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Universidade Federal de Minas Gerais

Ruy Exel
Departamento de Matemática
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INTRODUÇÃO 1

A teoria das Álgebras de Operadores tem seu ińıcio em 1929 com o pioneiro trabalho
[9], a partir do qual John von Neumann, um dos maiores cientistas do século XX, estabele-
ceu as bases matemáticas da Mecânica Quântica. As álgebras estudadas por von Neumann,
hoje apropriadamente chamadas de álgebras de von Neumann, são certas sub-álgebras da
álgebra B(H) formada por todos os operadores limitados em um espaço de Hilbert H.

Em 1943, num artigo de importância fundamental ([6]), I. M. Gelfand e M. Neumark
obtiveram uma caracterização abstrata para as álgebras de operadores estudadas por von
Neumann, isto é, obtiveram uma lista de axiomas cujos modelos são precisamente as sub-
álgebras fechadas e auto-adjuntas de B(H).

A partir de então um vertiginoso avanço se seguiu no qual aplicações fundamentais
foram obtidas nas mais diversas áreas da Matemática e F́ısica (teoria dos nós, mecânica
estat́ıstica, teoria quântica de campos, representação de grupos, sistemas dinâmicos, folhe-
ações, teoria dos grafos, quase-cristais, geometria não-comutativa).

Embora haja hoje uma vasta literatura sobre o assunto, incluindo inúmeros livros em
ńıvel mais ou menos elementar ([1], [2], [3], [4], [5], [7], [8], [10], [13], [14]), não há um
único texto em ĺıngua portuguesa sob o tema.

O objetivo destas notas é portanto dar um primeiro e modesto passo no sentido de
suprir esta deficiência, apresentando um caminho tão elementar quanto posśıvel para uma
compreensão detalhada do Teorema de Gelfand e Neumark, citado acima, sobre a carac-
terização abstrata das álgebras de operadores.

O pré-requisito para a leitura deste texto é um bom conhecimento sobre aspectos
básicos de Análise Funcional, Variáveis Complexas e Álgebra.

Uma das idiossincrasias da teoria que pretendemos apresentar é a questão sobre se a
álgebra tem ou não unidade. A grosso modo pode-se dizer que os resultados para álgebras
com unidade quase sempre se aplicam para álgebras sem unidade, naturalmente com al-
terações apropriadas, porém muitas vezes à custa de um razoável esforço extra.

Com o objetivo de enfatizar a essência da teoria, evitando dificuldades técnicas que
obscureceriam as idéias centrais, optamos por nos restringir ao caso com unidade, ocasio-
nalmente deixando o caso geral para os exerćıcios.
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ÁLGEBRAS NORMADAS 2

Nesta seção nós vamos estudar o conceito de álgebra normada e para isto partiremos
da premissa de que o leitor tem alguma familiaridade com o conceito de álgebra sobre o
corpo C dos números complexos1. Não custa repetir: uma álgebra A sobre C é um espaço
vetorial complexo equipado com uma operação bilinear e associativa:

• : A×A→ A

chamada operação de multiplicação. Como sempre, ao invés da matematicamente correta
porém excessivamente ŕıgida notação

•(a, b),

nós usamos simplesmente ab para denotar o resultado da operação de multiplicação
quando aplicada ao par (a, b).

2.1. Definição. Uma álgebra normada é uma álgebra sobre C equipada com uma função
norma

a ∈ A 7→ ‖a‖ ∈ R

que faz com que A seja um espaço normado, ou seja, para todo a, b ∈ A e λ ∈ C tenhamos:
(i) ‖a‖ ≥ 0,
(ii) ‖a‖ = 0 ⇒ a = 0,
(iii) ‖λa‖ = |λ| ‖a‖, onde |λ| indica o módulo do número complexo λ,
(iv) ‖a+ b‖ ≤ ‖a‖+ ‖b‖,

e além disso obedeça ao seguinte axioma envolvendo a operação de multiplicação:

(v) ‖ab‖ ≤ ‖a‖ ‖b‖.

Vejamos alguns exemplos de álgebras normadas:

2.2. Exemplo. Seja C[X] a álgebra dos polinômios complexos na variável X. Dado

p =
n∑

k=0

λkX
k ∈ C[X],

onde n ∈ N e λk ∈ C para k = 0, . . . , n, defina ‖p‖ =
∑n

k=0 |λk|. Não é dif́ıcil provar que
C[X], equipado com a multiplicação usual de polinômios e a norma definida acima, é uma
álgebra normada.

1 Embora o conceito de álgebra se aplique para qualquer corpo, a teoria de álgebras de Banach tem

uma preferência especial pelo corpo dos números complexos!
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Muitas vezes podemos ter mais de uma norma sobre uma mesma álgebra complexa
tornando-a uma álgebra normada:

2.3. Exemplo. Seja C[X] como acima mas desta vez defina a norma de um elemento
p ∈ C[X] por

‖p‖ = sup
x∈[0,1]

|p(x)|. (†)

Esta nova norma satisfaz a todos os axiomas de (2.1) e portanto faz de C[X] uma álgebra
normada.

Não há nada de especial sobre o intervalo [0, 1] neste exemplo: qualquer outro conjunto
limitado e infinito de números complexos pode substituir o intervalo [0, 1] em (†) com
conclusões semelhantes.

2.4. Exemplo. Seja n um inteiro positivo e seja Mn(C) o conjunto de todas as matrizes
n×n sobre C. É bem sabido que Mn(C) é uma álgebra complexa com a operação usual de
multiplicação de matrizes. Existem muitas normas que fazem com que Mn(C) seja uma
álgebra normada. A mais importante de todas é definida por

‖a‖ = sup
{
‖av‖2 : v ∈ Cn, ‖v‖2 ≤ 1

}
, ∀ a ∈Mn(C),

onde av representa o produto da matriz a pelo vetor (= matriz coluna n × 1) v. Além
disto usamos na definição acima a norma euclidiana ‖ · ‖2 para vetores.

Uma outra norma em Mn(C), importante em algumas aplicações, é dada por

‖a‖ =
n∑

i=1

n∑
j=1

|aij |,

onde estamos assumindo que a é a matriz {aij}i,j=1,...,n.

2.5. Exemplo. Seja X um espaço topológico localmente compacto e seja C0(X) o espaço
vetorial complexo de todas as funções cont́ınuas f : X → C que se anulam no infinito2.
Dadas f e g em C0(X) defina uma nova função, denotada por fg, através da fórmula

(fg)(x) = f(x)g(x), ∀x ∈ X.

Não é dif́ıcil provar que, com esta operação de multiplicação, C0(X) torna-se uma álgebra
complexa. Se além disto definirmos a norma de uma função f ∈ C0(X) por

‖f‖ = sup
x∈X

|f(x)|

teremos mais um exemplo de álgebra normada.

2 Diz-se que uma função f : X → C se anula no infinito quando para todo ε > 0 existe um compacto

K ⊆ X tal que |f(x)| < ε para todo x /∈ K. Quando X é compacto, a possibilidade de tomarmos K = X

nos diz que toda função se anula no infinito!
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Uma álgebra normada A é, como o seu próprio nome indica, um espaço normado e
portanto podemos nos referir à distância entre dois elementos a e b de A, isto é

d(a, b) = ‖a− b‖.

Portanto todos os conceitos relativos aos espaços métricos passam a ter relevância no estudo
das álgebras normadas. Um dos conceitos cruciais é a completitude, isto é a propriedade
de que toda sequência de Cauchy é convergente. Isto motiva a seguinte:

2.6. Definição. Uma álgebra de Banach é uma álgebra normada completa.

Dentre os exemplos citados acima apenas (2.4) e (2.5) são álgebras de Banach. No
primeiro caso esta afirmação decorre do fato de que todo espaço normado de dimensão finita
é completo e no segundo, essencialmente de que o limite uniforme de funções cont́ınuas é
uma função cont́ınua.

Nenhuma das outras álgebras mencionadas acima são completas devido ao fato que
um espaço de Banach jamais tem dimensão algébrica infinita enumerável.

Na teoria dos espaços normados nós aprendemos que dado um espaço normado V que
não é completo existe um único (a menos de isometria) espaço completo V̄ que contém V
como subespaço denso. Desta forma, dada uma álgebra normada A que não é completa
existe um espaço de Banach Ā que contém A como subespaço denso. Em vista de (2.1.v)
a operação de multiplicação de A pode ser estendida de forma única a uma operação de
multiplicação em Ā que torna Ā uma álgebra de Banach.

Exerćıcios do Caṕıtulo 2

A. Verifique que as álgebras dos exemplos acima de fato são álgebras normadas.

B. Prove a afirmação feita após o Exemplo (2.3). É realmente necessário que o conjunto que substitui
[0, 1] seja infinito?

C. Prove que as álgebras descritas em (2.4) e (2.5) são álgebras de Banach.

D. Prove com detalhes a afirmação feita acima de que completamento de uma álgebra normada é uma
álgebra de Banach.

E. Prove que se uma álgebra normada A tem unidade, denotada por 1, então ‖1‖ = 0 (e neste caso
A = {0}) ou ‖1‖ ≥ 1.

F. Dada uma álgebra normada A (possivelmente sem unidade), seja Ã = A⊕C (soma direta de espaços
vetoriais) equipada com a operação de multiplicação e norma a seguir:

(a, λ)(b, µ) = (ab + λb + µa, λµ)

‖(a, λ)‖ = ‖a‖+ |λ|,

onde a, b ∈ A e λ, µ ∈ C. Prove que Ã é uma álgebra normada com unidade de norma um, que é
completa se A o for.
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ESPECTRO 3

Entre os conceitos mais importantes no estudo de álgebras de Banach estão os con-
ceitos de espectro e resolvente que estudaremos a seguir. Para isto vamos supor, ao longo
de todo este caṕıtulo, que A é uma álgebra de Banach com unidade, denotada 1.

É fácil ver que a correspondência

λ ∈ C 7→ λ1 ∈ A

é injetora (a menos do caso trivial em que A = {0}) e pode ser utilizada para identificarmos
o corpo dos números complexos com uma sub-álgebra de A. Abusando deste ponto de
vista nós vamos supor que C está contido em A, identificando o número complexo λ com
o elemento λ1 de A, sempre que isto não causar confusão. Em particular, na próxima
definição nós vamos nos referir à λ − a, onde a ∈ A e λ ∈ C quando o figurino mandaria
escrevermos λ1− a.

3.1. Definição. Dado a ∈ A definimos o resolvente de a e o como sendo o conjunto ρ(a)
dado por

ρ(a) =
{
λ ∈ C : λ− a é inverśıvel

}
.

O espectro de a é definido como sendo o conjunto σ(a) dado por σ(a) = C \ ρ(a), isto é,
o complementar de ρ(a).

3.2. Proposição. Seja a, b ∈ A. Então σ(ab) \ {0} = σ(ba) \ {0}.

Prova. Basta provarmos que se λ 6= 0 então λ − ab é inverśıvel se e somente se λ − ba é
inverśıvel. Suponha então que λ− ab é inverśıvel. Afirmamos que

c := λ−1
(
1 + b(λ− ab)−1a

)
é o inverso de λ− ba. De fato

c(λ− ba) = λ−1
(
1 + b(λ− ab)−1a

)
(λ− ba) = λ−1

(
λ− ba+ b(λ− ab)−1a(λ− ba)

)
=

= λ−1
(
λ− ba+ b(λ− ab)−1(λ− ab)a

)
= λ−1(λ− ba+ ba) = 1.

Similarmente prova-se que (λ − ba)c = 1, e portanto λ − ba é inverśıvel. Para provarmos
a rećıproca basta trocar os papéis de a e b. ut

O nosso próximo grande objetivo será a demonstração de que o espectro de um ele-
mento é sempre um conjunto compacto e não vazio. Comecemos com o seguinte resultado:
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3.3. Lema. Se a ∈ A é inverśıvel e ‖a− b‖ < ‖a−1‖−1 então b também é inverśıvel e

b−1 =
∞∑

n=0

(
a−1(a− b)

)n
a−1.

Portanto o conjunto dos elementos inverśıveis de A é aberto.

Prova. Seja x = a−1(a− b) e observe que b = a(1− x). Para provarmos que b é inverśıvel
basta portanto provarmos que 1− x é inverśıvel. Observando que por hipótese

‖x‖ ≤ ‖a−1‖ ‖a− b‖ < ‖a−1‖ ‖a−1‖−1 = 1,

temos que a série infinita
∑∞

n=0 x
n é absolutamente convergente (e portanto convergente

pois A é completa). Seja y a sua soma. Então

(1− x)y = (1− x)

(
lim

N→∞

N∑
n=0

xn

)
= lim

N→∞
1− xN+1 = 1,

já que ‖xN+1‖ ≤ ‖x‖N+1 → 0 quando N → ∞. Verificando por meios similares que
também y(1− x) = 1 concluimos que y é o inverso de 1− x como desejado. Segue-se que

b−1 = (1− x)−1a−1 = ya−1 =
∞∑

n=0

xna−1 =
∞∑

n=0

(
a−1(a− b)

)n
a−1. ut

É conveniente provarmos também que a função de inversão é cont́ınua:

3.4. Proposição. Nas condições de (3.3) temos que

‖b−1 − a−1‖ ≤ ‖a−1‖2 ‖a− b‖
1− ‖a− b‖

,

e portanto lim
b→a

b−1 = a−1. Ou seja, a função de inversão a 7→ a−1 é cont́ınua no seu

domı́nio.

Prova. Usando a expressão obtida acima para b−1 temos

‖b−1 − a−1‖ =

∥∥∥∥∥
( ∞∑

n=0

(
a−1(a− b)

)n − 1

)
a−1

∥∥∥∥∥ =

∥∥∥∥∥
∞∑

n=1

(
a−1(a− b)

)n
a−1

∥∥∥∥∥ ≤
≤ ‖a−1‖2

∞∑
n=1

‖a− b‖n = ‖a−1‖2 ‖a− b‖
1− ‖a− b‖

. ut

É imediato verificarmos que, dado a ∈ A, a função

λ ∈ C 7→ λ− a ∈ A

é cont́ınua. A imagem inversa do conjunto aberto formado pelos elementos inverśıveis de
A é portanto um sub-conjunto aberto de C. Mas é claro que este conjunto é precisamente
o resolvente de a. Isto prova, portanto, a seguinte:
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3.5. Proposição. O espectro de um elemento a ∈ A é um conjunto fechado.

Para provarmos que o espectro é compacto, como mencionado acima, basta agora
provarmos que é limitado.

3.6. Proposição. Se x ∈ A e λ ∈ C é tal que |λ| > ‖x‖ então λ− x é inverśıvel e

(λ− x)−1 =
∞∑

n=0

λ−n−1xn.

Em consequência o espectro de x está contido na bola (no plano complexo) centrada em
zero e de raio ‖x‖, e portanto é compacto.

Prova. Pondo a = λ e b = λ− x note que

‖a− b‖ = ‖x‖ < ‖λ‖ = ‖λ−1‖−1.

O resultado então segue imediatamente de (3.3). ut

Resta-nos agora provarmos que o espectro de um elemento é sempre não vazio, o que
é na verdade um resultado de um grau de dificuldade bastante superior ao que vimos até
agora no sentido que precisaremos invocar um teorema profundo da teoria das funções
anaĺıticas.

3.7. Definição. A função resolvente de um elemento a ∈ A é a função Ra : ρ(a) → A
dada por

Ra(λ) = (λ− a)−1, ∀λ ∈ ρ(a).

Uma das principais propriedades da função resolvente é dada no nosso próximo resul-
tado:

3.8. Proposição. Seja a ∈ A.

(i) Dados λ 6= µ em ρ(a) temos

Ra(µ)−Ra(λ)
µ− λ

= −(µ− a)−1(λ− a)−1.

(ii) Para qualquer funcional linear cont́ınuo ϕ ∈ A∗ (dual topológico de A) a composição
ϕ◦Ra é uma função anaĺıtica em ρ(a).

Prova. Dados λ, µ ∈ ρ(a) temos

Ra(µ)−Ra(λ) = (µ− a)−1 − (λ− a)−1 =

= (µ− a)−1
(
(λ− a)− (µ− a)

)
(λ− a)−1 = (µ− a)−1(λ− µ)(λ− a)−1,

donde segue a primeira afirmação. Dado ϕ ∈ A∗ temos

lim
µ→λ

ϕ(Ra(µ))− ϕ(Ra(λ))
µ− λ

= lim
µ→λ

−ϕ
(
(µ− a)−1(λ− a)−1

)
= −ϕ

(
(λ− a)−2

)
,

onde o último passo segue de (3.4). Portanto ϕ◦Ra é de fato anaĺıtica. ut
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É curioso observar a similaridade entre a conclusão final do resultado acima, isto é
que,

d

dλ
ϕ
(
(λ− a)−1

)
= −ϕ

(
(λ− a)−2

)
,

e o resultado bem conhecido segundo o qual

d

dλ
(λ− a)−1 = −(λ− a)−2,

para a ∈ C.
Estamos agora em condições de provar o resultado principal desta seção:

3.9. Teorema. Dado a ∈ A temos que σ(a) é um conjunto compacto e não vazio.

Prova. Tendo já provado que σ(a) é compacto provarmos que não é vazio por absurdo.
Supondo que σ(a) é vazio, e portanto que ρ(a) = C, tome ϕ em A∗. Então, por (3.8) a
composta ϕ◦Ra é uma função inteira. Por outro lado, usando a expressão para (λ− a)−1

fornecida por (3.6) temos que

‖(λ− a)−1‖ ≤
∞∑

n=0

|λ|−n−1‖a‖n =
1
|λ|

∞∑
n=0

(
‖a‖
|λ|

)n

=
1
|λ|

1

1− ‖a‖
|λ|

=
1

|λ| − ‖a‖
,

para |λ| > ‖a‖, o que prova que lim
λ→∞

Ra(λ) = 0 e portanto também que lim
λ→∞

ϕ(Ra(λ)) = 0.

Por um lado isto implica que ϕ◦Ra é uma função limitada. Invocando o Teorema
de Liouville concluimos portanto que ϕ◦Ra é constante. Por outro lado esta constante
deve necessariamente ser nula já que o seu limite no infinito é nulo. Assim temos que
ϕ(Ra(λ)) = 0 para todo ϕ e todo λ. Usando agora o Teorema de Hahn-Banach temos que
Ra(λ) = 0 para todo λ o que é um flagrane absurdo uma vez que um inverso (Ra(λ) é o
inverso de λ− a) é necessariamente inverśıvel e portanto não nulo. ut

Não é de se estranhar que o Teorema de Liouville tenha uma participação importante
no resultado acima. De fato, quando consideramos A = Mn(C) (veja exemplo (2.4)), o
resultado recém provado nos diz que o polinômio caracteŕıstico de qualquer matriz com-
plexa tem ráızes! O leitor provavelmente se recorda da demonstração de que o corpo
dos números complexos é algébricamente fechado (i.e todo polinômio complexo tem ráız)
usando-se justamente o Teorema de Liouville!

3.10. Proposição. Seja a ∈ A e seja f(z) = p(z)/q(z) uma função racional, isto é, f é o
quociente do polinômio p pelo polinômio q. Suponha que q não se anula em σ(a). Então
σ(f(a)) = f(σ(a)).

Prova. Note que como q não se anula em σ(a) então q é um produto de fatores lineares do
tipo (z − λ) onde λ ∈ ρ(a). Assim q(a) é inverśıvel e portanto o quociente p(a)/q(a) está
bem definido.

Seja λ ∈ σ(a). Observando que o polinômio g definido por

g(z) = p(λ)q(z)− p(z)q(λ), ∀ z ∈ C
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se anula para z = λ, sabemos que existe um polinômio h tal que g(z) = (z − λ)h(z) e
portanto g(a) = (a− λ)h(a). Temos portanto que

f(λ)− f(a) =
p(λ)
q(λ)

− p(a)
q(a)

=
p(λ)q(a)− p(a)q(λ)

q(a)q(λ)
=

=
g(a)

q(a)q(λ)
= (a− λ)

h(a)
q(a)q(λ)

=
h(a)

q(a)q(λ)
(a− λ).

Uma vez que a−λ não é inverśıvel temos que f(λ)−f(a) tampouco é inverśıvel e portanto
f(λ) ∈ σ(f(a)), o que prova que f(σ(a)) ⊆ σ(f(a)).

Para provarmos a inclusão no sentido inverso, isto é, que σ(f(a)) ⊆ f(σ(a)), seja
λ ∈ σ(f(a)). Seja g o polinômio dado por g = λq − p, que pode ser fatorado como

g(z) = λ0(z − λ1)(z − λ2) . . . (z − λn),

onde λ0, λ1, . . . , λn ∈ C. Temos

λ− f(a) = λ− p(a)
q(a)

=
λq(a)− p(a)

q(a)
=
g(a)
q(a)

=
λ0(a− λ1)(a− λ2) . . . (a− λn)

q(a)
.

Dado que λ ∈ σ(f(a)) vemos que a expressão acima representa um elemento não inverśıvel.
Desta forma temos que λi ∈ σ(a) para algum i = 1, . . . , n. Portanto, dado que g(λi) = 0,
temos que λq(λi) = p(λi) ou

f(λi) =
p(λi)
q(λi)

= λ.

Segue-se que λ ∈ f(σ(a)). ut

Exerćıcios do Caṕıtulo 3

A. Onde está o erro do seguinte argumento: considere o corpo Q (não comutativo) dos quatérnios e
considere C como subcorpo de Q. Seja a qualquer elemento de Q que não é um número complexo,
por exemplo j ou k. Note que para todo complexo λ temos que λ − a não é nulo e portanto é
inverśıvel. Segue-se que σ(a) = ∅ contrariando (3.9)?!

B. Seja A a álgebra do exemplo (2.2). Descreva o espectro de cada elemento de A.

C. Seja A a álgebra do exemplo (2.5), onde supomos que X é compacto e portanto que A tem unidade.
Dado f ∈ A prove que σ(f) = f(X).

D. Dado um sub-conjunto compacto não vazio S do plano complexo encontre um exemplo de uma álgebra
de Banach que contenha um elemento cujo espectro é S.

E. Dado um sub-conjunto S do plano complexo encontre um exemplo de uma álgebra (não necessaria-
mente normada) que contenha um elemento cujo espectro é S.

F. Seja K uma extensão de C (isto é, um corpo que contém C) visto como uma álgebra complexa da
maneira usual. Prove que não existe norma que faça de K uma álgebra normada (e muito menos de
Banach!).

G. Seja A uma álgebra de Banach e seja a um elemento de A. Suponha que

an + cn−1an−1 + · · ·+ c1a + c0 = 0,

onde c0, . . . , cn−1 ∈ C. Prove que σ(a) está contido no conjunto das ráızes do polinômio p(x) =
xn + cn−1xn−1 + · · ·+ c1x + c0.

H. Seja A uma álgebra de Banach e seja a um elemento idempotente não trivial de A, isto é, 0 6= a 6= 1
e a2 = a. Prove que σ(a) = {0, 1}.
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RAIO ESPECTRAL 4

Como no caṕıtulo anterior A denotará uma álgebra de Banach com unidade. Passemos
imediatamente à definição do conceito central deste caṕıtulo:

4.1. Definição. O raio espectral de um elemento a ∈ A é definido por

r(a) = sup
λ∈σ(a)

|λ|.

Note que (3.6) nos diz que r(a) ≤ ‖a‖ para todo a ∈ A.
Em se tratando da invertibilidade de λ − a o Teorema (3.6) nos dá uma fórmula

expĺıcita para (λ−a)−1 quando |λ| > ‖a‖ através de uma série absolutamente convergente.
Por outro lado segue da definição de raio espectral que λ− a é inverśıvel para |λ| > r(a) e
portanto fica colocada a questão sobre o comportamento da série em (3.6) quando λ está
na corôa definida pelas inequações

r(a) < |λ| ≤ ‖a‖,
que pode (exemplos garantem) ser não vazia. É nossa intenção provar que a série men-
cionada converge áı também.

4.2. Lema. Para todo λ ∈ C com |λ| > r(a) a série
∞∑

n=0

λ−n−1an converge absolutamente

para (λ− a)−1.

Prova. Seja ϕ ∈ A∗ e considere a função f = ϕ◦Ra que é anaĺıtica em ρ(a) por (3.8). Por
(3.6) temos que

f(λ) = λ−1
∞∑

n=0

λ−nϕ(an), (†)

para |λ| > ‖a‖. Note porém que f é anaĺıtica para |λ| > r(a) e portanto segue de um
conhecido resultado sobre funções anaĺıticas [12: 10.6] que a série (†) de fato converge para
|λ| > r(a). Em particular

sup
n∈N

|λ−nϕ(an)| <∞,

o que implica que o conjunto
{
λ−nan : n ∈ N

}
é fracamente limitado e portanto limitado

pelo prinćıpio da limitação uniforme. Existe portanto uma constante Kλ > 0 tal que

‖λ−nan‖ ≤ Kλ, ∀n ∈ N.
Dado λ0 ∈ C com |λ0| > r(a) tome λ1 ∈ C com |λ0| > |λ1| > r(a). Então

‖λ−n
0 an‖ = ‖λ−n

1 an‖
(
|λ1|
|λ0|

)n

≤ Kλ1

(
|λ1|
|λ0|

)n

,

provando a convergência absoluta da série do enunciado em λ0 uma vez que |λ1|
|λ0| < 1. ut

12



Podemos agora apresentar o resultado mais importante deste caṕıtulo:

4.3. Teorema. Dado a ∈ A temos que

r(a) = lim
n→∞

‖an‖1/n = inf
n∈N

‖an‖1/n.

Em particular o limite lim
n→∞

‖an‖1/n existe.

Prova. Seja λ ∈ σ(a). Dado n ∈ N temos que

λn − an =

= (λ− a)(λn−1 + λn−2a+ · · ·+ λan−2 + an−1) =

= (λn−1 + λn−2a+ · · ·+ λan−2 + an−1)(λ− a),

e portanto λn − an não é inverśıvel (se o fosse λ − a também seria). Segue portanto que
λn ∈ σ(an) de onde |λn| ≤ ‖an‖ por (3.6) ou, equivalentemente,

|λ| ≤ ‖an‖1/n.

Tomando o supremo para λ ∈ σ(a) e o ı́nfimo para n ∈ N concluimos que

r(a) ≤ inf
n∈N

‖an‖1/n.

Dado λ com |λ| > r(a) sabemos por (4.2) que a série
∑∞

n=0 λ
−nan converge e, em

particular, lim
n→∞

λ−nan = 0. Portanto existe n0 ∈ N tal que para n ≥ n0 temos ‖λ−nan‖ <
1 ou seja

‖an‖1/n < |λ|.

Tomando o limite superior em n e o ı́nfimo para |λ| > r(a) concluimos que

lim sup
n→∞

‖an‖1/n ≤ r(a),

o que, aliado à conclusão obtida acima, dá

lim sup
n→∞

‖an‖1/n ≤ r(a) ≤ inf
n∈N

‖an‖1/n ≤ lim inf
n→∞

‖an‖1/n,

de onde a conclusão segue facilmente. ut
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Exerćıcios do Caṕıtulo 4

A. Para um elemento a da álgebra do exemplo (2.5), com X compacto, prove que r(a) = ‖a‖.

B. Considere a matriz n× n dada por

a =


0 0 0 · · · 0 0
1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0


Calcule o raio espectral de a e verifique diretamente a validade dos Teoremas (4.2) e (4.3) para a.

C. Um elemento a de uma álgebra de Banach é dito nilpotente se existe k ∈ N tal que ak = 0, e

topologicamente nilpotente se lim
k→∞

‖ak‖1/k = 0 (equivalentemente se r(a) = 0). Prove que um

elemento topologicamente nilpotente de Mn(C) é necessariamente nilpotente.

*D. O fato de que o limite coincide com o ı́nfimo para a sequência {‖an‖1/n}n pode levá-lo a crer que
esta é uma sequência decrescente. Dê um exemplo para provar que isto não é verdade.
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ESPECTRO DE UMA ÁLGEBRA 5

Nos caṕıtulos acima tratamos do espectro de um elemento de uma álgebra de Banach.
Agora vamos tratar do espectro de uma álgebra. Inicialmente o leitor provavelmente não
verá ligação entre estes conceitos e portanto o uso da palavra “espectro” em ambas as
situações poderá parecer injustificado. No seu devido tempo, porém, veremos que de fato
existe uma relação muito forte entre o espectro de um elemento e o espectro de uma
álgebra.

5.1. Definição. Dadas álgebras de Banach A e B diremos que uma função ϕ : A→ B é
um homomorfismo se ϕ for linear e além disto

ϕ(ab) = ϕ(a)ϕ(b),

para todo a, b ∈ A. O espectro de A é definido como sendo o conjunto Â formado por todos
os homomorfismos não nulos de A em C.

Nunca é demais insistir que, apesar do fato que a função nula é um homomorfismo
leǵıtimo de A em C, esta é excluida de Â por decreto!

Note que não assumimos nenhuma hipótese sobre a continuidade dos homomorfismos
ϕ acima. Entretanto temos:

5.2. Proposição. Seja A uma álgebra de Banach. Se ϕ : A → C é um homomorfismo
então |ϕ(a)| ≤ ‖a‖ para todo a ∈ A e portanto ϕ é cont́ınuo.

Prova. Acrescentanto uma unidade em A (cf. exerćıcio (2.F)) podemos supor que A tem
unidade e que ϕ(1) = 1. Dado a ∈ A note que a−ϕ(a) pertence ao núcleo de ϕ, que é um
ideal de A, e portanto não pode ser inverśıvel. Desta forma ϕ(a) ∈ σ(a) donde por (3.6)
temos que |ϕ(a)| ≤ ‖a‖. ut

Isto posto vemos que Â é um subconjunto da bola unitária do dual A∗. Sendo assim
podemos coniderar Â como espaço topológico com a topologia induzida pela topologia da
convergência pontual (também chamada de topologia fraca*) de A∗.

5.3. Proposição. Seja A uma álgebra de Banach. O espectro Â é um espaço localmente
compacto com a topologia da convergência pontual. Caso A tenha unidade Â é compacto.

Prova. Considere o conjuto S formado por todos os homomorfismos de A em C (não
sendo exclúıdo o homomorfismo nulo desta vez). É fácil ver que S é fechado na topologia
da convergência pontual e portanto compacto pelo Teorema de Alaoglu. Como Â resulta
da remoção de um ponto (o homomorfismo nulo) do espaço compacto S, concluimos que
Â é localmente compacto.

No caso em que A tem unidade note que dado ϕ ∈ S temos que

ϕ 6= 0 ⇔ ϕ(1) = 1.
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Desta forma vemos que Â é fechado em S (equivalentemente o homomorfismo nulo é um
ponto isolado de S) e portanto compacto. ut

Suponha, de agora em diante, que A é uma álgebra de Banach comutativa com
unidade. Nosso objetivo a seguir é mostrar uma importante relação entre o espectro
de um elemento a ∈ A e o espectro de A. Conforme vimos na prova de (5.2), para todo
ϕ ∈ Â temos que ϕ(a) ∈ σ(a). Provaremos que na verdade todo elemento de σ(a) é da
forma ϕ(a) para algum ϕ ∈ Â:

5.4. Teorema. Seja A uma álgebra de Banach comutativa com unidade. Então para
todo a ∈ A vale

σ(a) =
{
ϕ(a) : ϕ ∈ Â

}
.

Prova. Seja λ ∈ σ(a) e considere o conjunto

J0 = (λ− a)A :=
{
(λ− a)b : b ∈ A

}
.

Como estamos supondo que A é comutativa, temos que J0 é um ideal de A. Sendo que
λ− a não é inverśıvel é evidente que 1 /∈ J0 de onde J0 é distinto de A. Usando o lemma
de Zorn, tome um ideal maximal próprio J contendo J0 (e portanto também λ− a).

Afirmamos que J é fechado. De fato, se não o fosse é claro que o fecho J̄ também seria
um ideal e, pela maximalidade de J , teriamos J̄ = A. Segue se que J é denso e portanto a
interseção de J com o conjunto aberto dos elementos inverśıveis seria não vazia. Assim J
conteria elementos inverśıveis e, por ser um ideal, teŕıamos J = A, o que é uma contradição.

Seja B = A/J , isto é, o quociente de A por J . Equipando B com a estrutura quociente
de álgebra complexa e a norma quociente3 é fácil ver que B é uma álgebra de Banach
comutativa.

Afirmamos que B = C1. De fato, dado b ∈ B, usando (3.9) temos que µ − b é não
inverśıvel para algum µ ∈ C. Entretanto, como J é maximal, todo elemento não nulo de
B é inverśıvel de onde segue que b = µ.

Tendo provado que B = C podemos ver a aplicação quociente

π : A→ A/J = C

como um homomorfismo complexo, ou seja, um elemento de Â. Recordando que λ − a ∈
J = Ker(π) temos que π(a) = λ de onde segue a inclusão “⊆” entre os conjuntos men-
cionados no enunciado. Como a outra inclusão segue da argumentação acima, o resultado
está provado. ut

Não deve passar desapercebida a importante consequência do Teorema acima segundo
a qual o espectro de uma álgebra de Banach comutativa com unidade é sempre não vazio!

3 A norma quociente é definida por ‖a + J‖ = inf
x∈J

‖a + x‖.
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Exerćıcios do Caṕıtulo 5

A. O espectro de uma álgebra não comutativa nem sempre é muito interessante. Por exemplo, se

A = Mn(C) então Â é o conjunto vazio. Prove isto.

B. Determine o espectro das álgebras dos demais exemplos do caṕıtulo (2). Nos casos em que a álgebra
não é competa decida se vale a conclusão do Teorema (5.2).

C. Prove que existe uma única álgebra de Banach comutativa simples (isto é, que não contém ideais
bilaterais).

D. Seja A uma álgebra de Banach sem unidade e seja Ã a álgebra definida no exemplo (2.F). Prove que

o espectro de Ã é o compactificado de Alexandrov de Â (o compactificado no qual se acrescenta um
ponto no infinito).

*E. Seja S1 o ćırculo unitário complexo e seja Z a função complexa definida em S1 por

Z(z) = z, ∀ z ∈ S1.

Seja A a menor sub-álgebra fechada de C(S1) que contém a função Z. Determine o espectro de A.

**F. Seja A a álgebra formada por todas as funções complexas definidas em [0, 1] que tem limite lateral
em todos os pontos de [0, 1]. Determine o espectro de A.
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A TRANSFORMADA DE GELFAND 6

Nesta seção concentrar-nos-emos no estudo de álgebras de Banach comutativas. É
fato que várias das definições e resultados que veremos a seguir se aplicam, formalmente
falando, para álgebras não comutativas. Entretanto, em não havendo nenhuma aplicação
relevante no contexto não comutativo, vamos nos restringir às álgebras comutativas.

Seja portanto A uma álgebra de Banach comutativa, fixa durante este caṕıtulo. Dado
a ∈ A considere a função â : Â→ C dada por

â(ϕ) = ϕ(a), ∀ϕ ∈ Â.

A idéia aqui, como em várias outras situações em Matemática, é olhar para a expressão
“ϕ(a)” e enquanto todos vêm áı a “função ϕ” calculada na “variável a”, nós optamos
por ver a “função a” calculada na “variável ϕ”. A definição de â acima tem por objetivo
justamente a formalização desta idéia.

Uma vez que consideramos em Â justamente a topologia da convergência pontual, é
óbvio que â é uma função cont́ınua em Â para todo a em A.

Note também que no caso em que Â não é compacto temos que â ∈ C0(Â), isto é, â
tem limite zero no infinito (veja o exemplo (2.5)). De fato, dado ε > 0 seja K =

{
ϕ ∈ Â :

|ϕ(a)| ≥ ε
}
. É fácil ver que K é compacto e que |â(ϕ)| < ε para ϕ /∈ K.

6.1. Definição. A transformada de Gelfand de A é a função

κ : A→ C0(Â)

dada por κ(a) = â, para todo a ∈ A.

6.2. Proposição. Dado a ∈ A temos

‖κ(a)‖ = r(a) ≤ ‖a‖,

e portanto a transformada de Gelfand é um homomorfismo contrativo.

Prova. Deixaremos para o leitor a verificação elementar de que κ é de fato um homomor-
fismo e nos concentraremos na verificação de que ‖κ(a)‖ = r(a). Por definição da norma
em C0(Â) temos que

‖κ(a)‖ = sup
{
|â(ϕ)| : ϕ ∈ Â

}
=

= sup
{
|ϕ(a)| : ϕ ∈ Â

} (5.4)
= sup

{
|λ| : λ ∈ σ(a)

}
= r(a). ut
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Exerćıcios do Caṕıtulo 6

A. Seja A uma álgebra de Banach comutativa e seja a ∈ A um elemento nilpotente (isto é, para o qual
existe n ∈ N tal que an = 0). Prove que κ(a) = 0.

B. Seja A uma álgebra de Banach comutativa e seja a ∈ A um elemento não nulo para o qual ‖a2‖ = ‖a‖2.
Prove que ‖κ(a)‖ = ‖a‖, e portanto κ(a) 6= 0.

C. Seja A uma álgebra de Banach comutativa com unidade. Prove que os seguintes conjuntos são iguais:

i) O radical de Jacobson de A (isto é, o ideal obtido pela interseção de todos os ideais maximais),

ii) O conjunto dos elementos topologicamente nilpotentes,

iii) Ker(κ).
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C*-ÁLGEBRAS 7

A teoria geral das álgebras de Banach, a partir deste ponto, é extremamente delicada
e dif́ıcil. Entretanto há uma sub-classe das álgebras de Banach, formada pelas C*-álgebras,
para a qual podemos obter resultados muito mais profundos. É a esta classe de álgebras
que dedicaremos nossa atenção de agora em diante.

7.1. Definição. Seja A uma álgebra de Banach. Uma involução em A é uma função4

∗ : A→ A

satisfazendo para todo a, b ∈ A e λ ∈ C:
(i) (a+ b)∗ = a∗ + b∗,
(ii) (λa)∗ = λ̄a∗,
(iii) (ab)∗ = b∗a∗,
(iv) (a∗)∗ = a,
(v) ‖a∗‖ = ‖a‖.

Uma álgebra de Banach com involução é, por definição, uma álgebra de Banach equipada
com uma involução. Uma C*-álgebra é uma álgebra de Banach com involução para a qual
vale
(vi) ‖a∗a‖ = ‖a‖2, ∀ a ∈ A.

A álgebra do exemplo (2.4) (com a primeira das duas normas mencionadas) é uma
C*-álgebra se equipada com a operação de involução dada pela conjugada complexa, isto
é, para uma matriz a = {aij} pomos a∗ = {āji}.

Também a álgebra do exemplo (2.5) pode ser tornada uma C*-álgebra se considerar-
mos a invoução dada pela conjugação ponto-a-ponto, isto é, dada uma função f ∈ C0(X)
definimos f∗ como sendo a função dada por f∗(x) = f(x), para todo x ∈ X.

Um novo e importante exemplo de C*-álgebra é dado a seguir:

7.2. Exemplo. Seja H um espaço de Hilbert complexo e seja B(H) o conjunto de todos
os operadores lineares cont́ınuos

T : H → H.

Levando em consideração a estrutura usual de espaço vetorial complexo em B(H) definimos
o produto TS, para T, S ∈ B(H), como sendo a composição de operadores T ◦S. A norma
de um operador T ∈ B(H) é definida por

‖T‖ = sup
{
‖T (ξ)‖ : ξ ∈ H, ‖ξ‖ ≤ 1

}
,

4 A imagem de um elemento a pela função involução será denotada por a∗, e não por ∗(a).
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enquanto que a involução de um operador T é definida como o adjunto usual de T , isto é,
T ∗ é o único operador linear em H que satisfaz

〈T (ξ), η〉 = 〈ξ, T ∗(η)〉 , ∀ ξ, η ∈ H.

7.3. Definição. Dada uma C*-álgebra A dizemos que um sub-conjunto B ⊆ A é uma
sub-C*-álgebra de A quando B é uma sub-álgebra fechada de A que além disto é invariante
pela involução (i.e. B∗ ⊆ B).

É claro que uma sub-C*-álgebra é, em si, uma C*-álgebra com as operações induzidas
pela álgebra ambiente.

Dado um subconjunto qualquer S de uma C*-álgebra A podemos considerar a in-
terseção de todas as sub-C*-álgebras de A que contém S, o que óbviamente resulta numa
C*-álgebra que contém S e que é a menor de todas as sub-C*-álgebras de A com esta
propriedade. Tal sub-C*-álgebra é chamada a C*-álgebra gerada por S.

Esta é uma importante fonte de exemplos de C*-álgebras que exploramos a seguir.

7.4. Exemplo. Seja H um espaço de Hilbert complexo e seja K (H) o conjunto de todos
os operadores lineares compactos em H. Então K (H) é uma sub-C*-álgebra de B(H) e
portanto é uma C*-álgebra.

7.5. Exemplo. Seja θ um número irracional e seja H o espaço de Hilbert L2(S1). Con-
sidere os operadores U e V em H dados por

U(ξ)
z

= zξ(z), e V (ξ)
z

= ξ(e2πiθz),

para todo ξ ∈ H e z ∈ S1. Uma importante relação algébrica envolvendo U e V é

V U = e2πiθUV, (7.6)

que o leitor pode facilmente verificar. A C*-álgebra gerada por {U, V } é chamada a álgebra
de rotação irracional e é denotada por Aθ.

Sabe-se que Aθ é uma álgebra simples (não contém ideais bilaterais) e também que
para 0 < θ1 < θ2 < 1/2, as álgebras Aθ1 e Aθ2 não são isomorfas [11: Theorem 2]. As
provas destes dois fatos estão intimamente ligadas ao grande avanço da teoria das C*-
álgebras dos últimos vinte e cinco anos.

7.7. Exemplo. Para cada n ∈ N seja In = {0, 1}n e seja I∞ = {0, 1}N. Seja H um
espaço de Hilbert com uma base {eξ}ξ∈I∞ indexada por I∞ (e portanto não separável).
Dado n ∈ N considere para cada v = (v0, . . . , vn−1) ∈ In o operador Sv : H → H
dado por Sv(eξ) = evξ, onde entendemos a expressão vξ como concatenação, isto é vξ =
(v0, . . . , vn−1, ξ0, ξ1, . . .).

Observe que cada Sv é uma isometria de H sobre um subespaço Hv de H (a saber o
subespaço gerado pelos eξ para todos os ξ que “começam” por v) e que para v 6= w ∈ In
temos Hv ⊥ Hw.
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Seja An o sub-espaço vetorial de B(H) gerado pelo conjunto de operadores{
evw := SvS

∗
w : v, w ∈ In

}
.

É fácil verificar que
evweyz = δwyevz, e e∗vw = ewv,

de onde segue facilmente que An é uma sub-C*-álgebra de B(H) isomorfa à álgebra de
matrizes de tamanho 2n × 2n sobre C. Não é dif́ıcil provar que

evw = ev0w0 + ev1w1 ,

onde v0, v1 ∈ In+1 são dados por v0 = (v0, . . . , vn−1, 0) e v1 = (v0, . . . , vn−1, 1) e similar-
mente para w0 e w1. Desta forma vemos que An ⊆ An+1. Definimos então A como sendo
o fêcho da reunião crescente

⋃
n∈NAn.

A é uma AF-álgebra (aproximadamente finita), no sentido em que esta contém uma
álgebra densa que é a reunião de uma famı́lia crescente de sub-álgebras de dimensão finita.
Sabe-se também que A é uma álgebra simples.

O estudo desta álgebra tem ı́ntima relação com as famosas canonical anticommuta-
tion relations no estudo de férmions em F́ısica quântica. Além disto importantes modelos
de termodinâmica quântica, como por exemplo o famoso modêlo de Ising para ferromag-
netismo, pode ser estudado através da álgebra do presente exemplo.

A seguir discutiremos algumas propriedades elementares das C*-álgebras.

7.8. Proposição. Se A é uma C*-álgebra com unidade então 1 = 1∗ e ‖1‖ = 1 (a menos
do caso trivial em que A = {0}).

Prova. Temos 1∗ = 1∗1 = (1∗1)∗ = (1∗)∗ = 1. Também ‖1‖2 = ‖1∗1‖ = ‖1‖, donde
‖1‖ = 1 (ou ‖1‖ = 0). ut

Assim como um número complexo tem sua parte real e imaginária temos:

7.9. Proposição. Seja A uma álgebra de Banach com involução. Dado a ∈ A existem
elementos x, y ∈ A tais que x∗ = x, y∗ = y e a = x+ iy.

Prova. Sejam

x =
a+ a∗

2
, e y =

a− a∗

2i
.

A verificação das condições do enunciado é elementar. ut

Estudaremos agora uma importante propriedade relativa ao espectro de elementos de
uma C*-álgebra.

7.10. Proposição. Seja A uma C*-álgebra com unidade e seja a ∈ A um elemento auto-
adjunto, isto é, tal que a∗ = a. Então σ(a) ⊆ R.
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Prova. Seja λ ∈ σ(a) e escreva λ = x+ iy com x, y ∈ R. O nosso objetivo será provar que
y = 0. Para cada inteiro n seja bn = a− x+ iny. Considerando a função racional f dada
por f(z) = z−x+ iny conclúımos de (3.10) que f(λ) ∈ σ(f(a)), ou seja, i(n+1)y ∈ σ(bn).
Segue portanto de (3.6) que |i(n+ 1)y| ≤ ‖bn‖, de onde

(n2 + 2n+ 1)y2 = |i(n+ 1)y|2 ≤ ‖bn‖2 = ‖b∗nbn‖ = ‖(a− x− iny)(a− x+ iny)‖ =

= ‖(a− x)2 + n2y2‖ ≤ ‖a− x‖2 + n2y2,

o que implica que
(2n+ 1)y2 ≤ ‖a− x‖2.

Como n é arbitrário concluimos que y = 0, ou ainda que λ ∈ R. ut

Uma outra propriedade importante das C*-álgebras é exposta na seguinte:

7.11. Proposição. Seja A uma C*-álgebra com unidade e a ∈ A um elemento auto-
adjunto. Então

r(a) = ‖a‖.

Prova. Note que ‖a‖2 = ‖a∗a‖ = ‖a2‖ de onde, por indução finita, temos que ‖a‖2n

=
‖a2n‖. Segue-se que

r(a)
(4.3)
= lim

n→∞
‖a2n

‖1/2n

= ‖a‖. ut

Exerćıcios do Caṕıtulo 7

A. Prove que a definição (7.1) não se altera se omitirmos o axioma (v) e substituirmos o axioma (vi)
pela forma enfraquecida ‖a∗a‖ ≥ ‖a‖2.

B. Seja A uma C*-álgebra sem unidade. Prove que a álgebra do exerćıcio (2.F) torna-se uma C*-álgebra
com unidade se definirmos a involução e a norma a seguir:

(a, λ)∗ = (a∗, λ̄), e ‖(a, λ)‖ = sup
{
‖ab + λb‖ : b ∈ A, ‖b‖ ≤ 1

}
.

Prove também que esta norma é equivalente à norma introduzida no exerćıcio (2.F).

C. Prove a relação (7.6).

D. Sendo que a álgebra An citada no exemplo (7.7) é isomorfa à álgebra de matrizes 2n × 2n, e sendo
que An ⊆ An+1, explique de que forma a álgebra M2n (C) se encontra contida na álgebra M2n+1 (C).

*E. Este exerćıcio tem o objetivo de mostrar a importância do axioma (7.1.vi), mostrando que existe
uma álgebra de Banach com involução, para a qual (7.10) falha. Seja A a álgebra do exerćıcio (5.E).
Para f ∈ A defina

f∗(z) = f(z̄), ∀ z ∈ S1.

Prove que (A, ∗) é uma álgebra de Banach com involução. Prove também que o elemento Z é auto-
adjunto e que σ(Z) é o disco unitário complexo (que portanto não está contido em R).
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TEOREMA DE GELFAND PARA C*-ÁLGEBRAS COMUTATIVAS 8

O grande objetivo deste caṕıtulo é a prova do Teorema de Gelfand segundo o qual
toda C*-álgebra comutativa A com unidade é isomorfa à C(Â) através da transformada
de Gelfand vista no caṕıtulo (6). Para isto vamos supor ao longo do presente caṕıtulo que
A é uma C*-álgebra comutativa com unidade fixa.

O Teorema de Gelfand se aplica igualmente para C*-álgebras sem unidade (neste caso
devemos substituir C(Â) por C0(Â)). Nós vamos nos restringir aqui ao caso com unidade,
deixando a generalização para o caso sem unidade como exerćıcio (veja abaixo).

Seja A uma C*-álgebra comutativa com unidade, fixa durante todo este caṕıtulo.
Começaremos provando que homomorfismos complexos definidos em A necessariamente
preservam a involução:

8.1. Proposição. Dado ϕ ∈ Â temos que

ϕ(a∗) = ϕ(a), ∀ a ∈ A.

Prova. Suponha inicialmente que a é auto-adjunto. Então, como ϕ(a) ∈ σ(a) por (5.4), e
como σ(a) ⊆ R por (7.10), temos que ϕ(a) ∈ R, de onde

ϕ(a∗) = ϕ(a) = ϕ(a).

No caso geral escreva a = x+ iy como em (7.9) e portanto temos

ϕ(a∗) = ϕ(x− iy) = ϕ(x)− iϕ(y) = ϕ(x) + iϕ(y) = ϕ(a). ut

Note que o resultado acima pode ser interpretado como dizendo que a transformada
de Gelfand é um *-homomorfismo, isto é, um homomorfismo que satisfaz κ(a∗) = κ(a)
para todo a ∈ A.

Podemos agora provar o Teorema de Gelfand, um dos resultados mais celebrados na
teoria das C*-álgebras:

8.2. Teorema. Seja A uma C*-álgebra comutativa com unidade. A transformada de
Gelfand κ : A→ C(Â) é um *-isomorfismo isométrico de A sobre C(Â).

Prova. Seja a ∈ A. Como a∗a é auto-adjunto temos que

‖a‖2 = ‖a∗a‖ (7.11)
= r(a∗a)

(6.2)
= ‖κ(a∗a)‖ = ‖κ(a)κ(a)‖ = ‖κ(a)‖2,

provando assim que κ é um homomorfismo isométrico. Basta portanto verificarmos que
κ é sobrejetor. Para isto lançaremos mão do Teorema de Stone-Weierstrass e portanto
precisamos apenas provar que κ(A) separa pontos de Â.

Sejam portanto ϕ,ψ ∈ Â com ϕ 6= ψ. Devemos encontrar a ∈ A tal que κ(a)(ϕ) 6=
κ(a)(ψ), ou seja, ϕ(a) 6= ψ(a), mas dado que ϕ 6= ψ, tal a certamente existe! ut
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Para finalizar este caṕıtulo demonstraremos um importante resultado sobre perma-
nência espectral:

8.3. Teorema. Seja B uma C*-álgebra com unidade e seja A ⊆ B uma sub-C*-álgebra
contendo a unidade de B.

(i) Dado a ∈ A inverśıvel (como elemento de B) tem-se que a−1 ∈ A.

(ii) O espectro de a relativo à B, denotado σB(a), coincide com σA(a), o espectro de a
relativo à A.

Prova. Suponha inicialmente que a é auto-adjunto. Podemos então supor, sem perda
de generalidade, que A é a sub-C*-álgebra de B gerada por {1, a} e portanto que A é
comutativa. Pelo Teorema de Gelfand A é isometricamente isomorfa à C(Â).

Supondo-se que a não é inverśıvel em A então κ(a) é uma função que admite zeros.
Portanto existe uma sequência {an}n∈N de elementos de A tal que limn ‖aan‖ = 0 e
‖an‖ = 1 para todo n. Teŕıamos então que

1 = ‖an‖ = ‖a−1aan‖ ≤ ‖a−1‖ ‖aan‖
n→∞−→ 0,

o que é um absurdo.
No caso geral note que a∗a e aa∗ são inverśıveis em B de onde (a∗a)−1 e (aa∗)−1 ∈ A

pelo que já foi provado. Segue-se que a é inverśıvel à esquerda e à direita como elemento
de A, donde inverśıvel em A. Como o inverso é necessariamente único temos que o inverso
de a relativo à B coincide com o inverso relativo à A e portanto pertence à A. Isto conclui
a demonstração da parte (i).

Quanto à (ii) seja λ ∈ C. Então pela parte (i) temos que λ − a é inverśıvel em B se
e somente se λ− a é inverśıvel em A. Segue imediatamente que σB(a) = σA(a). ut

Exerćıcios do Caṕıtulo 8

A. Seja A uma C*-álgebra comutativa sem unidade e seja Ã a a C*-álgebra introduzida no exerćıcio
(7.B). Seja

κ : Ã → C(
̂̃
A)

a transformada de Gelfand. Prove que κ(A) =
{

f ∈ C(
̂̃
A) : f(∞) = 0

}
onde ∞ é o “ponto no

infinito” conforme o exerćıcio (5.D). Deduza que a transformada de Gelfand de A é um *-isomorfismo

sobre C0(Â).

B. Seja A uma C*-álgebra e seja a ∈ A. Prove que se existe uma semi-reta no plano complexo contendo
a origem e que não intercepta σ(a) então para cada inteiro n > 1 existe b ∈ A tal que bn = a.
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POSITIVIDADE 9

O conceito de positividade é um conceito fundamental em análise e, como não pode-
ria deixar de ser, representa um papel important́ıssimo na teoria das C*-álgebras. Este
caṕıtulo é dedicado a introduzir as noções básicas de positividade no nosso contexto. Seja
portanto A uma C*-álgebra com unidade fixa ao longo do presente caṕıtulo.

9.1. Definição. Um elemento a ∈ A é dito positivo se a é auto-adjunto e σ(a) ⊆ R+

(por R+ entendemos o intervalo [0,+∞)).

Iniciamos com uma lista de resultados básicos para elementos positivos de uma C*-
álgebra:

9.2. Proposição.

(i) Todo elemento auto-adjunto a ∈ A pode ser escrito como a diferença de elementos
positivos a+ e a− tais que a+a− = 0.

(ii) Se a e −a são ambos positivos então a = 0.

(iii) Seja a ∈ A um elemento auto-adjunto e seja µ uma constante com µ ≥ ‖a‖. Então a
é positivo se e somente se ‖µ− a‖ ≤ µ.

(iv) Se a e b são positivos então a+ b também é positivo.

(v) Se a é um elemento auto-adjunto então a ≤ ‖a‖ no sentido em que ‖a‖− a é positivo.

Prova. Dado a ∈ A auto-adjunto, a sub-C*-álgebra B de A gerada por {1, a} é comutativa
e portanto, pelo Teorema de Gelfand, isomorfa à C(B̂). Identificando B e C(B̂) via a
transformada de Gelfand podemos pensar em a como uma função real cont́ınua em B̂ e,
reciprocamente, toda função cont́ınua em B̂ pode ser interpretada como um elemento de
B. Seja portanto

a+ = max{a, 0}, e a− = max{−a, 0}.

É claro que a = a+ − a−, que a+a− = 0, e que a+ e a− são funções reais positivas e
portanto elementos positivos de B. Por (8.3.ii) vemos que a+ e a− são positivos também
como elementos de A.

Suponha agora que a e −a são positivos. Então temos que σ(a) ⊆ R+ ∩R− de onde
σ(a) = {0} e portanto por (7.11) concluimos que ‖a‖ = r(a) = 0.

Para provarmos (iii) note que por (3.6) e (7.10) temos que

σ(a) ⊆
[
− ‖a‖, ‖a‖

]
⊆ [−µ, µ].

Além disto
‖µ− a‖ (7.11)

= r(µ− a) = sup
λ∈σ(a)

|µ− λ| = sup
λ∈σ(a)

µ− λ.
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É óbvio portanto que ‖µ− a‖ ≤ µ se e somente se σ(a) ⊆ R+.
Para provarmos (iv) sejam a e b elementos positivos. Por (iii) temos que

∥∥‖a‖− a∥∥ ≤
‖a‖ e similarmente para b. Seja µ = ‖a‖+ ‖b‖. Então é claro que µ ≥ ‖a+ b‖ e que

‖µ− (a+ b)‖ =
∥∥(‖a‖ − a) + (‖b‖ − b)

∥∥ ≤ ∥∥‖a‖ − a
∥∥+

∥∥‖b‖ − b
∥∥ ≤ ‖a‖+ ‖b‖ = µ,

de onde a+ b é positivo por (iii).
Finalmente, seja a ∈ A um elemento auto-adjunto. Então por (3.6) temos que que

σ(a) ⊆
[
−‖a‖, ‖a‖

]
e consequentemente σ(‖a‖− a) ⊆

[
0, 2‖a‖

]
por (3.10). Assim ‖a‖− a

é positivo. ut

A seguir veremos um resultado técnico importante que nos auxiliará na obtenção de
caracterizações mais eficazes de positividade:

9.3. Lema. Suponha que a ∈ A e que −a∗a é positivo. Então a = 0.

Prova. Escreva a = x + iy como em (7.9). Como x é auto-adjunto temos por (7.10) que
σ(x) ⊆ R e portanto, por (3.10), temos que σ(x2) = σ(x)2 ⊆ R+. Segue-se que x2, e
similarmente y2, são elementos positivos. Note que

a∗a+ aa∗ = (x− iy)(x+ iy) + (x+ iy)(x− iy) = 2x2 + 2y2.

Portanto
a∗a = 2x2 + 2y2 − aa∗.

Como σ(−aa∗) \ {0} = σ(−a∗a) \ {0} por (3.2) temos que −aa∗ é positivo. Por (9.2.iv)
temos então que a∗a é também positivo e segue de (9.2.ii) que a∗a = 0, donde a = 0. ut

A seguir damos duas caracterizações alternativas para elementos positivos:

9.4. Teorema. Seja A uma C*-álgebra com unidade. Dado a ∈ A são equivalentes:

(i) a é positivo.

(ii) Existe um elemento auto-adjunto b ∈ A tal que b2 = a.

(iii) Existe b ∈ A tal que b∗b = a.

Prova. Supondo (i) seja B a sub-C*-álgebra de A gerada por {1, a}. Então pelo Teorema
de Gelfand temos que B é isometricamente isomorfa à C(B̂). Além disto, por (5.4), a
imagem da função κ(a) coincide com σB(a), que por sua vez é igual à σA(a) por (8.3).
Concluimos portanto que κ(a) é uma função positiva em B̂. Seja g =

√
κ(a) e b = κ−1(g).

É claro agora que b satisfaz às condições de (ii).
Sendo evidente que (ii) ⇒ (iii) resta-nos provar que (iii) ⇒ (i). Para isto assuma que

a = b∗b e sejam a+ e a− como em (9.2). Pondo c = ba− temos

−c∗c = −a−(a+ − a−)a− = a3
−.

Como a− é positivo é fácil ver que σ(a3) = σ(a)3 ⊆ R+ donde a3 é também positivo.
Da equação acima temos então que −c∗c é positivo donde c = 0 por (9.3). Segue-se que
a3
− = 0 donde a− = 0 e portanto a = a+, ou seja, a é positivo. ut
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Uma consequência simples do resultado acima é:

9.5. Corolario. Se a é um elemento positivo então b∗ab também o é para todo b ∈ A.

Prova. De fato, sabendo-se que a = c∗c para algum c ∈ A temos que b∗ab = b∗c∗cb =
(cb)∗(cb). ut

No histórico artigo [6] onde Gelfand e Neumark introduziram os axiomas de C*-
álgebras, figurava um axioma que não foi mencionado na definição (7.1), a saber que
a∗a+ 1 é inverśıvel para todo a ∈ A.

Note que decorre do resultado acima que a∗a é positivo, e que portanto σ(a∗a) ⊆ R+,
donde −1 /∈ σ(a∗a). Portanto vemos que o “axioma” extra de Gelfand e Neumark pode
ser dispensado, por ser decorrente dos demais.

Exerćıcios do Caṕıtulo 9

A. Prove que o conjunto A+ formado por todos os elementos positivos de A é fechado. Sugestão: (9.2.iii).

B. Prove que a decomposição em (9.2.i) é única.

C. Prove que o sub-espaço vetorial de A gerado pelos elementos positivos coincide com A.

D. Sejam a e b elementos positivos. Prove que ab é positivo se e somente se ab = ba.

E. Prove que a relação em A definida por a ≤ b se e somente se b−a é positivo é uma relação de ordem.

F. Prove que para todo elemento auto-adjunto a ∈ A tem-se que a ≤ ‖a‖.

G. Na prova de (i)⇒(ii) em (9.4) o elemento b obtido é na verdade um elemento positivo. Prove que sob
esta hipótese extra b é único. Neste caso diz-se que b é a raiz quadrada de a e denota-se b =

√
a.

H. Seja A uma C*-álgebra sem unidade e seja a ∈ A um elemento que é positivo como elemento de Ã
(veja o exerćıcio (7.B)). Prove que existe um elemento auto-adjunto b ∈ A tal que b2 = a.
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REPRESENTAÇÕES E ESTADOS 10

Históricamente o estudo de álgebras de operadores, isto é, sub-C*-álgebras de B(H),
onde H é um espaço de Hilbert, precede em vários anos a introdução dos axiomas de C*-
álgebras por Gelfand e Neumark em [6], cujo objetivo era, entre outros, permitir o estudo
abstrato destas importantes álgebras.

Tal estudo é o que, em parte, fizemos acima. Entretanto é hora de voltar às origens e
restabelecer a ligação entre o conceito abstrato de C*-álgebras por um lado, e as álgebras
de operadores, por outro.

O ponto de ligação entre estes dois mundos é feito através do seguinte conceito:

10.1. Definição. Seja A uma álgebra de Banach com involução eH um espaço de Hilbert.
Uma representação de A em H é um *-homomorfismo

π : A→ B(H),

isto é, um homomorfismo que satisfaz π(a∗) = π(a)∗ para todo a ∈ A.

O nosso maior objetivo nestas notas será o de provar que para toda C*-álgebra existe
uma representação isométrica, e portanto que toda C*-álgebra é idêntica à uma sub-C*-
álgebra de B(H).

10.2. Exemplo. Seja A = C0(X) a álgebra do exemplo (2.5), ondeX é um espaço topoló-
gico localmente compacto. Seja ainda µ uma medida boreliana regular em X e considere
o espaço de Hilbert H = L2(X,µ). Para cada f ∈ A defina o operador π(f) em H pela
expressão

π(f)ξ
x

= f(x)ξ(x), ∀ ξ ∈ H, ∀x ∈ X.

É fácil mostrar que π(f) é de fato um operador linear cont́ınuo em H e que a função
π : A→ B(H) é uma representação de A em H. Se o suporte da medida µ coincidir com
X teremos que π é isométrica e portanto C0(X) é isometricamente isomorfo a uma álgebra
de operadores em L2(X,µ).

Seja A uma C*-álgebra arbitrária e seja π uma representação de A num espaço de
Hilbert H. Tomando se um vetor ξ ∈ H defina a função f : A→ C por

f(a) = 〈π(a)ξ, ξ〉 , ∀ a ∈ A. (10.3)

É elementar verificarmos que f é um funcional linear em A e que além disto f é positivo
no sentido da seguinte:

10.4. Definição. Um funcional linear f : A → C é chamado um funcional positivo se
para todo a ∈ A tenhamos que f(a∗a) é um numero real maior ou igual a zero. Se além
disto f(1) = 1 então f é chamado um estado5 de A

5 A terminologia “estado” provém da Mecânica Quântica.
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Note que por (9.4) um funcional positivo manda elementos positivos em números reais
positivos.

Como já mencionado, a expressão (10.3) fornece portanto um funcional positivo para
cada vetor ξ ∈ H, que é obviamente um estado caso π(1) = 1 e ‖ξ‖ = 1. Por esta razão
o estudo dos funcionais positivos é extremamente relevante na teoria de representações de
C*-álgebras.

Assim como em (5.2), temos o seguinte resultado de continuidade automática:

10.5. Proposição. Seja A uma C*-álgebra com unidade e seja f um funcional positivo
em A. Dados a, b ∈ A defina

〈a, b〉 = f(a∗b).

Então

(i) Para todo a, b ∈ A temos | 〈a, b〉 |2 ≤ 〈a, a〉 〈b, b〉.
(ii) f é cont́ınuo e ‖f‖ = f(1).

Prova. É elementar verificarmos que a função 〈·, ·〉 definida acima satisfaz todas as pro-
priedades de um produto interno, exceto possivelmente pelo axioma de “não degenerecên-
cia”, isto é o axioma segundo o qual 〈a, a〉 6= 0 para a 6= 0. Note também que a desigual-
dade em (i) é precisamente a desigualdade de Cauchy-Schwartz. Como a prova usual desta
última não requer a propriedade de não degenerecência, (i) segue como no caso clássico.

Tomando a = 1 em (i) concluimos que para todo b ∈ A

|f(b)|2 ≤ f(1)f(b∗b)
(9.2.v)

≤ f(1) ‖b∗b‖ f(1) = f(1)2‖b‖2,

donde f é cont́ınuo e ‖f‖ = f(1). ut

Nem sempre é simples verificarmos que um funcional linear é positivo. O seguinte
critério, essencialmente uma rećıproca do resultado acima, é às vezes de grande utilidade:

10.6. Proposição. Seja f um funcional linear cont́ınuo em A. Se f(1) = ‖f‖ então f é
positivo.

Prova. Normalizando podemos supor que f(1) = ‖f‖ = 1. Seja a um elemento positivo
de A. Escreva f(a) = x + iy, onde x e y são números reais. Queremos portanto provar
que y = 0 e x ≥ 0.

Seja µ um número real com µ ≥ ‖a‖ e note que por (9.2.iii) temos ‖µ− a‖ ≤ µ. Por
hipótese segue que

µ− x ≤ |µ− x− iy| = |f(µ− a)| ≤ ‖µ− a‖ ≤ µ,

donde x > 0. Seja agora bn = a − x + iny para cada inteiro positivo n. Notando que
f(bn) = i(n+ 1)y temos que

(n2 + 2n+ 1)y2 = |f(bn)|2 ≤ ‖bn‖2 = ‖b∗nbn‖ =

= ‖(a− x)2 + n2y2‖ ≤ ‖(a− x)2‖+ n2y2.

Segue-se que (2n+ 1)y2 ≤ ‖(a− x)2‖ para todo n mas isto só é posśıvel se y = 0. ut
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O resultado a seguir mostra que existem estados em abundância.

10.7. Proposição. Seja A uma C*-álgebra com unidade e seja a ∈ A um elemento auto-
adjunto. Então existe um estado f em A tal que |f(a)| = ‖a‖.

Prova. Seja B a sub-C*-álgebra comutativa de A gerada por {1, a}. Como r(a) = ‖a‖, por
(7.11), existe λ ∈ σ(a) com |λ| = ‖a‖. Por (5.4) existe então ϕ ∈ B̂ tal que |ϕ(a)| = ‖a‖.

Note que ϕ é um funcional cont́ınuo em B com ‖ϕ‖ = 1 = ϕ(1) por (5.2). Usando o
Teorema de Hahn-Banach seja f um funcional linear cont́ınuo em A que estende ϕ com
‖f‖ = ‖ϕ‖.

É óbvio então que ‖f‖ = 1 = f(1) e portanto f é um estado por (10.6). Como f
estende ϕ temos também que |f(a)| = ‖a‖. ut

Exerćıcios do Caṕıtulo 10

A. Prove que um elemento a ∈ A é:

i) auto-adjunto se e somente se f(a) ∈ R para todo estado f ,

ii) positivo se e somente se f(a) ≥ 0 para todo estado f .

B. Seja f um funcional linear em Mn(C). Prove que f é positivo se e somente se existe uma matriz
positiva h tal que f(a) = tr(ah), para todo a ∈ Mn(C).

C. Seja a ∈ A um auto-adjunto. Prove que o conjunto dos números reais da forma f(a), onde f é um
estado em A, coincide com a envoltória convexa de σ(a).

*D. Generalize o resultado acima supondo que a é normal, isto é, que aa∗ = a∗a.

E. Seja µ uma medida de Borel regular complexa num espaço compacto X tal que µ(X) = ‖µ‖ (onde
‖µ‖ é a variação total de µ). Prove que µ é uma medida positiva.
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EXISTÊNCIA DE REPRESENTAÇÕES 11

Tendo obtido os resultados técnicos sobre funcionais positivos em C*-álgebras dos
quais necessitaremos a seguir, concentrar-nos-emos agora no estudo propriamente dito de
representações.

11.1. Proposição. Seja A uma álgebra de Banach com involução e π : A→ B(H) uma
representação. Então ‖π(a)‖ ≤ ‖a‖ para todo a ∈ A, em particular π é cont́ınua.

Prova. Por (2.F) podemos supor que A tem unidade e que π(1) = 1. Como π necessari-
amente manda elementos inverśıveis em elementos inverśıveis temos que σ(π(a)) ⊆ σ(a)
para todo a ∈ A, donde r(π(a)) ≤ r(a). Portanto

‖π(a)‖2 = ‖π(a∗a)‖ (7.11)
= r

(
π(a∗a)

)
≤ r(a∗a) ≤ ‖a∗a‖ ≤ ‖a∗‖ ‖a‖ = ‖a‖2. ut

Note que o resultado acima, assim como sua demonstração, se generaliza facilmente
para qualquer *-homomorfismo de uma álgebra de Banach com involução para uma C*-
álgebra.

11.2. Definição. Seja π uma representação da C*-álgebra A num espaço de Hilbert H.
Dizemos que um subespaço K ⊆ H é invariante por π se para todo a ∈ A e tivermos que
π(a)K ⊆ K.

Dado um subespaço fechado e invariante K podemos considerar a restrição ρ(a) de
cada operador π(a) para K, obtendo assim uma nova representação

ρ : A→ B(K).

Por abuso de linguagem diremos que ρ é a restrição6 de π para K.
Dado um vetor ξ ∈ H seja K o fêcho do conjunto

π(A)ξ =
{
π(a)ξ : a ∈ A

}
.

É claro que K é então um subespaço fechado e invariante, ao qual chamaremos de espaço
ćıclico gerado por ξ.

11.3. Definição. Uma representação π da C*-álgebra A em H é dita uma representação
ćıclica se existe um vetor ξ ∈ H tal que π(A)ξ é denso em H (e portanto H coincide com
o espaço ćıclico gerado por ξ). Um vetor ξ como acima é chamado um vetor ćıclico para
π.

6 Note que na verdade K não é um subconjunto do domı́nio de π, e sim de cada operador π(a).
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Note que o funcional f em (10.3) não se altera se substituirmos π pela sua restrição
ao espaço ćıclico gerado por ξ.

11.4. Teorema. Seja A uma C*-álgebra com unidade e seja f um funcional positivo em
A. Então existe uma representação ćıclica π de A num espaço de Hilbert H possuindo um
vetor ćıclico ξ tal que

f(a) = 〈π(a)ξ, ξ〉 , ∀ a ∈ A.
Se f é um estado então ‖ξ‖ = 1.

Prova. Considere a função sesqui-linear 〈·, ·〉 em A definida como em (10.5) e seja N ={
a ∈ A : 〈a, a〉 = 0

}
. N é um subespaço vetorial de A em consequência da “desigualdade

triangular”
〈a+ b, a+ b〉1/2 ≤ 〈a, a〉1/2 + 〈b, b〉1/2

que, como de costume, segue da desigualdade de Cauchy-Schwartz. É fácil ver que a
expressão

〈a+N, b+N〉 := 〈a, b〉
produz uma forma sesqui-linear bem definida em A/N que é positiva e não degenerada,
isto é, um produto interno. Consequentemente A/N torna-se um espaço pré-hilbertiano.
Dado a ∈ A considere a transformação

π0(a) : b+N ∈ A/N 7→ ab+N ∈ A/N.
Afirmamos que π0 está bem definida e é cont́ınua. De fato, dado b ∈ A temos que

‖ab+N‖2 = 〈ab, ab〉 = f(b∗a∗ab).

Sabemos por (9.2.v) que ‖a∗a‖−a∗a é positivo e portanto o mesmo se aplica para b∗(‖a∗a‖−
a∗a)b, por (9.5). Consequentemente

f(b∗a∗ab) ≤ ‖a∗a‖f(b∗b) = ‖a‖2 〈b+N, b+N〉 .
Assim vemos que

‖ab+N‖ ≤ ‖a‖ ‖b+N‖, (†)
o que prova que π0 é bem definida pois se b1 +N = b2 +N então

‖ab1 − ab2 +N‖ ≤ ‖a‖ ‖b1 − b2 +N‖ = 0,

e portanto ab1 +N = ab2 +N . Além disto é claro que (†) implica que π0 é cont́ınua.
Seja H o completamento de A/N e para cada a ∈ A seja π(a) a única extensão

cont́ınua de π0(a) para um operador limitado em H. O leitor poderá agora verificar sem
dificuldade que a correspondência

π : a ∈ A 7→ π(a) ∈ B(H)

é uma representação ćıclica de A em H com vetor ćıclico ξ = 1 +N . É evidente também
que para todo a ∈ A temos

〈π(a)ξ, ξ〉 = 〈a+N, 1 +N〉 = f(a). ut
A importância do resultado acima reside no fato de que representações são produzidas

a partir de funcionais positivos. Por outro lado (10.7) nos garante a existência de muitos
funcionais positivos e portanto representações devem existir em abundância. A forma mais
eficaz de precisar esta idéia é talvez:
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11.5. Teorema. Seja A uma C*-álgebra. Então existe uma representação isométrica de
A em um espaço de Hilbert.

Prova. Sem perda de generalidade podemos supor que A tem unidade. Para cada a ∈ A
seja f um estado de A tal que |f(a∗a)| = ‖a‖2 por (10.7). Seja πa a representação ćıclica
de A, com vetor ćıclico unitário ξ, dada em termos de f por (11.4). Temos

‖a‖2 = f(a∗a) = 〈πa(a∗a)ξ, ξ〉 = 〈πa(a)ξ, πa(a)ξ〉 =

= ‖πa(a)ξ‖2 ≤ ‖πa(a)‖2‖ξ‖2 = ‖πa(a)‖2
(11.1)

≤ ‖a‖2.

Temos então que ‖πa(a)‖ = ‖a‖. Seja Ha o espaço de πa e defina

H =
⊕
a∈A

Ha.

Seja π a representação de A em H dada por

π(b) =
⊕
a∈A

πa(b), ∀ b ∈ A.

É claro portanto que π é uma representação isométrica. ut

Exerćıcios do Caṕıtulo 11

A. Suponha que K é um espaço invariante por uma representação π. Prove que K⊥ é também invariante.

B. Seja f o estado em C([0, 1]) dado por f(x) =
∫ 1

0
x(t) dt, para todo x ∈ C([0, 1]). Descreva a

representação construida em (11.4) para f .

C. Descreva a representação construida em (11.4) para o funcional traço em Mn(C).

D. Prove que se A é separável então o espaço de Hilbert construido em (11.4) é também separável.

E. Prove que se A é separável então existe uma representação isométrica de A em um espaço de Hilbert
separável.

F. Seja A uma C*-álgebra com unidade. Suponha que para cada i = 1, 2 é dada uma representação
ćıclica πi de A num espaço Hi com vetor ćıclico ξi tal que 〈π1(a)ξ1, ξ1〉 = 〈π2(a)ξ2, ξ2〉 , ∀a ∈ A.
Prove que existe um operador unitário U : H1 → H2 tal que U(ξ1) = ξ2 e π2(a) = Uπ1(a)U−1 para
todo a ∈ A. Em resumo, a representação construida em (11.4) é única.
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