of performing
a depth-first search for the key, at each level of the search tree, the algorithm
chooses the next node at random.

We give a brief description of the algorithm. Parameters 𝑠, which must be
a distance inside the spectrum of y, and 𝐷, which is a set of distances outside
the spectrum of y, are obtained in the first part of the attack. At each iteration,
the algorithm starts with the set 𝑉 = {0, 𝑠} and tries to complete it with 𝑤 − 2
indexes. To complete the support 𝑉 , the algorithm chooses at random an index
inside the auxiliary set 𝛤ℓ, which contains, for each level 𝑙, the possible positions to
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Algorithm 3: Randomized key reconstruction algorithm
Data: The HQC public parameters and Alice’s public key

𝑠 a distance inside 𝜎(y)
𝐷 a set of distances which are not in 𝜎(y)

Result: 𝑉 the support of a rotation of y

1 begin

2 do

3 𝑉 ← {0, 𝑠}
4 𝛤2 ← {𝑖 ∈ {1, . . . , ⌊𝑛/2⌋} − 𝑉 : dist𝑛(𝑖, 𝑣) /∈ 𝐷 for all 𝑣 ∈ 𝑉 }
5 ℓ← 2
6 while |𝑉 | < 𝑤 and |𝛤ℓ| > 0 do

7 𝑝← a random element from 𝛤ℓ

8 𝑉 ← 𝑉 ∪ {𝑝}
9 𝛤ℓ+1 ← {𝑖 ∈ 𝛤ℓ : dist𝑛(𝑖, 𝑣) /∈ 𝐷 for all 𝑣 ∈ 𝑉 }

10 ℓ← ℓ + 1
11 while Both 𝑉 and mirror(𝑉 ) are not the support of a rotation of y;
12 if 𝑉 is the support of a shift of y then

13 return 𝑉

14 else if mirror(𝑉 ) is the support of a shift of y then

15 return mirror(𝑉 )

complete the support. That is, 𝛤ℓ consists of all the elements from {0, . . . , 𝑛 − 1}
which are not in 𝑉 , and whose circular distance to any index in 𝑉 is not in 𝐷.

Notice that it is easy to perform the tests in lines 12 and 14 without knowing
the secret key. Let y be the vector with support 𝑉 found in the algorithm’s
main loop. Consider all possible cyclic shifts of y, denoted by y0, . . . , y𝑛−1. To
test if y is a shift of y, we look for a shift y𝑖 such that the weight of the vector
x = s + y𝑖 · h is w(x) = 𝑤. If we find one, then y is a shift of y (high probability),
or we have found an equivalent secret key for the given public key (h, s). If we
do not find one, then we start a new iteration.

The complexity of the algorithm is analyzed in Section 5.2, while its practical
performance is shown in Section 6.1.

5 Analysis

In this section we analyze two aspects of the attack. First we explain why it is
possible to distinguish between distances inside and outside the spectrum based
on decryption time. Then we analyze the complexity of the randomized key
reconstruction algorithm, and how it compares to the one presented by Guo et
al. [12].

5.1 Distinguishing Distances Inside and Outside the Spectrum

We know that the decryption time is related to the number of errors left by the
repetition code (RC) decoder. Our main observation is that the number of RC



14 Thales Bandiera Paiva and Routo Terada

decoding errors depends on how the spectrums of r1 and r2 relate to those of y
and x, respectively.

Consider the error to be corrected by the RC decoder, given by

e′ = r1 · y + r2 · x + e.

An RC decoding error occurs when e′ contains more than (𝑛2 − 1)/2 nonzero
errors in the same repetition block. Therefore, an RC decoding error has higher
probability of occurring when the spectrum of e′ contains small distances with
high multiplicity, and in particular, when 𝜎(e′) contains a lot of distances lower
than the repetition block length 𝑛2. We also expect that 𝜎(e′) contains small
distances when 𝜎(r2 ·x) and 𝜎(r1 ·y) also contain small distances. In the following
discussion, we focus on r1 ·y, but we could have used r2 ·x without any difference.

The above paragraph motivates us to better understand what causes the
spectrum of r1 ·y to contain small distances. Unfortunately, the strong dependency
between the rows of rot(y)𝑇 can make it very hard to perform a satisfactory
statistical analysis on the product r1 · y.

Therefore, we study a simpler problem, namely to describe 𝜎(r1 · y) as a
function of 𝜎(r1) and 𝜎(y), but restricted to the case where w(r1) = w(y) = 2.
Even though it is not the general case, it can give us a good intuition on why
the attack works. The analysis is given in the following lemma. First we discuss
the implications of the lemma and how it can be used to distinguish between
distances inside and outside the spectrums of the secret key, and then we prove
it.

Lemma 1. Let y, r ∈ F𝑛
2 be two binary vectors of weight 2, where 𝑛 is an odd

prime. Let 𝛼 and 𝛽 be the only distances in 𝜎(y) and 𝜎(r), respectively. Then,
we have the following possibilities.4

If 𝛼 = 𝛽, then

𝜎(r · y) = {dist𝑛(0, 2𝛼) : 1} = {dist𝑛(0, 2𝛽) : 1}. (1)

If 𝛼 ̸= 𝛽, then

𝜎(r · y) = {𝛼 : 2, (2)
𝛽 : 2, (3)
|𝛽 − 𝛼| : 1, (4)
dist𝑛(0, 𝛽 + 𝛼) : 1}. (5)

Interpreting Lemma 1. Intuitively, 𝛼 represents distances inside the spectrum of
the secret vector y, while 𝛽 represents distances inside the spectrum of r1. We
now restate the observations from Section 4.1 with brief discussions on why they
happen, using the lemma to help us.
4 Recall that we use (𝛾 : 𝑚) ∈ 𝜎(y) to denote that cyclic distance 𝛾 occurs 𝑚 times
between non-null entries of y.
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1. When 𝛽 decreases from 𝛽 = 𝑛2 − 1 to 𝛽 = 1, the value of Ty[𝛽] increases,
getting significantly higher than the rest of the values in Ty.

From (3), distance 𝛽 in 𝜎(r1) can cause 𝜎(r1 · x) to contain 𝛽 with
multiplicity 2. Therefore when 𝛽 < 𝑛2, it can be responsible for more
RC errors than values of 𝛽 ≥ 𝑛2. The reason why Ty[𝛽] gets increasingly
higher when 𝛽 approaches 1 is that, we get an increasing incidence of
𝛽 + 𝛼 < 𝑛2, where 𝛼 ∈ 𝜎(y). Therefore, from (5), these values of 𝛽 tend
to cause more distances lower than 𝑛2 in 𝜎(r1 · y).

2. When 𝛽 ∈ 𝜎(y), the value of Ty[𝛽] is lower than the average in the neigh-
borhood of 𝛽.

Comparing both cases considered by the lemma, we see that values
of 𝛽 = 𝛼 for some 𝛼 ∈ 𝜎(y) (Case 1) are expected to produce a lower
number of small distances in 𝜎(r1 ·x) than values of 𝛽 ̸= 𝛼 for all 𝛼 ∈ 𝜎(y)
(Case 2).

3. When 𝛽 has a large number of neighbors in 𝜎(y), the value of Ty[𝛽] tends
to be higher.

Using (4), we have that Ty[𝛽] tends to be higher when more values of
𝛼 ∈ 𝜎(y) satisfy |𝛽 − 𝛼| < 𝑛2. In fact, the lemma even helps us formalize
the neighborhood of 𝛽 as the distances 𝑑 between 𝛽 − 𝑛2 < 𝑑 < 𝛽 + 𝑛2.

We now proceed with the proof of Lemma 1.

Proof (Lemma 1). Let 𝛼1, 𝛼2 and 𝛽1, 𝛽2 be the positions of the two ones in y
and r, respectively. We can suppose without loss of generality that

𝛼2 = 𝛼1 + 𝛼 mod 𝑛, and 𝛽2 = 𝛽1 + 𝛽 mod 𝑛,

since if this is not the case, we can just swap the corresponding values.
The product r · y consists of the sum of two circular shifts of y: one by 𝛽1,

and the other of 𝛽2 positions, denoted by shift𝛽1(y) and shift𝛽2(y), respectively.
More formally

r · y = r rot(y)𝑇 = shift𝛽1(y) + shift𝛽2(y),

where

supp(shift𝛽1(y)) = {𝛼1 + 𝛽1 mod 𝑛, 𝛼2 + 𝛽1 mod 𝑛}
= {𝛼1 + 𝛽1 mod 𝑛, 𝛼1 + 𝛼 + 𝛽1 mod 𝑛},

and

supp(shift𝛽2(y)) = {𝛼1 + 𝛽2 mod 𝑛, 𝛼2 + 𝛽2 mod 𝑛}
= {𝛼1 + 𝛽1 + 𝛽 mod 𝑛, 𝛼1 + 𝛼 + 𝛽1 + 𝛽 mod 𝑛}.

Therefore the weight of r · y is at most 4, but can be lower if the supports
above share some of their entries. We consider separately the cases when 𝛼 = 𝛽
and 𝛼 ̸= 𝛽. These cases are illustrated in Figure 5.
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Fig. 5: The cases when 𝛼 = 𝛽 (left), and 𝛼 ̸= 𝛽 (right).

Case 𝛼 = 𝛽. In this case, we have:

supp(shift𝛽1(y)) = {𝛼1 + 𝛽1 mod 𝑛, 𝛼1 + 𝛼 + 𝛽1 mod 𝑛},

and

supp(shift𝛽2(y)) = {𝛼1 + 𝛽1 + 𝛼 mod 𝑛, 𝛼1 + 2𝛼 + 𝛽1 mod 𝑛}.

The supports of the shifts share the entry 𝛼1 + 𝛽1 + 𝛼 mod 𝑛. But notice
that this is the only shared entry, since the fact that 𝑛 is odd implies 𝛼1 + 𝛽1 ̸≡
𝛼1 + 𝛽1 + 2𝛼 mod 𝑛. Then, summing the shifts of y we get

supp(r · y) = {𝛼1 + 𝛽1 mod 𝑛, 𝛼1 + 2𝛼 + 𝛽1 mod 𝑛}.

Therefore, using the facts that 𝛼 ≤ ⌊𝑛/2⌋ and 𝑛 is odd, we get

𝜎(r · y) = {dist𝑛(𝛼1 + 𝛽1 mod 𝑛, 𝛼1 + 2𝛼 + 𝛽1 mod 𝑛) : 1}
= {dist𝑛(0, 2𝛼 mod 𝑛) : 1}
= {dist𝑛(0, 2𝛼) : 1}.

Case 𝛼 ̸= 𝛽. We begin by showing that the supports of the shifts do not share any
entry. It is clear that 𝛼1 + 𝛽1 is not equivalent to 𝛼1 + 𝛽1 + 𝛽 nor 𝛼1 + 𝛼 + 𝛽1 + 𝛽
(mod𝑛) since 1 < 𝛼, 𝛽 ≤ (𝑛 − 1)/2. The same can easily be seen for 𝛼1 + 𝛼 + 𝛽1.

Therefore, spectrum of r · y consists of the following distances.

1. dist𝑛(𝛼1 + 𝛽1, 𝛼1 + 𝛽1 + 𝛽) = dist𝑛(0, 𝛽) = 𝛽.
2. dist𝑛(𝛼1 + 𝛽1, 𝛼1 + 𝛼 + 𝛽1) = dist𝑛(0, 𝛼) = 𝛼.
3. dist𝑛(𝛼1 + 𝛽1, 𝛼1 + 𝛼 + 𝛽1 + 𝛽) = dist𝑛(0, 𝛼 + 𝛽).
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4. dist𝑛(𝛼1 + 𝛽1 + 𝛽, 𝛼1 + 𝛼 + 𝛽1) = dist𝑛(𝛽, 𝛼) = dist𝑛(0, 𝛼 − 𝛽) = |𝛼 − 𝛽|.
5. dist𝑛(𝛼1 + 𝛽1 + 𝛽, 𝛼1 + 𝛼 + 𝛽1 + 𝛽) = dist𝑛(0, 𝛼) = 𝛼.

6. dist𝑛(𝛼1 + 𝛼 + 𝛽1, 𝛼1 + 𝛼 + 𝛽1 + 𝛽) = dist𝑛(0, 𝛽) = 𝛽.

Counting the multiplicities of these distances, we get the desired result. ⊓⊔

5.2 Probabilistic Analysis of the Key Reconstruction Algorithm

In this section, we first analyze our randomized variant of the key reconstruction
algorithm, given as Algorithm 3 in Section 4.1. We then compare it to Guo’s et
al. recursive algorithm, described as Algorithm 1 in the end of Section 2.

In each iteration, the algorithm performs a random walk down the search
tree, starting from the root {0, 𝑠}, corresponding to ℓ = 2, and ending in one of
its leaves. Therefore, for the algorithm to succeed in finding y, it has to choose,
in each level of the search, an element in supp(y).

Let 𝑠 be a distance in 𝜎(y). Suppose the search is at level ℓ, and the algorithm
has chosen, until now, the elements 𝑉ℓ = {𝑣1 = 0, 𝑣2 = 𝑠, . . . 𝑣ℓ}, all in the
support of y. Let 𝛤ℓ be the set of possible choices at level ℓ, then

𝛤ℓ = {𝑝 ∈ ({0, . . . , 𝑛 − 1} − 𝑉ℓ) : dist𝑛(𝑝, 𝑣) /∈ 𝐷 for all 𝑣 ∈ 𝑉 } .

We now have exactly 𝑤 − |𝑉ℓ| good choices for the next level, which gives us

Pr (𝑣ℓ+1 ∈ supp(y) | 𝑉ℓ ⊂ supp(y)) = 𝑤 − |𝑉ℓ|
|𝛤ℓ|

= 𝑤 − ℓ

|𝛤ℓ|
.

Remember that the spectrum recovery algorithm can find either y or mirror(y),
and both are of interest to the attacker. Therefore, we can write the probability
that the algorithm successfully finds the key as

Pr(Success) = 2
𝑤−1∏︁
ℓ=2

𝑤 − ℓ

|𝛤ℓ|
,

where the product starts at level ℓ = 2 since the search begins with 𝑉2 = {0, 𝑠},
and it ends at level ℓ = 𝑤 − 1 because this is the last level in which a choice is
made. The factor 2 comes from the mirror test.

Unfortunately, it is not easy to compute the distribution of |𝛤ℓ|, because of
the dependency between distances in 𝐷 and elements in 𝑉ℓ. However, we can
approximate its expected value using an argument similar to the one used by
Guo et al. [12]. Let 𝛼 be the probability that a distance is not in 𝐷, that is
𝛼 = 1 − |𝐷|/⌊𝑛/2⌋. At level ℓ, there are 𝑤 − ℓ choices that are in supp(y), and ℓ
positions already in 𝑉ℓ. For the other 𝑛 − 𝑤 positions that are not in the support
of y, we expect a fraction of 𝛼ℓ of them to have survived the sieves of each level.
Therefore, we have

E |𝛤ℓ| ≈ (𝑛 − 𝑤)𝛼ℓ + 𝑤 − ℓ.
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We define the work factor WFRand of this algorithm as the expected num-
ber of paths it needs to explore until it finds the secret key. Then, using the
approximation above, its value is

WFRand = 1
Pr(Success)

≈ 1
2

𝑤−1∏︁
ℓ=2

(𝑛 − 𝑤)𝛼ℓ + 𝑤 − ℓ

𝑤 − ℓ
= 1

2

𝑤−1∏︁
ℓ=2

(︂
(𝑛 − 𝑤)𝛼ℓ

𝑤 − ℓ
+ 1

)︂
.

Looking at the term in each level ℓ, they appear to be lower than the
corresponding ones for Guo’s et al. algorithm. However, just looking at the
expressions, it is not clear how they compare.

To better understand how they compare, consider Figure 6, which shows
a concrete comparison of the work factors for both algorithms when the input
𝐷 has an increasing number of distances outside the spectrum. We considered
parameters for three HQC variants. Since the range of |𝐷| varies according to the
parameters 𝑛 and 𝑤, we normalized its value with respect to the average of the
total number of distances outside the spectrum, denoted by 𝛥. To estimate 𝛥 for
each pair (𝑛, 𝑤), we generated 1000 different random vectors and computed the
average number of distances outside the spectrums. We can see that the work
factor of the randomized algorithm is typically more than 3 orders of magnitude
lower than Guo’s et al. [12] recursive one.
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Fig. 6: Comparison between Guo’s et al. [12] key reconstruction algorithm and our
randomized variant with respect to the expected number of paths until the secret
key is found. For each set of parameters (𝑛, 𝑤) the value of |𝐷| is normalized
using the average number of distances outside the spectrum, denoted by 𝛥.
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6 Experimental Results

In this section, we present our results for the timing attack against the Basic-I
parameters of the HQC. We consider the two parts of the attack separately.
First we run experiments on the key reconstruction algorithm to find out how
much information on the spectrum it needs to run efficiently. We then run
simulations to estimate how many decryptions timings an attacker needs to
perform to be able to reconstruct the key. The source code and data are available
at www.ime.usp.br/~tpaiva.

6.1 Performance of the Key Reconstruction Algorithm

We want to determine how many entries outside the spectrum of the secret vector
y the attacker needs to know for the key reconstruction algorithm to efficiently
reconstruct the vector. In other words, we are interested in how large the set 𝐷
needs to be. Figure 6 gives us a hint on this matter, but it does not give us a
concrete estimation of the key reconstruction algorithm’s performance.

Table 2 shows the performance of both key reconstruction algorithms, the
GJS and our randomized variant, when given sets 𝐷 of different sizes for the
Basic-I HQC parameters. For each considered size for the set 𝐷, we generated 10
random secret keys and considered 𝐷 as a random set of |𝐷| distances outside the
spectrum. The distance 𝑠 was selected at random from the secret key spectrum.
For a more clear interpretation of the results, we considered, in the second column,
the approximate average number 𝛥 = 9104 of distances not in the spectrum, to
normalize the values |𝐷|. We then ran C implementations of the algorithms with
parameters 𝐷 and 𝑠. This experiment was performed on an Intel i7-8700 CPU
at 3.20GHz, using its 12 hyperthreads.

Table 2: Performance of the key reconstruction algorithms when input 𝐷 has
different sizes, for the Basic-I HQC parameters.

Randomized variant of

the GJS reconstruction algorithm

GJS reconstruction

algorithm

|𝐷| |𝐷|/𝛥 WFRand
Median of the
number of paths

Median of the
CPU time (s)

Median of the
CPU time (s)

9104 100% 28 63 0.51 0.98
8648 95% 99 80 0.51 10.78
8192 90% 407 232 0.50 772.64
7736 85% 1957 1714 0.75 6801.10
7280 80% 11394 9995 1.96 -
6824 75% 83670 54721 10.02 -
6368 70% 816671 365604 75.63 -
5912 65% 11355108 8472060 2767.90 -
5456 60% 246873607 - - -

www.ime.usp.br/~tpaiva
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We can see that our randomized algorithm performs much better than Guo’s
et al. [12] one. This not only implies that the randomized algorithm allows faster
key reconstruction, but also that it allows the attacker to recover the key with
less interaction with the secret key holder. The estimates for the number of
paths WFRand appear to be sufficiently accurate for our purposes, with only a
minor discrepancy when 𝐷/𝛥 = 100% that happens because of the concurrent
hyperthreads. From 𝐷/𝛥 = 60% down, the randomized algorithm starts taking
too long to finish. Therefore, we consider that we are able to efficiently reconstruct
the key when 𝐷/𝛥 ≥ 65%.

6.2 Communication Cost

We now analyze how many decryption challenges an attacker needs to send to
the secret key holder for a successful attack. In this paper, we only considered
the Basic-I HQC parameters, but this experiment can easily be extended for the
other parameters.

For the analysis, 10 secret keys were generated at random, and for each of
them we ran the spectrum recovery algorithm for 𝑀 = 700 million challenges. For
each number challenges 𝑖, consider the quality of the decryption time estimates
T𝑖

x and T𝑖
y, given by

Quality(T𝑖
x) = max

{︀
𝜇 : BuildD(T𝑖

x, 𝜇) ∩ 𝜎(x) = ∅
}︀

, and
Quality(T𝑖

y) = max
{︀

𝜇 : BuildD(T𝑖
y, 𝜇) ∩ 𝜎(y) = ∅

}︀
,

where BuildD is the algorithm described in the end of Section 4.1. For the
BuildD procedure, we considered the window size 𝜂 = 11, which was obtained
by the independent simulation described in the end of Section 4.1.

Based on the results from the previous section, we consider that the key
reconstruction algorithm can efficiently recover x or y, when either Quality(T𝑖

x)
or Quality(T𝑖

y) is greater than 5912, correspondingly.
Figure 7 shows the result of the experiment. We can see that with about 400

million of challenges, efficient key reconstruction is possible. After 600 million
challenges, almost all distances outside the spectrum can be correctly identified.

7 Discussion on Countermeasures

The most obvious countermeasure against this timing attack is to use constant-
time BCH decoders [24, 25]. However, these decoders were proposed recently
and they are not well studied yet. As such, their security against other types of
side-channel attacks needs further investigation.

Walters and Sinha Roy [25] studied constant-time BCH decoders in the
context of LAC [16]. Their decoder yields overheads between 10% and 40% when
used in LAC. The optimized decoder proposed by Wafo-Tapa et al. [24] can
yield reasonable overheads, between 3% and 11%, for the different security levels
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Fig. 7: Number of decryption timings an attacker needs to perform before the
key can be successfully reconstructed. A confidence level of 95% was considered
for the error bars.

provided by the HQC instances. Hopefully, with further study on constant-time
BCH decoders, lower overheads can be achieved.

If the slowdown factor is a problem, one could try to add a number of errors
to the partially decoded vector right before the BCH decoding procedure. Next,
we explain the rationale behind this idea. Consider the vector c′ = mG+x · r2 +
r1 ·y+e. When applying the repetition code decoder to each block of 𝑛2 elements
of c′, we can estimate the probability of a repetition decoding error from the
number of ones (or zeros) in the block. For example, if the number of 1’s and 0’s
in a block are similar (both close to 𝑛2/2), then the probability of a decoding
error to occur is high. This might make it possible to estimate, within some
statistical margin, the number of errors that the repetition code decoder has
left for the BCH decoder. Then, one can add intentional errors to the partially
decoded vector c′′ = 𝛹2(c′), for it to have a weight 𝑊 , where 𝑊 is a constant
error weight which the BCH decoder can correct. Further study and a careful
probabilistic analysis is needed to understand if a decoder using this idea is
secure.

8 Conclusion

In this paper, we present the first timing attack on the HQC encryption scheme.
The attack depends on the choice of the parameter code 𝒞 and its decoder
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implementation. We show that the attack is practical, requiring about 400
million decryption timings to be performed. This makes the use of constant-time
decoders for 𝒞 mandatory.

We discuss possible countermeasures against this timing attack, with the
preferred one being to use constant-time BCH decoders [25]. However, further
study is needed for the secure and efficient adoption of these decoders. Other
solution would be to use codes for which efficient constant-time decoders are
known. One interesting future work would be to find alternatives for the code 𝒞
that admit compact keys and efficient constant-time decoders, and for which we
can prove negligible decryption failure probability.
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