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Abstract—Ensuring the correct behavior of the Border Gate-
way Protocol (BGP) is essential for keeping a good quality of
service on the internet. When an anomalous behavior is detected,
operators of border gateways need to classify it correctly into a
direct (intended or unintended) anomaly, an indirect anomaly,
or a link failure. This classification helps to understand its cause
and act upon it. Recently, some techniques for the classification
of BGP anomalies using machine learning models were proposed.
However, we notice some limitations of these classification models
that make it unclear if they can be used in the real world
to classify new anomalies. This paper presents a new model
with good performance when classifying BGP events not seen
in its training. Our model is based on Long Short-Term Memory
(LSTM) networks and uses new features based on inferred
relationships between Autonomous Systems (ASes) to classify sets
of BGP update messages. The model classifies samples from new
events achieving 91% of accuracy and F1 scores of 1.00, 0.93,
and 0.80 for direct anomalies, indirect anomalies, and link failure,
respectively.

Index Terms—BGP, Anomaly Classification, LSTM.

I. INTRODUCTION

The Border Gateway Protocol (BGP) is the most commonly
used routing protocol. The BGP determines a communication
standard between Autonomous Systems (AS) routers when
propagating Network Reachability Information (NRI) to their
neighbor ASes. This fact makes BGP-speaking routers an
exciting target for attackers, and there are many documented
attacks against these routers. Attackers targeting these routers
have varying objectives, such as Denial-of-Service (DoS) and
Person-in-the-Middle (PitM) attacks [1].

The core component of BGP is the update messages that
an AS router sends to its neighbors. These messages usually
contain an IP prefix, a path vector, and additional information
to allow routers to tweak their routing tables according to their
policies. The exchanged messages contain valid information,
but BGP has no mechanism to ensure a valid message. The
Internet Engineering Task Force led some proposals such as
RPKI [2] and BGPSec [3], which use a Public Key Infras-
tructure (PKI) to ensure that ASes only announce valid paths
and prefixes. However, they require more powerful hardware
and yield a much heavier protocol, making for a more difficult
adoption in the short term.

Update messages that do not contribute to BGP’s purpose of
propagating valid NRI are defined as anomalous [4]. Detection
of BGP anomalies is a difficult task since abrupt changes in

metrics of BGP messages may not always indicate malicious
activity such as BGP hijacking attacks and may be the result of
traffic engineering for network load balancing or consequence
of some link failure by natural causes. When anomalous
BGP messages are detected, it is vital to understand their
cause to act accordingly. For example, if the anomaly is the
result of prefix hijacking, operators of BGP routers should not
propagate the hijacked prefix. Recently, supervised machine
learning models have proven to be a promising approach for
BGP anomaly detection [5]–[13].

Different from BGP anomaly detection, the classification of
anomalies has received much less attention. Concerning direct
anomalies only, Cho et al. [14] showed how to classify hi-
jacking events into various types, which can separate intended
and unintended misbehavior. Fonseca [15] uses Long Short-
Term Memory (LSTM) to classify sets of BGP messages, and
more recently, Cheng et al. [16] proposed a powerful Multi-
Scale LSTM model for multi-class classification of sets of
BGP messages. In both works, the authors consider specific
events such as the spreading of the Slammer worm or the 2003
Moscow blackout.

The previous works have some limitations, however:
1) The classification is limited to events, not anomaly type

(direct, indirect, and link failure).
2) The model is tested with data from events seen in the

training phase.
3) The most widely used public datasets of BGP anomalies

consist of a small number of events, that are mostly
outdated (e.g. the effect of Nimda worm in 2001).

Together, these limitations make it difficult to assess if their
approaches can generalize knowledge to classify events not
seen before into the three types, which are the main application
of BGP anomaly classification.

a) Contribution: In this paper we propose an LSTM
model for BGP anomaly classification that uses a small
set of features based on the graph of ASes. We used data
from six events corresponding to direct, indirect, and link-
failure anomalies to train our model. We evaluate the model’s
performance considering one event of each type, different from
the events used in training. To the best of our knowledge, this
is the first classification model tested against events not seen
in the training phase. Furthermore, the code for the model and
feature extraction is available at https://github.com/thalespaiva/
bgp-anomaly-classification.978-1-6654-4035-6/21/$31.00 ©2021 IEEE



b) Paper organization: We briefly discuss related work
in Section II. In Section III we describe our feature extraction
process. Section IV contains the description of the LSTM
model and information on how we trained it. Next, the
performance of the model is is evaluated in Section V. Finally,
we conclude and discuss future work in Section VI.

II. RELATED WORK

BGP anomaly detection is a widely studied problem, and
there are several approaches to deal with the problem [4], [17].
Al-Musawi et al. [4] discuss the importance of classifying
the type of anomaly since they often require a different
set of responses. They consider the main limitation of BGP
detection mechanisms up to 2016 to be their inability to
classify the type of anomaly and propose a classification into
direct (intended, or unintended), indirect, and link failure.
Direct anomalies happen by the misbehavior of BGP routers
and can be intended, such as BGP hijacking, or unintended,
such as typos in prefixes introduced by operators of border
routers. Anomalous behavior that results from BGP protocol
manipulation is deemed indirect and caused by the spread of a
worm over the Internet. Link failures are anomalous behaviors
that happen after an AS or Internet Exchange Point (IXP) loses
connection to the Internet. Moreover, it is often a result of a
blackout or a natural disaster such as an earthquake.

In 2019, Cho et al. [14] focused on classifying BGP
hijacking events, which correspond to direct BGP anomalies,
into four types: typos, prepending mistakes, origin changes,
and forged AS paths. To classify BGP hijacking events into
these types, the authors propose a Random Forest model on
features based on AS hegemony [18], a metric that represents
the importance of an AS for paths to a given prefix on the
Internet. Moreover, they build a ground-truth set of available
BGP hijacking events and obtain a 95.71% classification
accuracy. Even though the authors point to some inherent
limitations of features based on AS hegemony, their work does
not sufficiently address how their classifier performs when
considering real-time BGP updates messages. Furthermore,
since they test the model only with known hijacking events, it
is unclear if it would deal with regular updates without raising
many false alarms.

A recent work by Li et al. [9], [12] proposes machine
learning models to detect and classify BGP anomalies. Their
work is better suited for real-time detection and classification,
as they use features that are easy to compute over many
updates in a given time interval. However, a critical limitation
of their work is that the datasets consider only three events,
of which two occurred before 2005. Therefore, to increase
confidence in the robustness of their model, it would be
essential to test their approach under more recent anomalous
events.

Sanchez et al. [13] introduced the use of graph-based
features, such as graph number of cliques and graph cen-
trality metrics, for anomaly detection. Using the same set
of features, the authors compared the performance of some
machine learning models: Support Vector Machines (SVM)

Multi-Layer Perceptron (MLP), Naive Bayes, and Decision
Trees. The authors trained and tested their model using four
well-known BGP anomalies, obtaining around 89% balanced
accuracy.1 Apart from the limited dataset, one limitation of this
work is that some of the graph features are very expensive
and not practical for real-time detection. Furthermore, the
authors did not consider the proposed graph-based features
for classification, only for detection.

Addressing the absence of frameworks able to classify the
anomalies into the categories considered by Al-Musawi et
al. [4], Fonseca [15] tested different model architectures to
detect and to classify BGP anomalies. Their most successful
models consisted of a Wavelet deconvolution layer, a Con-
volutional Neural Network (CNN) and LSTM for detection,
and stacked LSTM networks for classification. Furthermore,
they show that domain classification tends to be easier than
detection because the finer granularity of the labels makes it
easier for the models to learn the different models for each
label correctly.

In 2020, Shapira and Shavitt [11] proposed an elegant
hijack detection mechanism that consists of an LSTM network
whose embedding layer is an application of Word2Vec [19]
to sets of AS paths in BGP tables and announcements. The
embedding layer, called BGP2Vec, was already shown to be
able to capture the relationships between ASes with some
accuracy [20]. When testing their model using the ground-truth
datasets by Cho et al. [14], the authors were able to detect
around 67% of the hijacking events, with varying accuracy
depending on the event type. Notice that the authors did not
consider the classification of hijack events or even general
detection of anomalies, focusing only on detecting hijacking
events.

One important problem of previous works is that, in general,
there is no standard dataset, or datasets, to compare different
models. Therefore, it is tough to understand the impact of
features and models on the overall performance when detecting
and classifying anomalies. Furthermore, the source code for
the vast majority of the tools is not usually publicly available.
Fonseca et al. [21] and, more recently, Hoarau et al. [22]
made an important step in this direction. Fonseca et al. [21]
proposed an open-source framework for data collection and
feature extraction of BGP announcements, together with a
relatively large dataset of well-known anomalous events, in
2019. More recently, Hoarau et al. [22] proposed a similar
framework that promises two advantages: it comes with a
larger number of features, and it is easier for the user to add
new features.

Closely related to our work are the models studied by
Fonseca [15] and Cheng et al. [16]. These authors studied the
detection and classification of BGP anomalies and achieved
good results for what they propose. The main limitation of both
works is that the authors do not consider the performance of
their models to classify samples from events out of the training

1The mean between true positive and true negative rates.



set. Therefore, it is not easy to know if their models are good
in real scenarios where the classifier must classify new events.

III. FEATURE EXTRACTION FROM ANOMALOUS EVENTS

In this section, we present the features considered for
classification and describe how to compute them.

A BGP update message can be downloaded using CAIDA’s
BGPReader tool2 and contains several fields. Table I shows
an example from RIS project collector rrc04, which corre-
sponds to CERN’s IXP in Geneva, Switzerland.

Unlike other BGP anomaly classification [15], [16] mech-
anisms based on deep learning, we consider, together with
the raw update messages, information on the AS relationships
as paths, prefix fields, and their approximate geographical
location. This decision contrasts with most of the works on
anomaly detection and classification, where features are mostly
based on counting the number of messages of a given type,
i.e., termed volume-based features.

TABLE I: An example of a BGP announcement update as
downloaded by BGPReader.

Field Value

Record type Update
Element type Announcement
Timestamp 23/01/2003 00:00:08 (UTC)
Project RIS
Collector rrc04
Router None
Router IP None
Peer ASN 6893
Peer IP 192.65.185.144
Prefix 64.30.64.0/19
Next hop 192.65.185.144
Origin AS 14900
AS path 6893, 12541, 3561, 209, 14900
Communities -
Old state -
New state -

In the following subsections, we first give a high-level de-
scription of the feature extraction procedure and then describe
the events we used to build the datasets.

A. Features based on the AS graph and relationship edges

There are two main difficulties when computing features
based on AS relationships: (1) the information is not publicly
available, and (2) the relationships change from time to time.
Our solution to the first problem is to use Gao’s [23] AS
relationship inference. We propose building the AS relation-
ship graph on-demand as described next to deal with AS
relationships’ dynamic nature.

Suppose we want to classify sets of updates occurring from
12/21/2010 to 12/22/2010. We first download the Routing
Information Base (RIB) of well-known BGP collectors such
as RIS or RouteViews from the first week of the month
right before the target, which corresponds to November 2010.
We extract only the AS paths from the RIB and use Gao’s
algorithm [23] to classify the relationships between the ASes

2https://bgpstream.caida.org/docs/tools/bgpreader

involved in these paths into customer-to-provider, provider-to-
customer, sibling-to-sibling, and peer-to-peer.

The proposed design avoids using fixed relationship
datasets, which may be highly unrealistic. Suppose one such
dataset was built in 2020, then every feature computation for
updates from before 2020, would leak information from the
future to the past.

We can now compute features such as the average number
of provider-to-customer edges or the average degree of the
ASes involved in the path field of BGP updates. Additionally,
we can detect and count valleys in the AS paths, which are
related to BGP hijackings events [11], [14].

B. Features based on AS geographical location

We also consider two features that make use of the location
of ASes. In order to calculate these features, we first generate
a dataset containing the central latitude and central longitude
of the country where the AS is registered.

The first feature tries to detect geographical changes in ASes
that announce a given prefix. For each prefix seen in the BGP
updates, we store the last AS that announced it. If the AS
announcing the prefix changes at some point, we calculate the
distance between the new AS announcing it and the last AS
that was saw announcing this prefix. The feature then consists
of the average distance over all announcements.

The second feature is similar to the previous one, but instead
of verifying the prefix as a whole, we separate it into IP
address and prefix length. In this case, we have to compute
the distance between the ASes announcing the same IP address
but with different prefix lengths.

C. Extracting Features from Anomalous Events

To train and test our classifier, we use the same events
considered by Fonseca [21], who uses the largest set of
anomalous events among all previous works. To build our
dataset, we downloaded all BGP update messages from the
duration of the events using CAIDA’s library PyBGPStream.
Then, for each event, we extracted the paths from RIBs
corresponding to the first week of the month before each
anomaly and built the AS relationship graph as described in
Section III-A. Finally, we computed the features for each set
of 1 minute of updates, which yields our time series’ data
points.

Table II presents the events considered in this work, together
with their type, duration, total number of BGP updates during
the event, and the number of data points. Notice that the
number of BGP updates does not impact the number of data
points, which depends only on the duration of the event in
minutes.

A high-level description of the features is given in Table III.
Their computation is efficient because the features can be
computed faster than updates are observed. Furthermore, we
designed the scripts for data collection and feature extraction
in Python to make it easy to add new events and features to
extract.



TABLE II: Anomalous events considered in this work.

Event Type Collector Start time Finish time Total BGP Updates Data Points

AS9121 RTL Direct rrc05 09:20 24/12/04 10:03 24/12/04 3,060,307 43
AWS Route Leak Direct rrc04 17:10 22/04/16 20:00 22/04/16 29,572,808 170
Malaysian Telecom Direct rrc04 08:42 12/06/15 10:24 12/06/15 16,554,716 102
Code Red v2 Indirect rrc04 10:00 19/07/01 20:00 19/07/01 2,090,162 600
Nimda Indirect rrc04 13:00 18/07/01 12:00 21/07/01 3,095,343 4260
Slammer Indirect rrc04 05:31 25/01/03 19:59 25/01/03 2,320,859 868
Moscow Blackout Link failure rrc05 04:40 25/05/05 07:40 25/05/05 7,613,061 180
Japan Earthquake Link failure rrc06 09:13 11/03/11 15:39 11/03/11 545,397 386

The most complex features to compute are the ones that
navigate all ASes in the AS path field (e.g., the average degree
of ASes found in all paths). The time to compute the feature
depends on the number of updates seen in the one-minute
interval. This dependency makes it more costly to compute
features on the most recent events, such as AWS Route Leak,
when a considerably larger number of updates than in 2001,
when Nimda and Code Red were released, are available.

IV. MODEL TRAINING

In our work, we have focused on building a model to learn
how to classify a given sequence of observed data points into
the classes indirect, direct or link failure of BGP anomalies.

LSTM is a recurrent neural network architecture suitable
to analyze time series with arbitrary gaps in their temporal
sequence [24]. In other words, it is capable of learning about
events that may have a considerable time distance between
each other. For example, our dataset is configured by anoma-
lies on BGP that happened in different years between 2001
and 2016. Therefore, LSTM models seem to be an interesting
choice.

Our neural network starts with a one-dimension convolu-
tional layer (Conv1D) with 32 filters and a kernel of size two,
followed by a one-dimensional max-pooling layer (MaxPool-
ing1D) with pool size and strides of value two, as well. In
sequence, we have an LSTM layer and a Dropout layer with
a dropout rate of 0.2. To finish, we have a dense layer with a
softmax activation function. The model has a total of 54,623
parameters, of which all of them are trainable. Table IV shows
a summary of the layers in our model.

To train our model, we have prepared a dataset containing
the calculated features of the selected events: AS9121 Routing
Table Leak, AWS Leak, Nimda, Code Red II, and Moscow
Blackout. The features described in Table III were calculated
for batches of one minute of BGP updates. Therefore, each
dataset entry corresponds to a batch evaluation, which entails
our time series. The next step was to cut each event’s sequence
into smaller lengths of 10 minutes, that is, a sequence of 10
data points of features computed for 1 minute. All the slices
were non-overlapping, as overlapping sequences are highly
correlated and may quickly lead to overfitting. We have labeled
each slice with its corresponding class, and there were no
slices with mixed classes.

The dataset is split into training, validation, and test sets
following the ratios of 70%, 20%, and 10%, respectively.

When splitting the dataset, we made sure that each set con-
tained at least one sequence of each class. Finally, we have
trained our model with batches of size one and considered ten
epochs, using categorical cross-entropy [24] and the Adam
optimizer [24] with a learning rate of 0.0067.

Before the feature selection, we fixed which events were
used for training and testing and final validation. This separa-
tion beforehand makes our feature selection procedure less
prone to insert data leakage and better assess our model’s
robustness. We evaluated our model performance using the
test set and the events missing from the training list: Japan
Earthquake, Slammer, and Malaysian Telecom. Our intention
with this second validation was to confront our model with
events that it has never seen before.

We use standard metrics for classification, such as precision,
recall, accuracy, and F1-score. Precision identifies the propor-
tion of how many items classified by a model are correctly
classified. Recall is similar to precision but differs as it can
be interpreted as how frequent, for each class, the model is
correct when it classifies a sample into the given class. The F1-
score is a harmonic average between precision and recall and
summarizes both metrics. For this reason, we have mainly used
F1-score to evaluate our model performance. Additionally, we
have also used accuracy, which gives us a ratio of correctly
predicted instances over the total instances but being careful
not to misinterpret it when dealing with highly unbalanced
datasets.

Let TP, TN, FP, FN be the total of True Positive, True Neg-
ative, False Positive and False Negative classified instances,
respectively. The formal definitions of the above metrics can
be written as:

• Precision = TP
TP+FP .

• Recall = TP
TP+FN .

• F1 Score = 2 (Recall×Precision)
Recall+Precision .

• Accuracy = TP+TN
TP+FP+FN+TN .

V. RESULTS AND DISCUSSION

In this section, we evaluate the performance of the model
for the classification of BGP anomalies. We divide this section
into two parts. First, we show the results regarding the clas-
sification of samples from the events used to train the model.
Then we consider the classification of events not seen in the
training phase.



TABLE III: Features considered in this work.

Type Feature Has been used before for classification?
(Considering previous works [15], [16])

Volume Number of announcements Yes
AS path Maximum length of AS paths Yes
AS path Average length of AS paths Yes
AS path Maximum length among unique AS paths Yes
AS path Average length among unique AS paths Yes

AS graph Variance of the degree of ASes found in all paths No
AS graph Average degree of ASes found in all paths No
AS relationship graph Average number of edges not in AS graph No
AS relationship graph Average number of peer-to-peer edges in paths No
AS relationship graph Average number of customer-to-provider edges in paths No
AS relationship graph Average number of provider-to-customer edges in paths No
AS relationship graph Average number of sibling-to-sibling edges in paths No
AS relationship graph Average number of non valley-free paths No
Prefix Average number of bits in prefix (IPV4 only) No
Prefix Maximum number of bits in prefix (IPV4 only) No
AS geographical location Average geographical distance between last two ASes that announced the same prefix No
AS geographical location Average geographical distance between last ASes that announced a similar prefix No

TABLE IV: Model’s layers summary.

Layer type Output dimension Number of parameters

Conv1D (10, 32) 1,120
MaxPooling1D (5, 32) 0
LSTM (100) 53,200
Dropout (100) 0
Dense (3) 303

A. Classification of samples from events used for training

In previous works on BGP anomaly classification [16], [21],
the authors test the performance of their models using part of
the data used for training. Furthermore, they test the classi-
fication of samples into an event, not into an anomaly class.
Even though it is important to understand the model and effect
of different features to learn their essential characteristics, we
also believe it is important to verify if the model can generalize
its knowledge of the different types of anomalies.

Table V shows the performance of our model when classi-
fying samples into direct, indirect, or link failure anomalies.
We can see that it perfectly classified the training set, even
though the samples were highly unbalanced. Unfortunately,
since we used 10% for testing, only 5 instances were not from
the indirect type.

TABLE V: Performance of the model when classifying data
from events that were used for training.

Class Precision Recall F1 score Total instances

Direct 1.00 1.00 1.00 3
Indirect 1.00 1.00 1.00 49
Link failure 1.00 1.00 1.00 2

The main question now is whether the model could gen-
eralize knowledge on the anomaly types or not. However,
Table II shows us that both indirect events used for training
occurred in 2001, and within the same month. Even though it
is tempting to believe that the model performed well, it may

be the case that the model learned the year of the anomaly,
not the anomaly type.

Therefore, we believe that it is essential to analyze the
model’s performance when classifying events that are not
considered in the training data. We do this analysis in the
next subsection.

B. Classification of samples from new events

We now present the main contribution of this work: the
classification of samples from events not seen by the model
in the training phase. Table VI presents the results of the
model when classifying data from new events. We can see
that it perfectly classified direct events. However, even though
its performance was good for indirect and link failure events,
these two types appear to be slightly confused by the model.

TABLE VI: Performance of the model when classifying data
from new events, which were not used for training.

Class Precision Recall F1 score Total instances

Direct 1.00 1.00 1.00 11
Indirect 0.87 1.00 0.93 88
Link failure 1.00 0.67 0.80 39

Table VII presents a confusion matrix to understand better
how indirect and link failure events are classified. Notice that,
even though it has 100% precision for link failure classifi-
cation, it incorrectly classified about 33.3% of the samples as
indirect (13 out of 39 samples). A possible explanation for the
misclassification of link failures is the limited data used for
training, which consists of only one event, together with the
large gap between the dates when the events used for training
and testing occurred.

These results suggest that the model can generalize what
it learned from the training data to new events. This general-
ization ability is an important step for the adoption of these
classifiers for real-world applications.



TABLE VII: Confusion matrix of the classification of samples
from new events. Accuracy of 91%.

Direct Indirect Link Failure

Direct 11 0 0
Indirect 0 88 0
Link failure 0 13 26

VI. CONCLUSION AND FUTURE WORK

The main contribution of this work is the first BGP clas-
sification model that appears to be robust enough to classify
events that were not part of the training dataset. The proposed
model uses a set of features based on the inferred AS rela-
tionship graph, together with a simple LSTM network. Our
code and datasets are publicly available, and we encourage
researchers to experiment with them.

It is important to validate our results using larger sets of
BGP anomalies and even a more diverse set of collectors
for future work. Concerning the feature extraction, it would
be interesting to assess the effect of better AS relationship
inference algorithms such as Problink [25] or BGP2Vec [20]
on the quality of the features.
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Ransomware, and Blackouts Using Recurrent Neural Networks,” in
Proceedings of the IEEE International Conference on Systems, Man,
and Cybernetics (SMC), 2020, pp. 2165–2172.

[13] O. R. Sanchez, S. Ferlin, C. Pelsser, and R. Bush, “Comparing Machine
Learning Algorithms for BGP Anomaly Detection using Graph Fea-
tures,” in Proceedings of the 3rd ACM CoNEXT Workshop on Big DAta,
Machine Learning and Artificial Intelligence for Data Communication
Networks, 2019, pp. 35–41.

[14] S. Cho, R. Fontugne, K. Cho, A. Dainotti, and P. Gill, “BGP Hijacking
Classification,” in Proceedings of the Network Traffic Measurement and
Analysis Conference (TMA), 2019, pp. 25–32.

[15] P. C. d. R. Fonseca, “A Deep Learning Framework for BGP Anomaly
Detection and Classification,” Ph.D. dissertation, Universidade Federal
do Amazonas, 2020.

[16] M. Cheng, Q. Li, J. Lv, W. Liu, and J. Wang, “Multi-Scale LSTM
Model for BGP Anomaly Classification,” IEEE Transactions on Services
Computing, vol. 14, no. 3, pp. 765–778, 2021.

[17] A. Mitseva, A. Panchenko, and T. Engel, “The State of Affairs in BGP
Security: A Survey of Attacks and Defenses,” Computer Communica-
tions, vol. 124, pp. 45–60, 2018.

[18] R. Fontugne, A. Shah, and E. Aben, “The (Thin) Bridges of AS
Connectivity: Measuring Dependency using AS Hegemony,” in Proceed-
ings of the International Conference on Passive and Active Network
Measurement, 2018, pp. 216–227.

[19] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed
Representations of Words and Phrases and Their Compositionality,” in
Proceedings of the 26th International Conference on Neural Information
Processing Systems-Volume 2, 2013, pp. 3111–3119.

[20] T. Shapira and Y. Shavitt, “Unveiling the Type of Relationship Between
Autonomous Systems Using Deep Learning,” in Proceedings of the
IEEE/IFIP Network Operations and Management Symposium (NOMS),
2020, pp. 1–6.

[21] P. Fonseca, E. S. Mota, R. Bennesby, and A. Passito, “BGP Dataset Gen-
eration and Feature Extraction for Anomaly Detection,” in Proceedings
of the IEEE Symposium on Computers and Communications (ISCC),
2019, pp. 1–6.

[22] K. Hoarau, P. Tournoux, and T. Razafindralambo, “BML: An Efficient
and Versatile Tool for BGP Dataset Collection,” in Proceedings of the
IEEE International Conference on Communications Workshops (ICC
Workshops), 2021.

[23] L. Gao, “On Inferring Autonomous System Relationships in the Inter-
net,” IEEE/ACM Transactions on Networking, vol. 9, no. 6, pp. 733–745,
2001.

[24] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org. Accessed at October 28, 2021.

[25] Y. Jin, C. Scott, A. Dhamdhere, V. Giotsas, A. Krishnamurthy, and
S. Shenker, “Stable and Practical AS Relationship Inference with Prob-
Link,” in Proceedings of the 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), 2019, pp. 581–598.


