
VOL. E101-A NO. 10
OCTOBER 2018

The usage of this PDF file must comply with the IEICE Provisions
on Copyright.
The author(s) can distribute this PDF file for research and
educational (nonprofit) purposes only.
Distribution by anyone other than the author(s) is prohibited.

1676
IEICE TRANS. FUNDAMENTALS, VOL.E101–A, NO.10 OCTOBER 2018

PAPER
Improving the Efficiency of a Reaction Attack on the QC-MDPC
McEliece∗,∗∗

Thales BANDIERA PAIVA†a), Nonmember and Routo TERADA†b), Member

SUMMARY The QC-MDPC McEliece scheme was considered one
of the most promising public key encryption schemes for efficient post-
quantum secure encryption. As a variant of the McEliece scheme, it is based
on the syndrome decoding problem, which is a hard problem from Coding
Theory. Its key sizes are competitive with the ones of the widely used RSA
cryptosystem, and it came with an apparently strong security reduction.
For three years, the scheme has not suffered major threats, until the end of
2016, at the Asiacrypt, when Guo, Johansson, and Stankovski presented
a reaction attack on the QC-MDPC that exploits one aspect that was not
considered in the security reduction: the probability of a decoding failure to
occur is lower when the secret key and the error used for encryption share
certain properties. Recording the decoding failures, the attacker obtains
information about the secret key and then use the information gathered to
reconstruct the key. Guo et al. presented an algorithm for key reconstruction
for which we can point two weaknesses. The first one is that it cannot
deal with partial information about the secret key, resulting in the attacker
having to send a large number of decoding challenges. The second one is
that it does not scale well for higher security levels. To improve the attack,
we propose a key reconstruction algorithm that runs faster than Guo’s et
al. algorithm, even using around 20% less interactions with the secret key
holder than used by their algorithm, considering parameters suggested for
80 bits of security. It also has a lower asymptotic complexity which makes
it scale much better for higher security parameters. The algorithm can be
parallelized straightforwardly, which is not the case for the one by Guo et al.
key words: QC-MDPC McEliece, post-quantum cryptography, reaction
attack

1. Introduction

In 1994, Shor [1] published two algorithms for quantum com-
puters that solve efficiently two critical problems in modern
cryptography: the discrete logarithm and integer factoriza-
tion problems. With the engineering progress on building
larger quantum computers, the main cryptographic schemes
used today become more vulnerable. This seeds the quest
for finding cryptographic primitives that do not rely on the
hardness of these problems, which is an active research area
known as post-quantum cryptography [2]. The need for post-
quantum secure standards is recognized by the National In-
stitute of Standards and Technology (NIST), which is calling
for proposals [3].

Manuscript received September 22, 2017.
Manuscript revised March 22, 2018.
†The authors are with the Dept. of Computer Science, Universi-

dade de São Paulo, São Paulo State, Brazil.
∗This work was supported by CAPES grant number

00.889.834/0001-08.
∗∗This work was supported by FAPESP grant number

2015/01587-0, CNPq grant number 442014/2014-7.
a) E-mail: tpaiva@ime.usp.br
b) E-mail: rt@ime.usp.br

DOI: 10.1587/transfun.E101.A.1676

The McEliece scheme [4] relies on the syndrome de-
coding problem, which is known to be NP-hard [5]. This
scheme was developed in the same decade as the RSA [6],
but it was put aside because the public key size of around
100kB, for a security level of 100 bits, were intractably large
at that time. Despite its huge keys, both encryption and de-
cryption are more efficient than the corresponding operations
of the RSA and elliptic curves [7] schemes.

In the McEliece scheme, Alice’s secret key is a linear
code G capable of correcting t errors, for which Alice knows
an efficient decoder. Her public key is the generator matrix of
G, possibly scrambled, in such a form that it is unfeasible for
an attacker to use this matrix for building an efficient decoder
for G. To send Alice a message m, we encode m using
her public key and add t intentional errors to this encoding,
giving us c. We now can safely send her c, because Alice is
the only one that has an efficient decoder for G, which she
uses to obtain m from c.

One of the post-quantum cryptography research trends
is to lower the public key sizes of the McEliece scheme by
choosing families of error correcting codes that allow com-
pact representation, without compromising security. Origi-
nally McEliece suggested the use of binary irreducible Goppa
codes [8], which are still considered secure, at the expense
of huge keys. The majority of other proposed code families
rely on a quasi-cyclic or quasi-dyadic structure for compact
representation [9]–[12]. Although they obtain compact keys,
most of them were shown insecure [13]–[15].

In 2013, a new variant of the McEliece scheme that
uses quasi-cyclic moderate-density parity-check codes (QC-
MDPC) was presented by Misoczki et al. [16]. This variant
promises extremely compact public keys of only 4801 bits
for a security level of 80 bits, and has an apparently strong
security reduction. The European initiative PQCRYPTO,
which supports the development of post-quantum cryptog-
raphy, considered this variant as a serious candidate for a
post-quantum secure standard in the 2015 revision of its
paper with recommendations for post-quantum secure sys-
tems [17].

Until the end of 2016, the QC-MDPC has not suffered
critical attacks. However at Asiacrypt 2016 Guo, Johansson,
and Stankovski [18] present an efficient reaction attack for
key recovery on the QC-MDPC. This attack is based on the
fact that QC-MDPC decoders can fail. When a decoding fail-
ure occurs, the receiver asks the sender to resend the message,
which hopefully, will be encrypted with an error pattern that
the decoder will be able to correct. The main observation of

Copyright c© 2018 The Institute of Electronics, Information and Communication Engineers

BANDIERA PAIVA and TERADA: IMPROVING THE EFFICIENCY OF A REACTION ATTACK ON THE QC-MDPC MCELIECE
1677

the authors is that the probability that the decoder fails when
correcting the error e is significantly smaller when e and the
secret key share some certain properties.

The proposed attack is done in two parts. In the first
part, an attacker Eve sends a number of ciphertexts to her
target Alice, and records for which error patterns the decoder
failed or succeeded, to obtain some information, which they
called the spectrum, about Alice’s secret key. The second
part is the reconstruction part, where Eve, without interacting
any further with Alice, tries to build Alice’s secret key with
the information gathered in the first part.

We address the following three problems of Guo’s et al.
reconstruction algorithm:

1. it cannot recover the secret key when the information
about it is incomplete;

2. the number of operations needed to find the key grows
very fast with respect to the security level;

3. it is recursive in nature, and it is not obvious how to
parallelize it, neither how much one gains by doing it.

Our proposed algorithm is iterative, it can be paral-
lelized straightforwardly, and it is based only on linear al-
gebra over F2. Our algorithm is able to deal with less infor-
mation, therefore an attacker needs only to perform a lower
number of decoding trials. This is particularly important
because one way to protect the scheme against the reaction
attack is to limit the lifetime of a secret key, which must be
determined as a function of the number of decoding trials
that are sufficient for a successful attack. The algorithm also
has lower asymptotic complexity, which makes it scale a lot
better for higher security parameters.

Upon preparation of this paper, it came to our knowl-
edge that the linear relation which we exploit was also used
by Rossi et al. [19] in their recent paper on a side-channel
attack against QcBits [20]. However our algorithm is signif-
icantly different because it uses more efficiently the infor-
mation given by the reactions of the secret key holder in the
first part of the attack. This not only makes it more efficient,
but it also allows the algorithm to recover the key with less
interaction with the secret key holder. Further, our analysis
of the algorithm performance is more detailed.

This paper is organized as follows. Section 2 presents
some preliminary concepts. A review of the QC-MDPC
McEliece is done in Sect. 3, which ends with a discussion
on the performance of the attack by Guo et al. [18]. The
presentation of our contributions starts in Sect. 4, where our
proposed reconstruction algorithm and its underlining ideas
are shown. The probabilistic analysis of the proposed algo-
rithm is in Sect. 5. Sect. 6 presents the experimental results.
The concluding remarks are in Sect. 7.

2. Preliminaries

We review some concepts from Coding Theory.

Definition 1 (Linear codes): A binary [n, k]-linear code is

a k-dimensional linear subspace of Fn
2.

Definition 2 (Generator and parity-check matrix): LetC be
a binary [n, k]-linear code. If C is the linear subspace spanned
by the rows of a matrix G of Fk×n

2 , we say that G is a genera-
tor matrix of C. Similarly, if C is the kernel of a matrix H of
F(n−k)×n

2 , we say that H is a parity-check matrix of C.
Since we are interested in codes defined by their parity-

checks, we usually consider the co-dimension r = n − k of
the code, instead of its dimension k.

Definition 3: The Hamming weight of a vector v, denoted
by weight(v), is the number of its non-null entries.

Definition 4: The circular distance between the indexes i
and j in a vector of length r is

distr(i, j) =

|i − j| if |i − j| < br/2c,
r − |i − j| otherwise.

We next define the spectrum of a vector, which is a
crucial concept for the rest of the paper. The importance
of the spectrum for the attack comes from the fact that it
is precisely the spectrum of the key that can be recovered
by a reaction attack. Intuitively, the spectrum of a binary
vector v is the set of circular distances that occur between
two non-null entries of v. Note that spectrum of a vector is
invariant for its circular shifts.

Definition 5: Let v = [v1, v2, . . . , vr] be an element of Fr
2.

Then the spectrum of v is the set

σ(v) = {distr(i, j) : i , j, vi = 1, and v j = 1}.

When describing the proposed algorithm, it is useful to
consider the circular shift of a set of indexes, defined next.

Definition 6: Let Z ⊂ [r] = {1, 2, . . . , r} be a set of possible
indexes of a vector in Fr

2. Then the circular shift of Z by p
positions is the set

Z(p) = {i + p mod r : i ∈ Z}.

3. The QC-MDPC McEliece

3.1 The QC-MDPC McEliece

In 2013, a new variant of the McEliece scheme was proposed
by Misoczki et al. [16]. This variant uses quasi-cyclic codes
with moderate density parity-check matrices, in contrast with
Gallager’s low density parity-check codes (LDPC) [21]. The
idea is to increase the density of the parity-check matrix to
make the code stronger against attacks based on the search
for low weight codewords [22], but keeping a sufficiently
low density so that efficient LDPC decoders can still be used.

Definition 7 (QC-MDPC): An (n, r, w)-QC-MDPC code is
a quasi-cyclic linear code of length n, co-dimension r which
divides n, that has a sparse parity-check matrix H with row
weights w = O

(√
n log n

)
, and formed by n0 = n/r cyclic

1678
IEICE TRANS. FUNDAMENTALS, VOL.E101–A, NO.10 OCTOBER 2018

Table 1 Suggested QC-MDPC parameters for some security levels [16].

Security n0 n r w t Key size in bits

80 2 9602 4801 90 84 4801
80 3 10779 3593 153 53 7186
80 4 12316 3079 220 42 9237

128 2 19714 9857 142 134 9857
128 3 22299 7433 243 85 14866
128 4 27212 6803 340 68 20409

256 2 65542 32771 274 264 32771
256 3 67593 22531 465 167 45062
256 4 81932 20483 644 137 61449

blocks.

The parameters suggested by Misoczki et al. [16] are
shown in Table 1. The suggested parameters for the QC-
MDPC McEliece entail extremely small keys when compared
with the key size of hundreds of megabytes for the original
McEliece scheme [23].

Until the end of 2016, the QC-MDPC McEliece was
considered one of the most promising candidates for efficient
code based cryptography. The lack of algebraic structure in
the code, and the apparently strong security reduction of the
scheme, suggested that it would be hard to compromise the
security of the QC-MDPC codes. One of the main initiatives
for post-quantum cryptography, the European PQCRYPTO,
considered the QC-MDPC McEliece as a strong candidate
for long-term secure communication [17].

We now show the algorithms for key generation, en-
cryption, and decryption. The encryption and decryption
algorithms can be adapted to support CCA2 security, for
example, using one of Kobara and Imai conversions [24].

3.1.1 Key Generation

Suppose we want to generate keys for the QC-MDPC
McEliece with the security level λ. Let n0, n, r, and w be
parameters supporting this security level λ, which can be
taken from Table 1.

First generate a random QC-MDPC code by choosing
at random a vector h from Fn

2, such that the weight of h is w.
Break h into n0 = n/r equal parts h = [h0 |h1 | . . . |hn0−1].
Then build the parity-check matrix H as

H =
[
H0 |H1 | . . . |Hn0−1

]
,

where each Hi is the cyclic matrix with hi as its first row.
It is required that the block Hn0−1 is invertible. If it is not,
restart the key generation procedure by picking another h at
random.

We now build the generator matrix as

G =


I

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
H−1

n0−1 ·H0

)T

(
H−1

n0−1 ·H1

)T

...(
H−1

n0−1 ·Hn0−2

)T


, (1)

and one can check that GHT = 0 with a simple evaluation.
Since each Hi is cyclic, each product

(
H−1

n0−1Hi

)T
is also

cyclic.
The secret key is the matrix H and the public key is the

matrix G. Both of the matrices admit compact representation
because of their cyclic blocks.

Note that if one attacker can recover the cyclic matrix
Hn0−1, which is invertible by construction, then she can re-
cover all the other cyclic matrices Hi using simple linear
algebra. In fact, since each matrix Hi has high rank with high
probability, if an attacker can recover any cyclic matrix H j,
she might be able to recover Hn0−1 by finding its first line
hn0−1, which is a low weight solution of the linear equation

hn0−1B j = h j,

where h j is the first line of H j, and B j = H−1
n0−1H j is known.

As such, it is desirable that the hardness to recover each block
be approximately the same. This implies that the weights of
the vectors hi must not differ too much, which is easily done
by fixing the weight of each block as ŵ = w/n0.

3.1.2 Encryption

Let the vector m of F(n−r)
2 be the message to be encrypted.

First encode the word m obtaining ĉ = mG. Then add a
random vector e of weight t to ĉ to get the ciphertext c = ĉ+e.

3.1.3 Decryption

Since the ciphertext is just a corrupted codeword, decrypting
c is equivalent to correct the errors from c. This is achieved
with iterative decoders [21], which can be of two types: based
on either hard or soft decision. Soft decision based decoders
have better error correction capability, but are less efficient. It
is usual to decode QC-MDPC codes with hard decision based
decoders, because the main problem here is not efficient com-
munication, but secure communication. Therefore one does
not need to correct a lot of errors, but only enough to make
the scheme secure. These decoders are called bit-flipping
decoders, and some of its variants were studied by Mau-
rich et al. [25] in terms of performance and error correction
capability.

3.2 Reaction Attack

The reaction attack is based on the observation that the prob-
ability of a failure to occur when decoding a vector c = ĉ + e
is lower when the spectrums of the blocks of h are similar
to the corresponding spectrums of the blocks of the error e.

BANDIERA PAIVA and TERADA: IMPROVING THE EFFICIENCY OF A REACTION ATTACK ON THE QC-MDPC MCELIECE
1679

When a decoding failure occurs, the receiver asks the sender
to resend the message. Therefore the attacker knows when
a failure occurs, and by sending decoding challenges to the
secret key holder, she can get some structural information
about the key.

The attack is done in two parts. In the first, the attacker
collects information about the key by sending challenge ci-
phertexts to the secret key holder Alice, and recording Alice’s
reactions when she tries to decode these ciphertexts. The
first part is the only part where the attacker needs to interact
with the secret key holder. In the second part, the attacker
tries to reconstruct the key using the information previously
collected. These two parts are described next.

3.2.1 Spectrum Recovery

This is the part where the reactions of the receiver are ex-
ploited. Let Alice be the secret key holder who we want to
attack. The idea is to send Alice valid ciphertexts, and record
when she could not decode the challenge. Since the attacker
generated all ciphertexts, then, for each one of them, he
knows the error e = [e0 | e1] that was added to the codeword,
and thus he can compute both σ(e0) and σ(e1). Unfortu-
nately, CCA2 conversions, such as the ones by Kobara and
Imai [24], do not protect the algorithm against this recovery
procedure because each challenge ciphertext is valid.

A slightly modified version of Guo’s et al. spectrum
recovery algorithm is given by Algorithm 1. The spectrum
recovery procedure by Guo et al. only recovers the spectrum
of h1 because their reconstruction algorithm gains nothing
by also considering the spectrum of h0. Guo et al. chose
to recover h1 because, from it, one can completely recover
the secret key by using simple linear algebra, as discussed
in the end of Sect. 3.1.1. In contrast, our reconstruction
algorithm uses information on both blocks of h, therefore
the presented spectrum recovery algorithm simultaneously
recovers information on the spectrums of both h0 and h1.
Further, simultaneously recovering both spectrums does not
affect significantly the complexity of the spectrum recovery
algorithm because the cost of the decryption dominates the
costs involved in estimating the spectrums.

To study how large should be the number of decoding
trials M for a successful attack, we introduce the concept of
d-exclusion obtained by the spectrum recovery algorithm. It
is simply the maximum number d of distances which we can
consider outside of the spectrum based only on the recov-
ered vector of estimated probabilities of failure. The formal
definition is given next.

Definition 8: We say that the output p0 of the spectrum
recovery algorithm obtains a d-exclusion for the spectrum of
a vector hi if there exists a number p ∈ (0, 1) such that

1. p0[d] ≥ p only if d < σ(hi);

2. #{p0[d] ≥ p} = d.

When d = br/2c − |σ(hi)|, that is, d is the number of

Algorithm 1: Estimating the probabilities of error
for distances in σ(h0) and σ(h1)

Data: n, r, w, t parameters of the QC-MDPC code
D target’s decoder reaction oracle (1 for success, 0 for fail)
M number of decoding challenges

Result: p0,p1 estimated probabilities of error for distances in
σ(h0) and σ(h1)

1 begin
2 a0,b0, a1,b1 ← zero-initialized arrays with br/2c entries

each
3 for each decoding trial i = 1, 2, . . . ,M do
4 c← a random ciphertext encrypted with error

e = [e0 | e1] of weight t
5 v = D(c)
6 for each distance d in σ(e0) do
7 a0[d]← a0[d] + v
8 b0[d]← b0[d] + 1
9 for each distance d in σ(e1) do

10 a1[d]← a1[d] + v
11 b1[d]← b1[d] + 1
12 p0,p1 ← zero-initialized array with br/2c positions
13 for each distance d in {1, 2, . . . , br/2c} do
14 p0[d]← a0[d]/b0[d]
15 p1[d]← a1[d]/b1[d]
16 return p0 and p1

Fig. 1 Histogram of failure rates for 200M decoding trials.

Fig. 2 Histogram of failure rates for 30M decoding trials.

distances outside the spectrum of hi, we say that p0 obtains
total exclusion.

One of the weaknesses of the reconstruction algorithm
by Guo et al., which we discuss in Sect. 3.2.2, is that its
efficiency depends on an almost total exclusion. As such,
the number of decoding challenges M must be set so that
it occurs. Guo et al. empirically evaluated that, for 80 bits
security parameters, total exclusion usually occurs for val-
ues of M between 203 million and 356 million decoding
challenges. Figure 1 illustrate a total exclusion, while Fig. 2
shows the result of 30 million decoding challenges, where

1680
IEICE TRANS. FUNDAMENTALS, VOL.E101–A, NO.10 OCTOBER 2018

it is not possible to clearly classify a distance as inside or
outside the spectrum.

When total exclusion for h1 occurs, the authors sug-
gest the use of some clustering procedure for gathering the
distances inside σ(h1). Then σ(h1) is passed to the recon-
struction algorithm, which is described next.

3.2.2 Key Reconstruction

Given σ(h1), the reconstruction algorithm by Guo et al. is
a simple pruned depth-first search in a tree. As such, it is
recursive, and it is not obvious how one should parallelize it.
Its description is given as Algorithm 2.

Guo’s et al. reconstruction algorithm as presented as-
sumes that one knows the weight ŵ of h1, which might not be
the case for a real attacker. But one can adapt this algorithm
to consider an interval of weights for h1. Guo et al. consider
ŵ = w/n0, since making the weights of the cyclic blocks
equal is a secure approach for generating the secret key.

Algorithm 2: Guo’s et al. key recovery algorithm
Data: n, r, w, t parameters of the QC-MDPC code

ŵ = w/n0 the weight of h1
σ(h1) the spectrum of h1
V the partially recovered support of a shift of h1 (initially
set to {1, s1 + 1}, where s1 ∈ σ(h1))

Result: V the support of some shift of h1, or ⊥ if σ(h1) is an
invalid spectrum

1 begin
2 if |V | = ŵ then
3 if V is the support of a shift of h1 then
4 return V
5 else
6 return ⊥
7 for each position j = 2, . . . , r which are not in V do
8 if distr(v, j) ∈ σ(h1) for all v in V then
9 Add j to V

10 ret← recursive call with the updated set V
11 if ret ,⊥ then
12 return V
13 Remove j from V
14 return ⊥

We explain how the test in line 3 can be done. We want
to test if a vector v of weight ŵ and support V is a shift of
h1. Consider B = (H1

−1H0)T the right part of the public
matrix G. Compute the vector u = (B−1)T v. If the weight of
u is ŵ, then there are two possibilities. One, which has high
probability, is that v is a shift of h1 and u is a shift of u by
the same number of positions. The other possibility is that
we can use [v |u] to build an alternative moderate density
quasi-cyclic parity-check matrix for the secret code. The key
found is valid in both cases.

The main argument by Guo et al. for the efficiency of
their algorithm is that unfruitful branches are pruned rela-
tively early in the search. More specifically, if the position
of a small number of non-null entries in the first half of h1
are known, then all the other positions in the support of h1

are easily determined.
Following Guo’s et al. notation, we now describe their

analysis for estimating the number Γ of maximum paths in
the search tree to be explored until the key is found. Let α
be the fraction of the br/2c possible distances that belong to
the spectrum σ(h1), that is α = |σ(h1)|/br/2c. The search
starts in the root, at level 0, which contains the positions 1
and s1 +1. Then it is expected that approximately |σ(h1)|α of
the possible positions j in the first half of h1, that is j < r/2,
are such that both distr(j, 1) and distr(j, s1 + 1) are in σ(h1).
For each new level in the search tree, it is expected that
a fraction α of the possible positions in the previous level
survive the sieve imposed by line 8. Then at level ` in the
search tree, we expect to have around |σ(h1)|α` = br/2cα`+1

nodes. Denote by φ the level for which each node in level φ
has an expected number of child nodes lower than or equal to
1, that is φ = min{` : br/2cα`+2 ≤ 1}. Then, Guo’s et al. [18]
estimate on the number of possible paths is

Γ =

φ∏
`=1

|σ(h1)|α` =

φ∏
`=1

(br/2cα)α` = br/2cφαφ(φ+3)/2.

Guo et al. did not present a detailed analysis of the prac-
tical performance of their algorithm, they just state that it
typically succeeds in a few minutes. However in the Asi-
acrypt presentation [26] of their work, Guo shows that their
algorithm runs in 144 seconds on average, and it runs in 49
minutes in the worst case, for the security level of 80 bits
using n0 = 2 cyclic blocks. They did not consider security
levels higher than 80 or other values of n0.

The estimates on the number of paths Γ for different
security levels, and supposing that the complete spectrum
of h1 is known, are shown in Table 2. For each line of the
table, the parameters α were obtained by simulations by
considering the lengths of the spectrums of 5000 different
vectors of length r and weight ŵ generated at random. We
can see that the number of paths grows significantly as the
security level increases or higher values of n0 are considered.
This can make the use of Guo’s et al. algorithm impractical
for security levels higher than 80 and n0 > 2.

As observed by Fabšič et al. [27], given a vector v with
support V = { j0, j1, . . . , jŵ−1}, for some ji, then one can

Table 2 Estimates on the maximum number of paths Γ in the search tree
used by Guo’s et al. algorithm for different security parameters.

Security n0 r ŵ = w/n0 α φ Γ

80 2 4801 45 0.340528 6 225.41

80 3 3593 51 0.513207 10 245.55

80 4 3079 55 0.625694 14 267.73

128 2 9857 71 0.398296 8 239.70

128 3 7433 81 0.585685 14 274.19

128 4 6803 85 0.654577 18 295.62

256 2 32771 137 0.435026 10 261.95

256 3 22531 155 0.655827 21 2129.28

256 4 20483 161 0.718417 26 2166.50

BANDIERA PAIVA and TERADA: IMPROVING THE EFFICIENCY OF A REACTION ATTACK ON THE QC-MDPC MCELIECE
1681

build a vector with the same spectrum as v, namely the vector
with support V̂ = { j0, j1, r − jŵ−1 + j1, r − jŵ−2 + j1, . . . , r −
j2 + j1}. Suppose a valid support V with ŵ elements is found
but turns out to be an invalid key in the check of line 3 of
Algorithm 2. Then one can build another set V̂ as described
above, and perform the same check of line 3 for this set V̂ .
This optimization may cut in half the number of paths Guo’s
et al. algorithm have to explore until a key is found. For the
experimental analysis of Sect. 6, our implementation of their
algorithm uses this optimization; that is why our implemen-
tation is twice as efficient than Guo’s et al. However, since
the number of paths Γ can be very large, this optimization
is not enough to make the algorithm efficient against most
of the security parameters, as indicated by our experimental
analysis in Sect. 6.

4. Our Reconstruction Algorithm

Up to this point, we analyzed the algorithm by Guo et al.
From this section on, we describe our original results. We
begin by considering the reconstruction algorithm for the
case where the number of cyclic blocks in the secret matrix
H is n0 = 2, because the exposition is simpler in this case.
We then discuss how to adapt the algorithm for the case
where n0 = 2 for n0 ≥ 3.

4.1 Case n0 = 2

Consider the public generator matrix of a QC-MDPC with
n0 = 2 given as

G =

[
I

∣∣∣∣∣ (H−1
1 ·H0

)T]
.

Let B = H−1
1 H0 be the transpose of the right block of the

public generator matrix. Our main idea is to explore the
relation h1B = h0, where h1 and h0 are corresponding lines
of the matrices H1 and H0, respectively. Let Z0 and Z1 be
sets of indexes of some of the null entries of h0 and h1,
respectively. Denote by BZ0 the matrix consisting of the
columns of B whose indexes are in Z0. Then it should be
clear that

h1BZ0 = 0.

Note that we can discard the entries of h1 whose indexes
are in Z1, if we discard the corresponding columns in BZ0 .
Let Z′1 be the complement of Z1 with respect to the possible
indexes of h1. Then

hZ′1
1 BZ0

Z′1
= 0,

where hZ′1
1 is the vector consisting of the columns of h1 whose

indexes are in Z′1, and BZ0
Z′1

is the matrix consisting of the lines

from BZ0 whose indexes are in Z′1. In other words, hZ′1
1 is

in the left kernel of the matrix BZ0
Z′1

. Then we can compute

the kernel matrix of BZ0
Z′1

and hope to find hZ′1
1 in one of its

columns. To use this in our favor, we need to solve three
problems, which we discuss next.

The first problem is that if the kernel of BZ0
Z′1

is a large
subspace, then finding a low weight vector in it can be very
difficult. To deal with it, we must find out how large must the
sets Z0 and Z1 be so that the kernel of BZ0

Z′1
consists only of

the vector h1. The answer is given in Sect. 5.1, and it is that
the kernel consists only of h1 with approximate probability
1 − 1/2|Z0 |+|Z1 |−r. Therefore we want the sum |Z0| + |Z1| to
be larger than r, but not necessarily much larger since the
probability increases fast with respect to the difference.

The second problem is to find how much information
we need about the spectrums of both h0 and h1 so that we
can build large enough sets Z0 and Z1. Let us consider σ(h0)
the spectrum of h0. Suppose we know that s0 is in σ(h0), and
we also know that the distances d1, . . . , dl are not in σ(h0).
Letting ∗ denote unknown entries, we know that there must
exist a shift of h0 which has the following format

[

s0︷ ︸︸ ︷︸ ︷︷ ︸
d1

0 ∗ . . . ∗ 1 ∗ . . . ∗ 0︸ ︷︷ ︸
d1

∗ . . . ∗ ︸ ︷︷ ︸
d1

0 ∗ . . . ∗ 1 ∗ . . . ∗ 0︸ ︷︷ ︸
d1

∗ . . . ∗].

Further, if we consider all other di, it is possible to know the
positions of a hopefully large number of zeros in this shift
of h0, which will be our set Z0. To get a distance s0 that is
in the spectrum σ(h0) with high probability, one can take
the distance with least probability of failure estimated by the
spectrum recovery algorithm. An analogous construction can
be made for Z1. In Sect. 5.2, we discuss the relation between
the number of known distances inside and outside σ(h0) and
σ(h1), and the sizes of the sets Z0 and Z1, respectively.

The third and last problem is that the positions Z0 and Z1
are built based only on circular distances. As such, there are
no guaranties that Z0 and Z1 are positions of zeros in shifts by
the same number of positions of both h0 and h1, respectively.
To deal with it, we can fix one of the sets, namely Z1, and try
iteratively, for each p = 0, 1, . . . , r − 1, to find a low weight

row in the kernel of the matrix BZ(p)
0

Z′1
, where Z(p)

0 is the set of
indexes in Z0, circularly shifted by p positions.

We now put everything together to give a full description
of our algorithm to reconstruct the key as Algorithm 3. Since
the algorithm is not recursive and uses common operations,
it is straightforward to compute its complexity.

Lemma 9: Let H = [H0|H1] be the secret matrix of an
[n, r, w]-QC-MDPC code. Let Z0 be a set of indexes of null
entries in some line of H0. Similarly, let Z1 be a set of
indexes of null entries in some line of H1. Consider Z′1 to be
the complement of Z1 with respect to all possible indexes,
that is Z′1 = [r] − Z1. Then the complexity of Algorithm 3 is

O
(
r + r|Z′1| + r

(
r + |Z0||Z′1| + |Z

′
1|

2|Z0 + Z′1| + |Z
′
1|
))
.

Further, since both |Z0| and |Z′1| are O(r), the complexity of
the attack can be simplified to O(r4).

1682
IEICE TRANS. FUNDAMENTALS, VOL.E101–A, NO.10 OCTOBER 2018

Algorithm 3: Proposed key recovery algorithm
Data: r, w parameters of the QC-MDPC code to be broken

D0 a set of distances not in the spectrum of h0
D1 a set of distances not in the spectrum of h1
s0 a distance in the spectrum of h0
s1 a distance in the spectrum of h1
B the right block of the public generator matrix

Result: h1 which is some line of the matrix H1, or ⊥ if h1 could
not be found

1 Z′1 ← {i ∈ [r] : dist(1, i) < D1 and dist(s1 + 1, i) < D1}

2 BZ′1
← rows of B whose indexes are in Z′1

3 for p = 0 to r − 1 do
4 Z0 ← {i + p mod r : dist(1, i) ∈ D0 or dist(s0 + 1, i) ∈ D0}

5 BZ0
Z′1
← columns of BZ′1 whose indexes are in Z0

6 K← left kernel matrix of BZ0
Z′1

7 if dim K = 1 then
8 v← the only row in K
9 if weight(v) ≤ w then

10 h1 ← 0 ∈ Fr
2

11 for each i = 1 to |v| do
12 h1[Z1[i]]← v[i]
13 return h1

14 return ⊥

Proof We analyze the cost of each line of Algorithm 3.
Lines 1 and 4 are O(r). The cost of building BZ′1 in line 2 is
O(r|Z′1|), and the cost of building BZ0

Z′1
in line 5 is O(|Z0||Z′1|).

The loop in line 3 performs r iterations in the worst case. The
kernel computation in line 6 is the most expensive computa-
tion, and it costs |Z′1|

2|Z′1 + Z0|. The weight computation in
line 9 costs O(r). Finally, the loop in line 11 iterates |v| = |Z′1|
times. Putting these costs together gives the desired result.

�
It is important to note that the lemma above does not say

anything about the probability of the algorithm finding the
key. It only states that the algorithm runs in O(r4), whether it
finds the key or not.

4.2 Case n0 ≥ 3

When n0 ≥ 3, the public generator matrix G is given by
Equation 1, that is

G =


I

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B0
T

B1
T

...

Bn0−2
T


,

where Bi =
(
H−1

n0−1 ·Hi

)
for each i = 0, 1, . . . , n0 − 2.

Then we can write, for each i, an equation of the form
Hn0−1Bi = Hi, where Bi is known, and we can obtain infor-
mation on the spectrums of Hn0−1 and Hi by adapting Algo-
rithm 1 to the corresponding number of blocks n0. Therefore,
we can use our algorithm to recover Hn0−1 and Hi. Once
Hn0−1 is recovered, all the other Hi blocks can be recovered

because Hi = Hn0−1Bi.
The complexity of the reconstruction algorithm when

n0 ≥ 3 is the same as when n0 = 2, that is O(r4). The weight
of each block of H when n0 ≥ 3 is slightly higher than for
n0 = 2. For example, for 80 bits of security, the weight
of each block of H is around 90/2 = 45 when n0 = 2, and
around 220/4 = 55 when n0 = 4. When the number of blocks
n0 increases, the size of r gets smaller, for the same security
level. This implies that the blocks of H are less sparse when
n0 ≥ 3 than when n0 = 2, which can impact negatively on
the probability of the key reconstruction algorithm finding
the key. This increased density is also bad for Guo’s et al.
algorithm, which has to explore a larger search tree.

Upon preparation of this paper, it came to our knowl-
edge that the linear relation h1B = h0 was also explored
by Rossi et al. [19]. However our algorithm is significantly
different than theirs, mainly because we use information on
both h0 and h1, while their algorithm uses only information
on h0. This allows our algorithm to perform better.

The next sections are to show how to estimate the prob-
ability that the attack succeeds in recovering the key, and
its relation to the size of the d-exclusion obtained by the
spectrum recovery algorithm.

5. Probabilistic Analysis

5.1 The Probability of the Attack Failing

Let Z0 and Z1 be sets of indexes, possibly shifted by the same
amount of positions, of some of the null entries of h0 and
h1. For the algorithm to run successfully, the kernel matrix
K of BZ0

Z′1
must have exactly one row. If Z0 and Z1 are indeed

positions of null entries, then K has at least one row. In other
words, we want the linear equation xBZ0

Z′1
= 0 to have no more

than one solution for non-null x.
Since the solutions of this equation impose a linear

combination of the rows of BZ0
Z′1

that must sum to 0, it is
natural to expect that this equation has fewer solutions when
BZ0

Z′1
has a large number of columns and a small number of

rows. That is, we want Z0 to be large, and Z′1 to be small,
which is equivalent to Z1 also large. We want to find how
large must these sets be for the equation to have exactly one
solution.

This is a difficult task because the matrix B = H−1
1 H0 is

inherently dependent on the sets Z0 and Z1, which are also
related to H0 and H1. In fact, this dependency is what makes
the equation always having at least one solution.

To deal with this dependency problem we suggest an
approximation that works well on practice consisting in con-
sidering BZ0

Z′1
as a random binary matrix with |Z0| columns

and |Z′1| rows, such that its kernel contains at least one vector.
Under this hypothesis, the sum of any set of rows of BZ0

Z′1
is a

random binary vector of |Z0| columns. Therefore, the proba-
bility that any linear combination of the matrix BZ0

Z′1
sums to

BANDIERA PAIVA and TERADA: IMPROVING THE EFFICIENCY OF A REACTION ATTACK ON THE QC-MDPC MCELIECE
1683

0 is 2−|Z0 |. Since there are 2Z′1 possible linear combinations
of the rows of BZ0

Z′1
, the probability that one of them is 0, that

is, the probability of the attack failing, is upper bounded by

Pr(Algorithm does not recover the key) /
2|Z1 |

′

2|Z0 |

/
2r−|Z1 |

2|Z0 |

/ 2r−|Z1 |−|Z0 |.

5.2 Finding a d-Exclusion for a High Probability of Success

The approximation above shows that the value of |Z0| + |Z1|

determines the probability that the attack succeeds, for a
fixed r. We now assess how much the sizes of D0 and D1,
the distances which are known to be outside the spectrums
of h0 and h1, impact on the sizes of Z0 and Z1, respectively.

Fix the probability that the attack fails as 1/2γ. We
want to find the least integer d such that, if both |D0| and |D1|

are greater than or equal to d, then the attack succeeds with
probability 1 − 1/2γ, for a large fraction α of all possible
secret keys. Of course we want α and γ to be large.

The idea is simply to perform a binary search for the
least d in the set [br/2c] = {1, . . . , br/2c}. The problem we
face is that the interdependence of the distances outside the
spectrum makes it hard to analytically compute the distribu-
tion of the size |Z0| as a function of |D0|, and similarly for
|Z1| and |D1|. Therefore we use simulations, for each d, to es-
timate the fraction fd of secret keys for which the attack suc-
ceeds with probability at least 1−1/2γ when |D0| = |D1| = d.
For this, we build N valid pairs of (D0,Z0) and (D1,Z1), and
our estimator for fd is given by

f̂d =
#{Generated Z0 and Z1 : |Z0| + |Z1| − r ≥ γ}

N
.

The search ends with the least value of d such that f̂d ≥ α.
Table 3 shows the values of d obtained for different

security levels, considering as simulation parameters N =

5000, α = 99%, and γ = 20. For comparison between

Table 3 Simulation results for the values of d with simulation parameters
N = 5000, α = 99%, and γ = 20.

Security
level
λ

n0

Estimated size
for D0 and D1

by the simulation
d

Average number of
distances outside

the spectrum
σ′

d/σ′

80 2 d80 = 722 1582.12 45.63%
80 3 d80 = 545 873.85 62.36%
80 4 d80 = 471 576.06 81.76%

128 2 d128 = 1470 2964.72 49.58%
128 3 d128 = 1116 1538.19 72.55%
128 4 d128 = 1025 1175.08 87.28%

256 2 d256 = 4845 9256.64 52.34%
256 3 d256 = 3347 3877.48 86.31%
256 4 - 2882.49 -

different security levels, we also put the fractions d/σ′, where
σ′ is the average number of distances outside the spectrum.
For each security level, we note that the relative d-exclusion
needed for the attack to successfully find the key grows with
n0. The explanation for this fact is that the blocks of the keys
get more dense when n0 is increased, as discussed in the end
of Sect. 4.2. For the security level of 256, considering n0 = 4
cyclic blocks, the blocks of the key are so dense that even
knowing all distances outside the spectrum is not enough for
the algorithm to successfully find the key.

6. Experimental Results

The analysis of our algorithm presented in the previous sec-
tion shows that it has better asymptotic complexity than
Guo’s et al. key reconstruction algorithm. We now show
the experimental analysis of the implementation of our algo-
rithm.

We do the experimental analysis in two parts. In the
first part, we analyze the performance of our reconstruction
algorithm when reconstructing the key for different security
parameters. We also compare our algorithm with the one by
Guo et al. in the best possible scenario for their algorithm,
which is when the spectrum of the key is fully known.

In the second part, we present an empirical analysis of
the number of challenges needed for a CCA2 attack for the
80 bits security parameters with n0 = 2. For this analysis,
we simulated the first part of the attack, that is, the spectrum
recovery procedure, against 200 different private keys.

All the source code and data used in this section is pub-
licly available at www.ime.usp.br/˜tpaiva/msc/src.

6.1 Performance of the Proposed Algorithm

The algorithm’s performance was analyzed on an Intel i7
870 Lynnfield CPU, at a 2.93GHz clock frequency, and
8GB of RAM. We implemented the algorithm in C using
the M4RI [28] library for the kernel matrix computation.

6.1.1 The Algorithm When Full Spectrums are Known

For some security parameters, when both the spectrums of
h0 and h1 are fully known, the value of Z0 + Z1 is typically
much larger than r. For these parameters, we can consider
the set Z0 as

Z0 ← {i + p mod r : dist(1, i) ∈ D0},

in line 4 of Algorithm 3. In other words, for some parameters,
we can consider only one non-null entry when building Z0,
instead of considering two, and Z0 + Z1 still is sufficiently
larger than r.

This simple change allows our algorithm to perform a
lot better than Guo’s et al. algorithm when full spectrums are
known. Table 4 shows the comparison between our algorithm
and Guo’s et al. algorithm when full spectrums are known.
The performance of our algorithm is marked with an asterisk

www.ime.usp.br/~tpaiva/msc/src

1684
IEICE TRANS. FUNDAMENTALS, VOL.E101–A, NO.10 OCTOBER 2018

Table 4 Performance comparison of our algorithm and Guo’s et al. algo-
rithm when full spectrums are known, for different security parameters.

Security
level
λ

n0
Average running time of

Guo’s et al. algorithm
Average running time

of our algorithm

80 2 71.18s 0.72s*
80 3 - 0.21s*
80 4 - 31s

128 2 ∼ 24 days 11s*
128 3 - 3.75s*
128 4 - 183s

256 2 - 141s*
256 3 - 3h40m
256 4 - -

(∗) on the parameters for which the modification above is
applicable, that is, the algorithm still finds the key when Z0
is built with only one non-null entry as reference.

Guo’s et al. algorithm performed very poorly for secu-
rity parameters different from λ = 80 with n0 = 2. For the
security parameters λ = 128 and n0 = 2, their algorithm took
the median time of around 27 hours to explore each branch
of the search tree. Parameters for which the algorithm did
not run in reasonable time are marked with a hyphen (-) in
Table 4. Considering the values of Γ in Table 2, it is unrealis-
tic to expect that Guo’s et al. algorithm runs efficiently for
the parameters in which n0 ≥ 3, or λ = 256.

6.1.2 The Algorithm with Partial Spectrums

We assess the performance of the algorithm using the mini-
mum amount of information possible, while retaining a good
probability of success. For this we use values d given in
Table 3 for the sizes of the sets D0 and D1.

Note that total execution time, or total number of cycles,
alone are not very informative metrics for this algorithm.
This is because the number of iterations for reconstructing
a key is a random variable following a uniform distribution
in the set [r]. Therefore, if we know the execution time per
iteration, we can model more accurately the performance
of the algorithm. Table 5 shows the performance results
of our algorithm for different security parameters. We do
not consider the performance of Guo’s et al. algorithm in
this table because their algorithm takes too long to finish
when partial spectrums are considered, making its application
infeasible.

6.2 The Number of Challenges Needed for a CCA2 Attack

We now analyze the number of decoding trials for a CCA2
attack when we use the proposed algorithm for key recon-
struction. For comparison purposes, we consider the security
level of 80 bits and n0 = 2, which are the same parameters
considered by Guo et al.

For the analysis, 200 different codes were randomly
generated and for each of them, were performed 100 million
decoding trials. The decoder used was the same used by Guo

Table 5 Performance of our algorithm when partial spectrums are known,
for different security parameters.

Security
level
λ

n0 d-exclusion
Average time
per iteration

Average total
running time

80 2 d80 = 722 0.023s 55s
80 3 d80 = 545 0.014s 25s
80 4 d80 = 471 0.010s 15s

128 2 d128 = 1470 0.14s 690s
128 3 d128 = 1116 0.07s 260s
128 4 d128 = 1025 0.05s 170s

256 2 d256 = 4845 4.15s 18h54m
256 3 d256 = 3347 1.20s 3h46m
256 4 - - -

Fig. 3 Example of the result of the decoding challenges for one of the
200 codes.

Fig. 4 Histogram of the number of decoding trials for a successful key
reconstruction.

et al., that is, algorithm B considered by Maurich et al. [25].
Each battery of decoding trials looks like the one in Fig. 3.
The y-axis shows the value d = min(d0, d1), where d0 and d1
are the exclusions obtained for σ(h0) and σ(h1), respectively.

Since we can successfully reconstruct the key when
the exclusion for both σ(h0) and σ(h1) are greater than or
equal to d80 = 722, as shown in Table 3, we are interested
in knowing how many decoding trials are needed to obtain a
d-exclusion of 722 for both of the spectrums. In the example
shown in Fig. 3, the first point where the attack is possible is
at around 30 million decoding trials.

The histogram of the number of decoding trials nec-
essary for a successful attack is shown in Fig. 4. Guo’s et
al. algorithm need an almost complete d-exclusion to run
efficiently, which occurs after around 200 million† decoding

†In their paper, Guo et al. report that in the best case of their sim-
ulation the spectrum was fully recovered after 203 million decoding
challenges.

BANDIERA PAIVA and TERADA: IMPROVING THE EFFICIENCY OF A REACTION ATTACK ON THE QC-MDPC MCELIECE
1685

challenges [18]. Our results suggest that when our algorithm
is used to reconstruct the key only around 28 million decod-
ing trials are needed, which is a significant improvement on
the amount of interaction with the secret key holder.

7. Conclusion

We propose a new algorithm for key reconstruction that is
faster than Guo’s et al. algorithm, and uses significantly
less interaction with the secret key holder than needed by
the latter. Our algorithm has lower asymptotic complexity,
which suggest it scales much better for higher security levels.
Our experimental analysis of the algorithm shows that it
performs much better than Guo’s et al. algorithm for all
security parameters.

The proposed algorithm is different in nature than the
one by Guo et al.: it is based on linear algebra instead of a
pruned depth-first search in a tree. It can also be straightfor-
wardly parallelized, which is not the case for the Guo’s et al.
approach. Our algorithm has a small probability of failing
in recovering the key, but we show how to select the param-
eters in such a way that the probability of failure becomes
negligible.

For future works, it would be interesting to study how
the use of other decoding algorithms impacts on the number
of decoding trials needed for the attack. Another possible
research question is to consider variants of the proposed
algorithm that are successful with even fewer knowledge
about both spectrums. This is important because it is related
to the determination of the lifetime of a QC-MDPC secret
key.

Acknowledgments

We thank the anonymous referees for important recommenda-
tions and helpful comments. The simulations were performed
using the High Performance Computing resources provided
by the Technology Superintendence of Universidade de São
Paulo.

References

[1] P.W. Shor, “Algorithms for quantum computation: Discrete loga-
rithms and factoring,” Proc. 35th Annual Symposium on Foundations
of Computer Science, pp.124–134, IEEE, 1994.

[2] D.J. Bernstein, J. Buchmann, and E. Dahmen, Post-Quantum Cryp-
tography, Springer Science & Business Media, 2009.

[3] L. Chen, L. Chen, S. Jordan, Y.K. Liu, D. Moody, R. Peralta,
R. Perlner, and D. Smith-Tone, “Report on post-quantum cryptogra-
phy,” US Department of Commerce, National Institute of Standards
and Technology, 2016.

[4] R.J. McEliece, “A public-key cryptosystem based on algebraic coding
theory,” Deep Space Network Progress Report, vol.44, pp.114–116,
1978.

[5] E.R. Berlekamp, R.J. McEliece, and H.C. Van Tilborg, “On the
inherent intractability of certain coding problems,” IEEE Trans. Inf.
Theory, vol.24, no.3, pp.384–386, 1978.

[6] R.L. Rivest, A. Shamir, and L.M. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,” Commun. ACM,
vol.21, no.2, pp.120–126, 1978.

[7] V. Miller, “Use of elliptic curves in cryptography,” Advances in
Cryptology (CRYPTO85), pp.417–426, 1986.

[8] V.D. Goppa, “A new class of linear correcting codes,” Problemy
Peredachi Informatsii, vol.6, no.3, pp.24–30, 1970.

[9] P. Gaborit, “Shorter keys for code based cryptography,” Proc. 2005
International Workshop on Coding and Cryptography (WCC 2005),
pp.81–91, 2005.

[10] T.P. Berger, P.L. Cayrel, P. Gaborit, and A. Otmani, “Reducing
key length of the McEliece cryptosystem,” Progress in Cryptology–
AFRICACRYPT 2009, pp.77–97, Springer, 2009.

[11] M. Baldi, F. Chiaraluce, R. Garello, and F. Mininni, “Quasi-cyclic
low-density parity-check codes in the McEliece cryptosystem,” Com-
munications, 2007. ICC’07. IEEE International Conference on,
pp.951–956, IEEE, 2007.

[12] R. Misoczki and P.S. Barreto, “Compact McEliece keys from goppa
codes,” Selected Areas in Cryptography, pp.376–392, Springer, 2009.

[13] A. Otmani, J.P. Tillich, and L. Dallot, “Cryptanalysis of two McEliece
cryptosystems based on quasi-cyclic codes,” Math. Comput. Sci.,
vol.3, no.2, pp.129–140, 2010.

[14] J.C. Faugere, A. Otmani, L. Perret, and J.P. Tillich, “Algebraic crypt-
analysis of McEliece variants with compact keys,” Advances in
Cryptology–Eurocrypt 2010, pp.279–298, Springer, 2010.

[15] J.C. Faugere, A. Otmani, L. Perret, F. De Portzamparc, and J.P. Tillich,
“Structural cryptanalysis of McEliece schemes with compact keys,”
Des. Codes Cryptogr., vol.79, no.1, pp.87–112, 2016.

[16] R. Misoczki, J.P. Tillich, N. Sendrier, and P.S. Barreto, “MDPC-
McEliece: New McEliece variants from moderate density parity-
check codes,” Information Theory Proceedings (ISIT), 2013 IEEE
International Symposium on, pp.2069–2073, IEEE, 2013.

[17] D. Augot, L. Batina, D.J. Bernstein, J. Bos, J. Buchmann,
W. Castryck, O. Dunkelmann, T. Güneysu, S. Gueron, and
A. Hülsing, “Initial recommendations of long-term secure post-
quantum systems (2015),” URL: https://pqcrypto.eu.org/docs/initial-
recommendations.pdf. Citations in this document, vol.16.

[18] Q. Guo, T. Johansson, and P. Stankovski, “A key recovery attack on
MDPC with CCA security using decoding errors,” 22nd Annual Inter-
national Conference on the Theory and Applications of Cryptology
and Information Security (ASIACRYPT), pp.789–815, 2016.

[19] M. Rossi, M. Hamburg, M. Hutter, and M.E. Marson, “A
side-channel assisted cryptanalytic attack against QcBits,” 2017.
http://eprint.iacr.org/2017/596

[20] T. Chou, “QcBits: Constant-time small-key code-based cryptography,”
International Conference on Cryptographic Hardware and Embedded
Systems, pp.280–300, Springer, 2016.

[21] R. Gallager, “Low-density parity-check codes,” IRE Trans. Inf. The-
ory, vol.8, no.1, pp.21–28, 1962.

[22] A. Shokrollahi, C. Monico, and J. Rosenthal, “Using low density
parity check codes in the McEliece cryptosystem,” IEEE International
Symposium on Information Theory (ISIT 2000), p.215, 2000.

[23] D.J. Bernstein, T. Chou, and P. Schwabe, “McBits: Fast constant-time
code-based cryptography,” International Workshop on Cryptographic
Hardware and Embedded Systems, pp.250–272, Springer, 2013.

[24] K. Kobara and H. Imai, “Semantically secure McEliece public-key
cryptosystems-conversions for McEliece PKC,” International Work-
shop on Public Key Cryptography, pp.19–35, Springer, 2001.

[25] I.V. Maurich, T. Oder, and T. Güneysu, “Implementing QC-MDPC
McEliece encryption,” ACM Trans. Embed. Comput. Syst. (TECS),
vol.14, no.3, p.44, 2015.

[26] Q. Guo, “Guo’s presentation at Asiacrypt,” https://youtu.be/tKvDdGL
JLZc?t=1006, 2016.

[27] T. Fabšič, V. Hromada, P. Stankovski, P. Zajac, Q. Guo, and
T. Johansson, “A reaction attack on the QC-LDPC McEliece cryp-
tosystem,” International Workshop on Post-Quantum Cryptography,
pp.51–68, Springer, 2017.

[28] M. Albrecht and G. Bard, The M4RI Library – Version 20121224,
The M4RI Team, 2012.

http://dx.doi.org/10.1109/sfcs.1994.365700
http://dx.doi.org/10.1109/sfcs.1994.365700
http://dx.doi.org/10.1109/sfcs.1994.365700
http://dx.doi.org/10.1007/978-3-540-88702-7
http://dx.doi.org/10.1007/978-3-540-88702-7
http://dx.doi.org/10.6028/nist.ir.8105
http://dx.doi.org/10.6028/nist.ir.8105
http://dx.doi.org/10.6028/nist.ir.8105
http://dx.doi.org/10.6028/nist.ir.8105
http://dx.doi.org/10.1109/tit.1978.1055873
http://dx.doi.org/10.1109/tit.1978.1055873
http://dx.doi.org/10.1109/tit.1978.1055873
http://dx.doi.org/10.1145/359340.359342
http://dx.doi.org/10.1145/359340.359342
http://dx.doi.org/10.1145/359340.359342
http://dx.doi.org/10.1007/3-540-39799-x_31
http://dx.doi.org/10.1007/3-540-39799-x_31
http://dx.doi.org/10.1007/978-3-642-02384-2_6
http://dx.doi.org/10.1007/978-3-642-02384-2_6
http://dx.doi.org/10.1007/978-3-642-02384-2_6
http://dx.doi.org/10.1109/icc.2007.161
http://dx.doi.org/10.1109/icc.2007.161
http://dx.doi.org/10.1109/icc.2007.161
http://dx.doi.org/10.1109/icc.2007.161
http://dx.doi.org/10.1007/978-3-642-05445-7_24
http://dx.doi.org/10.1007/978-3-642-05445-7_24
http://dx.doi.org/10.1007/s11786-009-0015-8
http://dx.doi.org/10.1007/s11786-009-0015-8
http://dx.doi.org/10.1007/s11786-009-0015-8
http://dx.doi.org/10.1007/978-3-642-13190-5_14
http://dx.doi.org/10.1007/978-3-642-13190-5_14
http://dx.doi.org/10.1007/978-3-642-13190-5_14
http://dx.doi.org/10.1007/s10623-015-0036-z
http://dx.doi.org/10.1007/s10623-015-0036-z
http://dx.doi.org/10.1007/s10623-015-0036-z
http://dx.doi.org/10.1109/isit.2013.6620590
http://dx.doi.org/10.1109/isit.2013.6620590
http://dx.doi.org/10.1109/isit.2013.6620590
http://dx.doi.org/10.1109/isit.2013.6620590
https://pqcrypto.eu.org/docs/initial-recommendations.pdf
https://pqcrypto.eu.org/docs/initial-recommendations.pdf
https://pqcrypto.eu.org/docs/initial-recommendations.pdf
https://pqcrypto.eu.org/docs/initial-recommendations.pdf
https://pqcrypto.eu.org/docs/initial-recommendations.pdf
http://dx.doi.org/10.1007/978-3-662-53887-6_29
http://dx.doi.org/10.1007/978-3-662-53887-6_29
http://dx.doi.org/10.1007/978-3-662-53887-6_29
http://dx.doi.org/10.1007/978-3-662-53887-6_29
http://eprint.iacr.org/2017/596
http://eprint.iacr.org/2017/596
http://eprint.iacr.org/2017/596
http://dx.doi.org/10.1007/978-3-662-53140-2_14
http://dx.doi.org/10.1007/978-3-662-53140-2_14
http://dx.doi.org/10.1007/978-3-662-53140-2_14
http://dx.doi.org/10.1109/tit.1962.1057683
http://dx.doi.org/10.1109/tit.1962.1057683
http://dx.doi.org/10.1109/isit.2000.866513
http://dx.doi.org/10.1109/isit.2000.866513
http://dx.doi.org/10.1109/isit.2000.866513
http://dx.doi.org/10.1007/978-3-642-40349-1_15
http://dx.doi.org/10.1007/978-3-642-40349-1_15
http://dx.doi.org/10.1007/978-3-642-40349-1_15
http://dx.doi.org/10.1007/3-540-44586-2_2
http://dx.doi.org/10.1007/3-540-44586-2_2
http://dx.doi.org/10.1007/3-540-44586-2_2
http://dx.doi.org/10.1145/2700102
http://dx.doi.org/10.1145/2700102
http://dx.doi.org/10.1145/2700102
https://youtu.be/tKvDdGLJLZc?t=1006
https://youtu.be/tKvDdGLJLZc?t=1006
http://dx.doi.org/10.1007/978-3-319-59879-6_4
http://dx.doi.org/10.1007/978-3-319-59879-6_4
http://dx.doi.org/10.1007/978-3-319-59879-6_4
http://dx.doi.org/10.1007/978-3-319-59879-6_4

1686
IEICE TRANS. FUNDAMENTALS, VOL.E101–A, NO.10 OCTOBER 2018

Thales Bandiera Paiva MSc student at the
Department of Computer Science, Universidade
de São Paulo, Brazil, received his bachelor’s de-
gree in Computer Science from Universidade de
São Paulo in 2015.

Routo Terada Professor at the Department
of Computer Science, Universidade de São Paulo,
Brazil, MSc in Applied Math from Universidade
de São Paulo and PhD in Computer Science from
University of Wisconsin-Madison, USA.

