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INTRODUCAO 1

A teoria das Algebras de Operadores tem seu inicio em 1929 com o pioneiro trabalho
[9], a partir do qual John von Neumann, um dos maiores cientistas do século XX, estabele-
ceu as bases matematicas da Mecanica Quantica. As dlgebras estudadas por von Neumann,
hoje apropriadamente chamadas de dlgebras de von Neumann, sao certas sub-algebras da
algebra Z#(H) formada por todos os operadores limitados em um espaco de Hilbert H.

Em 1943, num artigo de importéancia fundamental ([6]), I. M. Gelfand e M. Neumark
obtiveram uma caracterizacao abstrata para as algebras de operadores estudadas por von
Neumann, isto é, obtiveram uma lista de axiomas cujos modelos sao precisamente as sub-
algebras fechadas e auto-adjuntas de B(H).

A partir de entao um vertiginoso avanco se seguiu no qual aplicacoes fundamentais
foram obtidas nas mais diversas areas da Matemadtica e Fisica (teoria dos nds, mecanica
estatistica, teoria quantica de campos, representacao de grupos, sistemas dinamicos, folhe-
agoes, teoria dos grafos, quase-cristais, geometria ndo-comutativa).

Embora haja hoje uma vasta literatura sobre o assunto, incluindo intimeros livros em
nivel mais ou menos elementar ([1], [2], [3], [4], [5], [7], [8], [10], [13], [14]), ndo hd um
unico texto em lingua portuguesa sob o tema.

O objetivo destas notas é portanto dar um primeiro e modesto passo no sentido de
suprir esta deficiéncia, apresentando um caminho tao elementar quanto possivel para uma
compreensao detalhada do Teorema de Gelfand e Neumark, citado acima, sobre a carac-
terizacao abstrata das algebras de operadores.

O pré-requisito para a leitura deste texto ¢ um bom conhecimento sobre aspectos
bésicos de Analise Funcional, Varidveis Complexas e Algebra.

Uma das idiossincrasias da teoria que pretendemos apresentar é a questao sobre se a
algebra tem ou nao unidade. A grosso modo pode-se dizer que os resultados para algebras
com unidade quase sempre se aplicam para algebras sem unidade, naturalmente com al-
teracoes apropriadas, porém muitas vezes a custa de um razoavel esforco extra.

Com o objetivo de enfatizar a esséncia da teoria, evitando dificuldades técnicas que
obscureceriam as idéias centrais, optamos por nos restringir ao caso com unidade, ocasio-
nalmente deixando o caso geral para os exercicios.



ALGEBRAS NORMADAS 2

Nesta secao nds vamos estudar o conceito de algebra normada e para isto partiremos
da premissa de que o leitor tem alguma familiaridade com o conceito de dlgebra sobre o
corpo € dos niimeros complexos'. Nao custa repetir: uma algebra A sobre C é um espaco
vetorial complexo equipado com uma operagao bilinear e associativa:

e AXA— A

chamada opera¢ao de multiplicacao. Como sempre, ao invés da matematicamente correta
porém excessivamente rigida notacao

.(a, b),
nés usamos simplesmente ab para denotar o resultado da operagao de multiplicagao
quando aplicada ao par (a,b).

2.1. Definicao. Uma dlgebra normada é uma algebra sobre € equipada com uma funcao
norma
a€ A |all e R

que faz com que A seja um espaco normado, ou seja, para todo a,b € A e A € C tenhamos:

(i) [lal =0,
(ii) |la]]l =0 = a=0,
(iii) ||Aa|| = |A]||a||, onde |A] indica 0 médulo do nimero complexo A,

(iv) lla+ ol < [lal + [lo],
e além disso obedeca ao seguinte axioma envolvendo a operacao de multiplicagao:
(v) llabll < [[all flo]-

Vejamos alguns exemplos de algebras normadas:

2.2. Exemplo. Seja C[X] a algebra dos polinémios complexos na varidvel X. Dado

p= Z)\ka S (D[X],

k=0

onde n € Ne A\, € C para k =0,...,n, defina [|p|| = > ;_, | \e|. Nao é dificil provar que
C[X], equipado com a multiplicagao usual de polinémios e a norma definida acima, é uma
algebra normada.

L' Embora o conceito de algebra se aplique para qualquer corpo, a teoria de dlgebras de Banach tem

uma preferéncia especial pelo corpo dos nimeros complexos!
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Muitas vezes podemos ter mais de uma norma sobre uma mesma algebra complexa
tornando-a uma algebra normada:

2.3. Exemplo. Seja C[X] como acima mas desta vez defina a norma de um elemento
p € C[X] por

|l = sup |p(x)]. (1)
x€[0,1]

Esta nova norma satisfaz a todos os axiomas de (2.1) e portanto faz de C[X] uma algebra
normada.

N&o hé nada de especial sobre o intervalo [0, 1] neste exemplo: qualquer outro conjunto
limitado e infinito de nimeros complexos pode substituir o intervalo [0,1] em (f) com
conclusoes semelhantes.

2.4. Exemplo. Seja n um inteiro positivo e seja M,,(C) o conjunto de todas as matrizes
n x n sobre C. E bem sabido que M, (C) é uma algebra complexa com a operacao usual de
multiplicacdo de matrizes. Existem muitas normas que fazem com que M, (C) seja uma
algebra normada. A mais importante de todas é definida por

||la|| = sup {||cw||2 v eCh, vl < 1}, Vae M, (C),

onde av representa o produto da matriz a pelo vetor (= matriz coluna n x 1) v. Além
disto usamos na definigdo acima a norma euclidiana || - |2 para vetores.

Uma outra norma em M, (C), importante em algumas aplicacoes, é dada por
n n
lall =) lail,
i=1 j=1

onde estamos assumindo que a é a matriz {a;;}i j=1,... n-

2.5. Exemplo. Seja X um espaco topoldgico localmente compacto e seja Cy(X) o espago
vetorial complexo de todas as funcoes continuas f : X — C que se anulam no infinito?.
Dadas f e g em Cy(X) defina uma nova fungao, denotada por fg, através da féormula

(f9)(z) = f(x)g(z), VzeX.

Nao é dificil provar que, com esta operacao de multiplicacdo, Cp(X) torna-se uma algebra
complexa. Se além disto definirmos a norma de uma funcdo f € Cyp(X) por

If[l' = sup [f(z)|
zeX

teremos mais um exemplo de algebra normada.

2 Diz-se que uma funcao f : X — € se anula no infinito quando para todo £ > 0 existe um compacto
K C X tal que |f(x)| < € para todo z ¢ K. Quando X é compacto, a possibilidade de tomarmos K = X

nos diz que toda fungao se anula no infinito!
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Uma algebra normada A é, como o seu préprio nome indica, um espago normado e
portanto podemos nos referir a distancia entre dois elementos a e b de A, isto é

d(a,b) = [la — bl

Portanto todos os conceitos relativos aos espacos métricos passam a ter relevancia no estudo
das algebras normadas. Um dos conceitos cruciais é a completitude, isto é a propriedade
de que toda sequéncia de Cauchy é convergente. Isto motiva a seguinte:

2.6. Definicao. Uma dlgebra de Banach é uma &algebra normada completa.

Dentre os exemplos citados acima apenas (2.4) e (2.5) sdo algebras de Banach. No
primeiro caso esta afirmacao decorre do fato de que todo espago normado de dimensao finita
é completo e no segundo, essencialmente de que o limite uniforme de fungoes continuas é
uma fungao continua.

Nenhuma das outras algebras mencionadas acima sao completas devido ao fato que
um espacgo de Banach jamais tem dimensao algébrica infinita enumeravel.

Na teoria dos espacos normados nés aprendemos que dado um espago normado V' que
nao é completo existe um tnico (a menos de isometria) espaco completo V' que contém V'
como subespaco denso. Desta forma, dada uma algebra normada A que nao é completa
existe um espaco de Banach A que contém A como subespaco denso. Em vista de (2.1.v)
a operacao de multiplicagao de A pode ser estendida de forma tnica a uma operacao de
multiplicacdo em A que torna A uma &lgebra de Banach.

ExErcicios po CAPITULO 2

A. Verifique que as algebras dos exemplos acima de fato sao dlgebras normadas.

B. Prove a afirmacéo feita apés o Exemplo (2.3). E realmente necessario que o conjunto que substitui
[0, 1] seja infinito?

C. Prove que as dlgebras descritas em (2.4) e (2.5) sdo dlgebras de Banach.

D. Prove com detalhes a afirmagao feita acima de que completamento de uma &algebra normada é uma
algebra de Banach.

E. Prove que se uma dlgebra normada A tem unidade, denotada por 1, entdo ||1|| = 0 (e neste caso
A=1{0}) ou 1] > 1.

F. Dada uma algebra normada A (possivelmente sem unidade), seja A=A @ C (soma direta de espagos
vetoriais) equipada com a operacdo de multiplicagdo e norma a seguir:

(a, ) (b, u) = (ab+ Xb+ pa, Ap)

[[(a; Ml = llall + (A,

onde a,b € A e A\, u € C. Prove que A é uma algebra normada com unidade de norma um, que é
completa se A o for.



ESPECTRO 3

Entre os conceitos mais importantes no estudo de algebras de Banach estao os con-
ceitos de espectro e resolvente que estudaremos a seguir. Para isto vamos supor, ao longo
de todo este capitulo, que A é uma algebra de Banach com unidade, denotada 1.

E facil ver que a correspondéncia

ANeCr—AeA

é injetora (a menos do caso trivial em que A = {0}) e pode ser utilizada para identificarmos
o corpo dos numeros complexos com uma sub-algebra de A. Abusando deste ponto de
vista nds vamos supor que C estd contido em A, identificando o niimero complexo A com
o elemento A1 de A, sempre que isto nao causar confusao. Em particular, na préxima
definicao nés vamos nos referir a A — a, onde a € A e A\ € C quando o figurino mandaria
escrevermos Al — a.

3.1. Definicao. Dado a € A definimos o resolvente de a e o como sendo o conjunto p(a)
dado por
pla) = {X € C: X\ — a é inversivel }.

O espectro de a é definido como sendo o conjunto o(a) dado por o(a) = C \ p(a), isto é,
o complementar de p(a).

3.2. Proposigao. Seja a,b € A. Entao o(ab) \ {0} = o(ba) \ {0}.

Prova. Basta provarmos que se A # 0 entao A — ab é inversivel se e somente se A — ba é
inversivel. Suponha entao que A — ab é inversivel. Afirmamos que

ci=A"1 (1 + b\ — ab)_1a>
é o inverso de A — ba. De fato

(A — ba) = AL (1 (A — ab)_1a> (A —ba) = A~ ()\ ~ba+ b\ — ab)~ta() — ba)) -

— )\ </\ “ba+ b\ —ab) " (A — ab)a) —A"Y(\—ba + ba) = 1.

Similarmente prova-se que (A — ba)c = 1, e portanto A\ — ba é inversivel. Para provarmos
a reciproca basta trocar os papéis de a e b. O

O nosso proximo grande objetivo serd a demonstracao de que o espectro de um ele-
mento é sempre um conjunto compacto e nao vazio. Comecemos com o seguinte resultado:
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3.3. Lema. Sea € A é inversivel e |la — b|| < ||a entao b também é inversivel e

oo

bl = Z (a™'(a— b))na_l.

n=0
Portanto o conjunto dos elementos inversiveis de A é aberto.

Prova. Seja x = a"'(a —b) e observe que b = a(1 — z). Para provarmos que b é inversivel
basta portanto provarmos que 1 — x é inversivel. Observando que por hipdtese

lell < la= | la — bl < lla=[ e~ 7 =1,

temos que a série infinita ) -, z™ é absolutamente convergente (e portanto convergente
pois A é completa). Seja y a sua soma. Entao

l-2)y=01-= (A}Enoon> I\}gnml x 1,

ja que ||z < ||z|¥ ! — 0 quando N — oo. Verificando por meios similares que
também y(1 — x) = 1 concluimos que y é o inverso de 1 — z como desejado. Segue-se que

bl=(1-2)tat=ya ' = Z:cna_l = Z (a™ (a— b))na_l. O
n=0 n=0

E conveniente provarmos também que a funcao de inversao é continua:

3.4. Proposigao. Nas condigoes de (3.3) temos que

- —1y2__lla = bll
I~ —a™H < [la™? ,
1—la—b]

e portanto limb~' = a~'. Ou seja, a funcdo de inversio a — a~! é continua no seu

b—a

dominio.

Prova. Usando a expressao obtida acima para b~! temos

b=t —a~ | = (Z (a™Ha—1))" - 1) a! Z “Ha—1b)) a || <
n=0 n=1
< a2 fla — b = a2 e =0 g
<l 2 g P

E imediato verificarmos que, dado a € A, a funcao
AeCr—A—-ac A

é continua. A imagem inversa do conjunto aberto formado pelos elementos inversiveis de
A é portanto um sub-conjunto aberto de C. Mas é claro que este conjunto é precisamente
o resolvente de a. Isto prova, portanto, a seguinte:
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3.5. Proposicao. O espectro de um elemento a € A é um conjunto fechado.

Para provarmos que o espectro é compacto, como mencionado acima, basta agora
provarmos que ¢ limitado.

3.6. Proposicao. Sex € Ae X € C é tal que |\ > ||z|| entdo A — x é inversivel e

o0

A—2)t = Z ATl

n=0

Em consequéncia o espectro de x estd contido na bola (no plano complexo) centrada em
zero e de raio ||z||, e portanto é compacto.

Prova. Pondo a = XA e b=\ — x note que
la = bl = llz[| < [IAll = [IAH] 7
O resultado entao segue imediatamente de (3.3). 0

Resta-nos agora provarmos que o espectro de um elemento é sempre nao vazio, o que
¢é na verdade um resultado de um grau de dificuldade bastante superior ao que vimos até
agora no sentido que precisaremos invocar um teorema profundo da teoria das funcgoes
analiticas.

3.7. Definicao. A funcdo resolvente de um elemento a € A é a fungdo R, : p(a) — A
dada por
Ro(N) =(A—a)™", VYX€pla)

Uma das principais propriedades da funcao resolvente é dada no nosso préximo resul-
tado:
3.8. Proposicao. Seja a € A.
(i) Dados A # p em p(a) temos

Ra(:u) - Ra()‘)
W= A

— —(u—a) (A —a) .

(ii) Para qualquer funcional linear continuo ¢ € A* (dual topoldgico de A) a composicao
woR, €é uma funcao analitica em p(a).
Prova. Dados A, u € p(a) temos
Ro(p) =R\ = (p—a) ' =(A—a) ™' =
=(p—a)((A-a)=(p—a)A—a) " =(E-a) A=A -a)

donde segue a primeira afirmagao. Dado ¢ € A* temos

l}l_)ﬂl}\ QO(Ra(:u)/z:f(Ra(/\)) — l}l_)ﬂl)\ _(P<(M_a)—1(>\_ a)—l) — _90(()‘_@)_2)7

onde o ultimo passo segue de (3.4). Portanto poR, é de fato analitica. O
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E curioso observar a similaridade entre a conclusao final do resultado acima, isto é

que,
oG =a™) = —p(=a)).

e o resultado bem conhecido segundo o qual

d
—A—a)t=—-A—-a)"?
SO -0t == —a)
para a € C.
Estamos agora em condicoes de provar o resultado principal desta segao:

3.9. Teorema. Dado a € A temos que o(a) é um conjunto compacto e nao vazio.

Prova. Tendo ja provado que o(a) é compacto provarmos que nao é vazio por absurdo.
Supondo que o(a) é vazio, e portanto que p(a) = C, tome ¢ em A*. Entao, por (3.8) a
composta poR, é uma funcao inteira. Por outro lado, usando a expressao para (A —a)~*
fornecida por (3.6) temos que

_ N I < /Ja\" 1 1 1
=) < S A lal” = & (— _ 1 _ ,
2 2 ) TSR T el

BY

para |A| > ||a||, o que prova que /\lim R, (A\) = 0 e portanto também que /\lim ©(R4(A)) = 0.
— 00 — 00

Por um lado isto implica que poR, é uma funcao limitada. Invocando o Teorema
de Liouville concluimos portanto que poR, é constante. Por outro lado esta constante
deve necessariamente ser nula ji que o seu limite no infinito é nulo. Assim temos que
©(Ra(N)) = 0 para todo ¢ e todo A. Usando agora o Teorema de Hahn-Banach temos que
R,(A\) = 0 para todo A o que é um flagrane absurdo uma vez que um inverso (R, () é o
inverso de A — a) é necessariamente inversivel e portanto nao nulo. O

Nao é de se estranhar que o Teorema de Liouville tenha uma participacao importante
no resultado acima. De fato, quando consideramos A = M,,(C) (veja exemplo (2.4)), o
resultado recém provado nos diz que o polindmio caracteristico de qualquer matriz com-
plexa tem raizes! O leitor provavelmente se recorda da demonstracao de que o corpo
dos numeros complexos é algébricamente fechado (i.e todo polindmio complexo tem raiz)
usando-se justamente o Teorema de Liouville!

3.10. Proposicao. Sejaa € A e seja f(z) = p(z)/q(z) uma fungao racional, isto é, f é o
quociente do polinémio p pelo polinémio q. Suponha que q nao se anula em o(a). Entao

o(f(a)) = f(o(a)).

Prova. Note que como ¢ nao se anula em o(a) entdo ¢ é um produto de fatores lineares do
tipo (z — A) onde A € p(a). Assim ¢(a) é inversivel e portanto o quociente p(a)/q(a) esté
bem definido.

Seja A € o(a). Observando que o polinémio g definido por

9(z) = p(N)q(z) — p(2)q(A), VzeC

10



se anula para z = A, sabemos que existe um polinomio h tal que g(z) = (z — A)h(z) e
portanto g(a) = (a — A)h(a). Temos portanto que

p(A) _ pla) _ p(Ngla) —pla)g(N) _

FVZHO=00) "0~ el
ol b _ h@)
s~ V)~ e
Uma vez que a — A nao ¢ inversivel temos que f(A) — f(a) tampouco é inversivel e portanto

f(A) € a(f(a)), o que prova que f(o(a)) C o(f(a)).
Para provarmos a inclusdo no sentido inverso, isto é, que o(f(a)) C f(o(a)), seja
A €a(f(a)). Seja g o polinémio dado por g = A\g — p, que pode ser fatorado como

g(z) = )\O(Z - )\1)(2 - )\2) . (z — /\n),
onde g, A1, ..., A, € C. Temos
A—f@):A_PM):AﬂM—pM)ZQW):AMG—AQM—AQH.M—AH.
q(a) q(a) Q(CI/) q(a)
Dado que A € o(f(a)) vemos que a expressao acima representa um elemento nao inversivel.

Desta forma temos que \; € o(a) para algum ¢ = 1,...,n. Portanto, dado que g(A;) =0,
temos que Ag(\;) = p(\;) ou

Segue-se que A € f(o(a)). 0

ExERrcicios Do CAPITULO 3

A. Onde estd o erro do seguinte argumento: considere o corpo @ (ndo comutativo) dos quatérnios e
considere € como subcorpo de ®. Seja a qualquer elemento de Q que nao é um nimero complexo,
por exemplo j ou k. Note que para todo complexo A temos que A — a nao é nulo e portanto é
inversivel. Segue-se que o(a) = () contrariando (3.9)?!

B. Seja A a §lgebra do exemplo (2.2). Descreva o espectro de cada elemento de A.

C. Seja A a algebra do exemplo (2.5), onde supomos que X é compacto e portanto que A tem unidade.
Dado f € A prove que o(f) = f(X).

D. Dado um sub-conjunto compacto nao vazio S do plano complexo encontre um exemplo de uma &lgebra
de Banach que contenha um elemento cujo espectro é S.

E. Dado um sub-conjunto S do plano complexo encontre um exemplo de uma &lgebra (ndo necessaria-
mente normada) que contenha um elemento cujo espectro é S.

F. Seja K uma extensdo de C (isto é, um corpo que contém C) visto como uma &lgebra complexa da
maneira usual. Prove que ndo existe norma que faga de K uma &lgebra normada (e muito menos de
Banach!).

G. Seja A uma algebra de Banach e seja a um elemento de A. Suponha que
a” +cp_1a" " 4 Fera+co =0,

onde cp,...,cn—1 € C. Prove que o(a) estd contido no conjunto das raizes do polinémio p(z) =
"+ cp_12" 4+ c1z + cp.

H. Seja A uma algebra de Banach e seja a um elemento idempotente nao trivial de A, isto é, 0 £ a # 1

e a? = a. Prove que o(a) = {0,1}.

11



RAIO ESPECTRAL 4

Como no capitulo anterior A denotard uma dlgebra de Banach com unidade. Passemos
imediatamente a definicao do conceito central deste capitulo:

4.1. Definicao. O raio espectral de um elemento a € A é definido por

r(a) = sup |\
AEa(a)

Note que (3.6) nos diz que r(a) < ||a|| para todo a € A.

Em se tratando da invertibilidade de A — a o Teorema (3.6) nos dd uma férmula
explicita para (A—a)~! quando |\| > ||a|| através de uma série absolutamente convergente.
Por outro lado segue da defini¢ao de raio espectral que A — a é inversivel para |[\| > r(a) e
portanto fica colocada a questao sobre o comportamento da série em (3.6) quando \ estd
na coroda definida pelas inequacgoes

r(a) <[Al < lal,

que pode (exemplos garantem) ser ndo vazia. E nossa inten¢ado provar que a série men-
cionada converge ai também.

[e.e]

4.2. Lema. Para todo X € C com || > r(a) a série Z A" 1a™ converge absolutamente
n=0

para (A —a)™1.

Prova. Seja ¢ € A* e considere a fungao f = poR, que é analitica em p(a) por (3.8). Por
(3.6) temos que

FO) =271 A p(a™), (1)
n=0

para |[A| > ||al|. Note porém que f é analitica para |A| > r(a) e portanto segue de um
conhecido resultado sobre fungoes analiticas [12: 10.6] que a série (1) de fato converge para
|A| > r(a). Em particular

sup [A™"p(a")] < oo,
neN

o que implica que o conjunto {)ﬁ"a” 'n € N} ¢é fracamente limitado e portanto limitado
pelo principio da limitacao uniforme. Existe portanto uma constante K > 0 tal que

IAT"a"|| < Ky, VneN.
Dado Ag € € com |A\g| > r(a) tome A\; € C com |Ag| > |[A1]| > r(a). Entao

— - |/\1|>n (|>\1|>n
)\ nan — )\ nan = <K1 3 - ,
el = It () < o (Y
A1

provando a convergéncia absoluta da série do enunciado em \g uma vez que o] < 1. O
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Podemos agora apresentar o resultado mais importante deste capitulo:

4.3. Teorema. Dado a € A temos que

r(a) = lim |a

= inf |la
n—o00 neN

n”l/n

Em particular o limite lim ||a existe.
n—oo

Prova. Seja A\ € o(a). Dado n € N temos que
A — " =

= ()\ _a)()\n—l +)\n_2a+"' +)\an—2 +an_1) _
= (/\n—l + /\n_2a—|— o4 a2 _|_an—1)(/\ . CL)7

e portanto A" — a™ nao ¢ inversivel (se o fosse A — a também seria). Segue portanto que
A" € o(a™) de onde |A\"| < ||a™|| por (3.6) ou, equivalentemente,

AL < [la™| V",
Tomando o supremo para A € o(a) e o infimo para n € N concluimos que

< inf n 1/n.
r(a) < inf [la”]

Dado A com |[A| > 7(a) sabemos por (4.2) que a série Y -, A~ "a™ converge e, em

particular, lim A" "a"™ = 0. Portanto existe ny € IN tal que para n > ng temos |[A\""a"|| <
n—oo

1 ou seja
la™|[*/™ < |A.

Tomando o limite superior em n e o infimo para |A| > r(a) concluimos que

limsup [|a"[|'/" < r(a),
n—oo

o que, aliado a conclusao obtida acima, da

limsup [|a"(|'/" < r(a) < inf [la"||'/" < liminf [la™ |/,

de onde a conclusao segue facilmente. O
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A.
B.

*D.

ExERcicios Do CAPITULO 4

Para um elemento a da dlgebra do exemplo (2.5), com X compacto, prove que r(a) = ||a||.

Considere a matriz n X n dada por

0 0 O 0 0
1 0 O 0 0
01 0 0 0
a=10 0 1 0 0
0 0 O 1 0

Calcule o raio espectral de a e verifique diretamente a validade dos Teoremas (4.2) e (4.3) para a.

. Um elemento a de uma &lgebra de Banach é dito nilpotente se existe k € N tal que a* = 0, e

kI|1/k = 0 (equivalentemente se r(a) = 0). Prove que um

topologicamente nilpotente se lim |la
k—oo
elemento topologicamente nilpotente de M, (C) é necessariamente nilpotente.

O fato de que o limite coincide com o fnfimo para a sequéncia {||a™||'/™}, pode leva-lo a crer que
esta é uma sequéncia decrescente. Dé um exemplo para provar que isto nao é verdade.

14



ESPECTRO DE UMA ALGEBRA 5

Nos capitulos acima tratamos do espectro de um elemento de uma &algebra de Banach.
Agora vamos tratar do espectro de uma algebra. Inicialmente o leitor provavelmente nao
vera ligacao entre estes conceitos e portanto o uso da palavra “espectro” em ambas as
situacoes podera parecer injustificado. No seu devido tempo, porém, veremos que de fato
existe uma relagao muito forte entre o espectro de um elemento e o espectro de uma
algebra.

5.1. Definigao. Dadas algebras de Banach A e B diremos que uma funcao ¢ : A — B é
um homomorfismo se ¢ for linear e além disto

p(ab) = p(a)p(b),

para todo a,b € A. O espectro de A é definido como sendo o conjunto A formado por todos
0s homomorfismos nao nulos de A em C.

Nunca é demais insistir que, apesar do fato que a fungao nula é um homomorfismo
legitimo de A em C, esta é excluida de A por decreto!

Note que nao assumimos nenhuma hipétese sobre a continuidade dos homomorfismos
¢ acima. Entretanto temos:

5.2. Proposicao. Seja A uma algebra de Banach. Se ¢ : A — C é um homomorfismo
entao |¢(a)| < ||a|| para todo a € A e portanto ¢ é continuo.

Prova. Acrescentanto uma unidade em A (cf. exercicio (2.F)) podemos supor que A tem
unidade e que ¢(1) = 1. Dado a € A note que a — p(a) pertence ao ntcleo de ¢, que é um
ideal de A, e portanto nao pode ser inversivel. Desta forma ¢(a) € o(a) donde por (3.6)
temos que |p(a)| < |al. O

Isto posto vemos que A é um subconjunto da bola unitaria do dual A*. Sendo assim
podemos coniderar A como espaco topolégico com a topologia induzida pela topologia da
convergéncia pontual (também chamada de topologia fraca™) de A*.

5.3. Proposicao. Seja A uma algebra de Banach. O espectro A é um espago localmente
compacto com a topologia da convergéncia pontual. Caso A tenha unidade A é compacto.

Prova. Considere o conjuto S formado por todos os homomorfismos de A em C (nao
sendo excluido o homomorfismo nulo desta vez). E fécil ver que S é fechado na topologia

da convergéncia pontual e portanto compacto pelo Teorema de Alaoglu. Como A resulta
da remocao de um ponto (o homomorfismo nulo) do espaco compacto S, concluimos que

A é localmente compacto.
No caso em que A tem unidade note que dado ¢ € S temos que

p#0< p(l)=1.
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Desta forma vemos que A ¢ fechado em S (equivalentemente o homomorfismo nulo é um
ponto isolado de S) e portanto compacto. O

Suponha, de agora em diante, que A é uma &lgebra de Banach comutativa com
unidade. Nosso objetivo a seguir é mostrar uma importante relacao entre o espectro
de um elemento a € A e o espectro de A. Conforme vimos na prova de (5.2), para todo
¢ € A temos que ¢(a) € o(a). Provaremos que na verdade todo elemento de o(a) é da

~

forma ¢(a) para algum ¢ € A:

5.4. Teorema. Seja A uma &dlgebra de Banach comutativa com unidade. Entao para
todo a € A vale

o(a) = {pla): ¢ € g}
Prova. Seja A € o(a) e considere o conjunto
Jo=A—-a)A:={(A—a)b:be A}

Como estamos supondo que A é comutativa, temos que Jy é um ideal de A. Sendo que
A — a nao é inversivel é evidente que 1 ¢ Jy de onde Jj é distinto de A. Usando o lemma
de Zorn, tome um ideal maximal préprio J contendo Jy (e portanto também A\ — a).

Afirmamos que J é fechado. De fato, se ndo o fosse é claro que o fecho J também seria
um ideal e, pela maximalidade de J, teriamos J = A. Segue se que J é denso e portanto a
intersegao de J com o conjunto aberto dos elementos inversiveis seria nao vazia. Assim J
conteria elementos inversiveis e, por ser um ideal, teriamos J = A, o que é uma contradigao.

Seja B = A/J, isto é, o quociente de A por J. Equipando B com a estrutura quociente
de &lgebra complexa e a norma quociente® é facil ver que B é uma algebra de Banach
comutativa.

Afirmamos que B = C1. De fato, dado b € B, usando (3.9) temos que p — b é nao
inversivel para algum p € C. Entretanto, como J é maximal, todo elemento nao nulo de
B ¢ inversivel de onde segue que b = p.

Tendo provado que B = € podemos ver a aplicacao quociente

T:A—A/J=C

como um homomorfismo complexo, ou seja, um elemento de A. Recordando que A —a €
J = Ker(m) temos que m(a) = A de onde segue a inclusao “C” entre os conjuntos men-
cionados no enunciado. Como a outra inclusao segue da argumentacgao acima, o resultado
esta provado. O

Nao deve passar desapercebida a importante consequéncia do Teorema acima segundo
a qual o espectro de uma algebra de Banach comutativa com unidade é sempre nao vazio!

3 A norma quociente é definida por ||a + J|| = inf ||a + z||.
zeJ

16



*E.

okl N

ExERcicios Do CAPITULO 5

O espectro de uma &lgebra mdao comutativa nem sempre é muito interessante. Por exemplo, se
P
A = M, (C) entdo A é o conjunto vazio. Prove isto.

. Determine o espectro das dlgebras dos demais exemplos do capitulo (2). Nos casos em que a dlgebra

ndo é competa decida se vale a conclusdo do Teorema (5.2).

. Prove que existe uma tnica dlgebra de Banach comutativa simples (isto é, que nao contém ideais

bilaterais).

. Seja A uma algebra de Banach sem unidade e seja Aa 4lgebra definida no exemplo (2.F). Prove que

o espectro de Aéo compactificado de Alexandrov de A (o compactificado no qual se acrescenta um
ponto no infinito).

Seja S! o circulo unitério complexo e seja Z a funcdo complexa definida em S' por
Z(z) =2 VYzeS!.

Seja A a menor sub-algebra fechada de C(S') que contém a funcio Z. Determine o espectro de A.

Seja A a algebra formada por todas as fungdes complexas definidas em [0, 1] que tem limite lateral
em todos os pontos de [0, 1]. Determine o espectro de A.
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A TRANSFORMADA DE GELFAND 6

Nesta secao concentrar-nos-emos no estudo de algebras de Banach comutativas. E
fato que varias das definicoes e resultados que veremos a seguir se aplicam, formalmente
falando, para dlgebras nao comutativas. Entretanto, em nao havendo nenhuma aplicagao
relevante no contexto nao comutativo, vamos nos restringir as algebras comutativas.

Seja portanto A uma élgebra de Banach comutativa, fixa durante este capitulo. Dado
a € A considere a funcdo a : A — C dada por

a(p) = p(a), Y€ A

A idéia aqui, como em vérias outras situagoes em Matematica, é olhar para a expressao
v(a)” e enquanto todos vém ai a “funcdo ¢” calculada na “varidavel a”, nds optamos
por ver a “fungao a” calculada na “varidvel ¢”. A defini¢ao de @ acima tem por objetivo
justamente a formalizacao desta idéia.

Uma vez que consideramos em A justamente a topologia da convergéncia pontual, é
6bvio que @ é uma fungao continua em A para todo a em A. R

Note também que no caso em que A nao é compacto temos que a € Cy(A), isto é, a
tem limite zero no infinito (veja o exemplo (2.5)). De fato, dado e > 0 seja K = {¢ € A:

(13

p(a)| > e} E ficil ver que K é compacto e que |a(g)| < e para ¢ ¢ K.
6.1. Definicao. A transformada de Gelfand de A é a funcao

~

k:A— Cy(A)

dada por k(a) = a, para todo a € A.
6.2. Proposicao. Dado a € A temos

[&(a)l] = r(a) < lal,

e portanto a transformada de Gelfand é um homomorfismo contrativo.

Prova. Deixaremos para o leitor a verificacao elementar de que k é de fato um homomor-
fismo e nos concentraremos na verificagao de que ||k(a)|| = r(a). Por definicao da norma

-~

em Cy(A) temos que
Ik(a)]| = sup {[a(p)| : p € A} =

= sup {|¢(a)] :ngg} 4 sup {|A|: A € o(a)} =r(a). 0

18



ExERcicios Do CAPITULO 6

. Seja A uma &lgebra de Banach comutativa e seja a € A um elemento nilpotente (isto é, para o qual
existe n € N tal que a™ = 0). Prove que k(a) = 0.

. Seja A uma algebra de Banach comutativa e seja a € A um elemento nao nulo para o qual ||a?|| = ||a||?.
Prove que ||k(a)|| = ||a||, e portanto x(a) # 0.

. Seja A uma &dlgebra de Banach comutativa com unidade. Prove que os seguintes conjuntos sdo iguais:
i) O radical de Jacobson de A (isto é, o ideal obtido pela interse¢ao de todos os ideais maximais),
ii) O conjunto dos elementos topologicamente nilpotentes,

iii) Ker(k).
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C*-ALGEBRAS 7

A teoria geral das algebras de Banach, a partir deste ponto, é extremamente delicada
e dificil. Entretanto hd uma sub-classe das dlgebras de Banach, formada pelas C*-dlgebras,
para a qual podemos obter resultados muito mais profundos. E a esta classe de algebras
que dedicaremos nossa atencao de agora em diante.

7.1. Definicao. Seja A uma &lgebra de Banach. Uma involucio em A é uma funcao*

x: A— A

satisfazendo para todo a,b€ Ae X € C:
(i) (a+0b)* =a* + b*,

(i) (M\a)* = Aa*,

(iii) (ab)* = b*a*,

(iv) (a")" = a,

(v) lla™|l = llall-

Uma dlgebra de Banach com involugao é, por definicao, uma algebra de Banach equipada
com uma involucao. Uma C*-dlgebra é uma &dlgebra de Banach com involugao para a qual
vale

(vi) [la*all = [lal*, Va€ A.

A Algebra do exemplo (2.4) (com a primeira das duas normas mencionadas) é uma
C*-algebra se equipada com a operacao de involucao dada pela conjugada complexa, isto
é, para uma matriz a = {a;;} pomos a* = {a;;}.

Também a dlgebra do exemplo (2.5) pode ser tornada uma C*-dlgebra se considerar-
mos a invougao dada pela conjugacao ponto-a-ponto, isto é, dada uma funcéo f € Cp(X)
definimos f* como sendo a fungao dada por f*(z) = f(x), para todo =z € X.

Um novo e importante exemplo de C*-algebra é dado a seguir:

7.2. Exemplo. Seja H um espaco de Hilbert complexo e seja Z(H) o conjunto de todos
os operadores lineares continuos
T:H— H.

Levando em consideragao a estrutura usual de espago vetorial complexo em (H ) definimos
o produto T'S, para T', S € A(H), como sendo a composi¢ao de operadores ToS. A norma
de um operador T' € #(H) é definida por

Tl = sup {|IT()Il - € € H, [|¢]| <1},

4 A imagem de um elemento a pela fungdo involugéo serd denotada por a*, e ndo por *(a).
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enquanto que a involucao de um operador T' é definida como o adjunto usual de T, isto é,
T* é o tunico operador linear em H que satisfaz

(T€),m =T (), V&neH

7.3. Defini¢gao. Dada uma C*-dlgebra A dizemos que um sub-conjunto B C A é uma
sub-C*-algebra de A quando B é uma sub-dlgebra fechada de A que além disto é invariante
pela involugao (i.e. B* C B).

E claro que uma sub-C*-algebra é, em si, uma C*-4lgebra com as operagoes induzidas
pela algebra ambiente.

Dado um subconjunto qualquer S de uma C*-dlgebra A podemos considerar a in-
tersecao de todas as sub-C*-dlgebras de A que contém S, o que ébviamente resulta numa
C*-algebra que contém S e que é a menor de todas as sub-C*-dlgebras de A com esta
propriedade. Tal sub-C*-algebra é chamada a C*-algebra gerada por S.

Esta é uma importante fonte de exemplos de C*-dlgebras que exploramos a seguir.

7.4. Exemplo. Seja H um espaco de Hilbert complexo e seja £ (H) o conjunto de todos
os operadores lineares compactos em H. Entao J# (H) é uma sub-C*-dlgebra de B(H) e
portanto é uma C*-algebra.

7.5. Exemplo. Seja # um nimero irracional e seja H o espaco de Hilbert L?(S'). Con-
sidere os operadores U e V em H dados por

para todo £ € H e z € S'. Uma importante relacio algébrica envolvendo U e V é
VU = UV, (7.6)

que o leitor pode facilmente verificar. A C*-dlgebra gerada por {U, V'} é chamada a dlgebra
de rotacao irracional e é denotada por Ag.

Sabe-se que Ay é uma &dlgebra simples (ndo contém ideais bilaterais) e também que
para 0 < 0; < 03 < 1/2, as dlgebras Ay, e Ap, nao sdo isomorfas [11: Theorem 2]. As
provas destes dois fatos estdo intimamente ligadas ao grande avango da teoria das C*-
algebras dos ultimos vinte e cinco anos.

7.7. Exemplo. Para cada n € N seja I,, = {0,1}" e seja I, = {0,1}N. Seja H um
espaco de Hilbert com uma base {e¢}eer,, indexada por I, (e portanto nao separavel).
Dado n € N considere para cada v = (vg,...,v,-1) € I, o operador S, : H — H
dado por S,(e¢) = ey¢, onde entendemos a expressao v€ como concatenagio, isto é v€ =

(’Uo, e ,Un_l,go,fl, .. )

Observe que cada S, é uma isometria de H sobre um subespago H, de H (a saber o
subespaco gerado pelos eg para todos os { que “comecam” por v) e que para v # w € I,
temos H, 1. H,,.

21



Seja A,, o sub-espago vetorial de (H) gerado pelo conjunto de operadores
{evw = S,50 v, w € In}.

E f4cil verificar que

*
Evwlyz = 5wyev27 € €vw = Cwv)

de onde segue facilmente que A,, é uma sub-C*-dlgebra de B(H) isomorfa & algebra de
matrizes de tamanho 2™ x 2" sobre C. Nao é dificil provar que

Eyw = €00 T Eylyl,
onde v°, v € I, sao dados por v° = (v, ...,v,_1,0) e v} = (vo,...,vn_1,1) e similar-
mente para w® e w!. Desta forma vemos que A, C A, ;. Definimos entdo A como sendo
o fécho da reunido crescente |J,,cn An-

A é uma AF-dlgebra (aproximadamente finita), no sentido em que esta contém uma
algebra densa que é a reuniao de uma familia crescente de sub-algebras de dimensao finita.
Sabe-se também que A é uma &dlgebra simples.

O estudo desta algebra tem intima relagao com as famosas canonical anticommuta-
tion relations no estudo de férmions em Fisica quantica. Além disto importantes modelos
de termodinamica quantica, como por exemplo o famoso modélo de Ising para ferromag-
netismo, pode ser estudado através da algebra do presente exemplo.

A seguir discutiremos algumas propriedades elementares das C*-algebras.

7.8. Proposigao. Se A é uma C*-dlgebra com unidade entao 1 = 1* e ||1|| =1 (a menos
do caso trivial em que A = {0}).

Prova. Temos 1* = 1*1 = (1*1)* = (1*)* = 1. Também ||1]|> = ||1*1| = ||1||, donde
1]} =1 (ou [[1]| = 0). O

Assim como um nimero complexo tem sua parte real e imaginaria temos:

7.9. Proposicao. Seja A uma algebra de Banach com involugao. Dado a € A existem
elementos x,y € A tais que x* =z, y* =y e a = x + 1y.

Prova. Sejam

a+a* a—a*
T = e Yy = :
2 21
A verificacao das condigoes do enunciado é elementar. O

Estudaremos agora uma importante propriedade relativa ao espectro de elementos de
uma C*-dlgebra.

7.10. Proposigao. Seja A uma C*-dlgebra com unidade e seja a € A um elemento auto-
adjunto, isto é, tal que a* = a. Entao o(a) C R.
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Prova. Seja A € g(a) e escreva A = x + iy com z,y € R. O nosso objetivo serd provar que
y = 0. Para cada inteiro n seja b, = a — x + iny. Considerando a funcao racional f dada
por f(z) = z—x+iny concluimos de (3.10) que f(\) € o(f(a)), ouseja, i(n+1)y € o(by).
Segue portanto de (3.6) que |i(n + 1)y| < ||by,||, de onde

(1 + 20+ 1)y? = liCn + Dyl? < o> = [1B50,]) = (@ — @ — iny) (@ — @ + iny)|| =

= ll(a—2)* + 29|l < la — z||* + n?y?,

o que implica que
(2n + 1)y* < [la — 2|

Como n é arbitrario concluimos que y = 0, ou ainda que A € R. O
Uma outra propriedade importante das C*-dlgebras é exposta na seguinte:

7.11. Proposigao. Seja A uma C*-dlgebra com unidade e a € A um elemento auto-
adjunto. Entao

r(a) = [lall.
Prova. Note que |al|> = ||a*a| = ||a?|| de onde, por inducdo finita, temos que |al|?” =
|a®"||. Segue-se que
(4.3) i 27 11/2"
(@) tm a2 = Jal. 0

ExERcic108 DO CAPITULO 7
A. Prove que a definigdo (7.1) ndo se altera se omitirmos o axioma (v) e substituirmos o axioma (vi)
pela forma enfraquecida ||a*a| > ||a||?.

B. Seja A uma C*-4lgebra sem unidade. Prove que a dlgebra do exercicio (2.F) torna-se uma C*-4lgebra
com unidade se definirmos a involugdo e a norma a seguir:

(@, X =(a"A), e |(a,N)] =sup{llab+Nb||: b€ A, [p] <1}.

Prove também que esta norma é equivalente & norma introduzida no exercicio (2.F).
C. Prove a relagéo (7.6).

D. Sendo que a dlgebra A, citada no exemplo (7.7) é isomorfa & dlgebra de matrizes 2™ x 2", e sendo
que A, C Ant1, explique de que forma a algebra Man (C) se encontra contida na algebra Myn+1(C).

*E. Este exercicio tem o objetivo de mostrar a importancia do axioma (7.1.vi), mostrando que existe
uma &dlgebra de Banach com involugdo, para a qual (7.10) falha. Seja A a dlgebra do exercicio (5.E).
Para f € A defina

f*(2) = f(z), Vzesh

Prove que (A, %) é uma dlgebra de Banach com involugdo. Prove também que o elemento Z é auto-
adjunto e que o(Z) é o disco unitdrio complexo (que portanto ndo estd contido em R).
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TEOREMA DE GELFAND PARA C*-ALGEBRAS COMUTATIVAS 8

O grande objetivo deste capitulo ¢ a prova do Teorema de Gelfand segundo o qual
toda C*-algebra comutativa A com unidade é isomorfa a C'(A) através da transformada
de Gelfand vista no capitulo (6). Para isto vamos supor ao longo do presente capitulo que
A é uma C*-dlgebra comutativa com unidade fixa.

O Teorema de Gelfand se aplica igualmente para C*-algebras sem unidade (neste caso
devemos substituir C'(A) por Cy (ﬁ)) Nés vamos nos restringir aqui ao caso com unidade,
deixando a generalizacao para o caso sem unidade como exercicio (veja abaixo).

Seja A uma C*-dlgebra comutativa com unidade, fixa durante todo este capitulo.
Comecaremos provando que homomorfismos complexos definidos em A necessariamente

preservam a involugao:

8.1. Proposicao. Dado ¢ € A temos que

ola*) = ¢(a), VaeA.

Prova. Suponha inicialmente que a é auto-adjunto. Entao, como ¢(a) € o(a) por (5.4), e
como o(a) € R por (7.10), temos que p(a) € R, de onde

p(a*) = p(a) = p(a).

No caso geral escreva a = x + iy como em (7.9) e portanto temos

p(a”) = p(z —iy) = p(z) —ip(y) = p(r) +ip(y) = p(a). O

Note que o resultado acima pode ser interpretado como dizendo que a transformada
de Gelfand é um *-homomorfismo, isto é, um homomorfismo que satisfaz k(a*) = k(a)
para todo a € A.

Podemos agora provar o Teorema de Gelfand, um dos resultados mais celebrados na

teoria das C*-algebras:

8.2. Teorema. Seja A uma C*-dlgebra comutativa com unidade. A transformada de

-~ -~

Gelfand r : A — C(A) é um *-isomorfismo isométrico de A sobre C'(A).

Prova. Seja a € A. Como a*a é auto-adjunto temos que

* (7.11) * (6.2) * Ay
lal* = lla*al "=" r(a"a) =" ||lx(a”a)| = ||x(a)s(a)l| = [l5(a)]?,

provando assim que x é um homomorfismo isométrico. Basta portanto verificarmos que
K € sobrejetor. Para isto langaremos mao do Teorema de Stone-Weierstrass e portanto
precisamos apenas provar que k(A) separa pontos de A.

Sejam portanto ¢, 1) € A com @ # 1. Devemos encontrar a € A tal que k(a)(p) #
k(a)(), ou seja, ¢(a) # ¥(a), mas dado que ¢ # 1, tal a certamente existe! O
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Para finalizar este capitulo demonstraremos um importante resultado sobre perma-
néncia espectral:

8.3. Teorema. Seja B uma C*-dlgebra com unidade e seja A C B uma sub-C*-dlgebra
contendo a unidade de B.

i) Dado a € A inversivel (como elemento de B) tem-se que a~ ! € A.
(i) q

(ii) O espectro de a relativo a B, denotado op(a), coincide com o 4(a), o espectro de a
relativo a A.

Prova. Suponha inicialmente que a é auto-adjunto. Podemos entao supor, sem perda
de generalidade, que A é a sub-C*-dlgebra de B gerada por {1,a} e portanto que A é
comutativa. Pelo Teorema de Gelfand A é isometricamente isomorfa a C (2)

Supondo-se que a nao é inversivel em A entao k(a) é uma fungdo que admite zeros.

Portanto existe uma sequéncia {a,}n,en de elementos de A tal que lim, ||aa,|| = 0 e
|an|| = 1 para todo n. Terfamos entao que
1= [lan] = lla™ aan]l < lla™ | laan | =" 0,

o que é um absurdo.

No caso geral note que a*a e aa* sao inversiveis em B de onde (a*a)™! e (aa*)"! € A
pelo que ja foi provado. Segue-se que a é inversivel a esquerda e a direita como elemento
de A, donde inversivel em A. Como o inverso é necessariamente tinico temos que o inverso
de a relativo a B coincide com o inverso relativo a A e portanto pertence a A. Isto conclui
a demonstracao da parte (i).

Quanto a (ii) seja A € C. Entao pela parte (i) temos que A — a é inversivel em B se
e somente se A — a ¢ inversivel em A. Segue imediatamente que op(a) = oa(a). O

ExERcicios Do CAPITULO 8
A. Seja A uma C*-dlgebra comutativa sem unidade e seja Aaa C*-algebra introduzida no exercicio
(7.B). Seja
ki A— C(Z)
a transformada de Gelfand. Prove que k(A) = {f € C’(Z) 2 f(o0) = 0} onde co é o “ponto no

infinito” conforme o exercicio (5.D). Deduza que a transformada de Gelfand de A é um *-isomorfismo
sobre Cp(A).

B. Seja A uma C*-dlgebra e seja a € A. Prove que se existe uma semi-reta no plano complexo contendo
a origem e que nao intercepta o(a) entdo para cada inteiro n > 1 existe b € A tal que b™ = a.
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POSITIVIDADE 9

O conceito de positividade é um conceito fundamental em anédlise e, como nao pode-
ria deixar de ser, representa um papel importantissimo na teoria das C*-dlgebras. Este
capitulo é dedicado a introduzir as nogoes basicas de positividade no nosso contexto. Seja
portanto A uma C*-algebra com unidade fixa ao longo do presente capitulo.

9.1. Definigao. Um elemento a € A é dito positivo se a é auto-adjunto e o(a) C Ry
(por R4 entendemos o intervalo [0, +00)).

Iniciamos com uma lista de resultados bédsicos para elementos positivos de uma C*-
algebra:

9.2. Proposicgao.

(i) Todo elemento auto-adjunto a € A pode ser escrito como a diferenga de elementos
positivos a4 e a_ tais que aya_ = 0.

(ii) Se a e —a sao ambos positivos entao a = 0.

(iii) Seja a € A um elemento auto-adjunto e seja p uma constante com p > ||al|. Entao a
é positivo se e somente se || — al| < p.

(iv) Se a e b sao positivos entao a + b também é positivo.

(v) Se a é um elemento auto-adjunto entao a < ||la|| no sentido em que ||a|| — a é positivo.

Prova. Dado a € A auto-adjunto, a sub-C*-dlgebra B de A gerada por {1,a} é comutativa
e portanto, pelo Teorema de Gelfand, isomorfa & C(B). Identificando B e C(E) via a
transformada de Gelfand podemos pensar em a como uma funcao real continua em B e,
reciprocamente, toda funcao continua em B pode ser interpretada como um elemento de
B. Seja portanto

a+ = max{a,0}, e a_ =max{—a,0}.

E claro que ¢ = ay —a_, que ara_ = 0, e que a; e a_ sao funcoes reais positivas e
portanto elementos positivos de B. Por (8.3.ii) vemos que a4 e a_ sao positivos também
como elementos de A.

Suponha agora que a e —a s@o positivos. Entao temos que o(a) C Ry NIR_ de onde
o(a) = {0} e portanto por (7.11) concluimos que |la|| = r(a) = 0.

Para provarmos (iii) note que por (3.6) e (7.10) temos que

a(a) € [ = lal lall] € [-4. ul.

Além disto
(7.11)
[ —al"="r(p—a)= sup [p—Al= sup p—A
A€o (a) A€o (a)
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E 6bvio portanto que || — al| < p se e somente se o(a) C Rey.
Para provarmos (iv) sejam a e b elementos positivos. Por (iii) temos que ||||al| — a|| <
|la|| e similarmente para b. Seja u = ||a|| + ||b]|. Entéo é claro que p > ||a + b|| e que

e = (a+0)[ = [|(lall —a) + (16l =) < |[lall —al| + |[[6] = 5| < llall + o]l = 4,

de onde a + b é positivo por (iii).

Finalmente, seja a € A um elemento auto-adjunto. Entao por (3.6) temos que que
o(a) C [—|lall, |all] e consequentemente o(||al| — a) C [0,2]|al|] por (3.10). Assim [ja|| —a
é positivo. O

A seguir veremos um resultado técnico importante que nos auxiliara na obtencao de
caracterizagoes mais eficazes de positividade:

9.3. Lema. Suponha que a € A e que —a*a é positivo. Entao a = 0.

Prova. Escreva a = x + iy como em (7.9). Como z é auto-adjunto temos por (7.10) que

o(z) € R e portanto, por (3.10), temos que o(2?) = o(x)? € Ry. Segue-se que x2, e

similarmente y?, sao elementos positivos. Note que
a*a+aa* = (v —iy)(z +y) + (z + iy)(x — iy) = 22% + 2%,

Portanto

a*a = 2% 4+ 2y* — aa*.

Como o(—aa*) \ {0} = o(—a*a) \ {0} por (3.2) temos que —aa* é positivo. Por (9.2.iv)
temos entao que a*a é também positivo e segue de (9.2.ii) que a*a =0, donde a = 0. O

A seguir damos duas caracterizagoes alternativas para elementos positivos:

9.4. Teorema. Seja A uma C*-dlgebra com unidade. Dado a € A sao equivalentes:
(i) a é positivo.

(ii) Existe um elemento auto-adjunto b € A tal que b* = a.

(iii) Existe b € A tal que b*b = a.

Prova. Supondo (i) seja B a sub-C*-algebra de A gerada por {1,a}. Entao pelo Teorema
de Gelfand temos que B ¢é isometricamente isomorfa a C’(E) Além disto, por (5.4), a
imagem da funcdo x(a) coincide com op(a), que por sua vez é igual a o4(a) por (8.3).
Concluimos portanto que x(a) é uma funcdo positiva em B. Seja g = v/k(a) e b = k= 1(g).
E claro agora que b satisfaz s condices de (ii).

Sendo evidente que (ii) = (iii) resta-nos provar que (iii) = (i). Para isto assuma que
a = b*b e sejam a4 e a_ como em (9.2). Pondo ¢ = ba_ temos

—c*c=—a_(ay —a_)a_ =a>.

Como a_ é positivo é facil ver que o(a®) = o(a)®> C R, donde a® é também positivo.
Da equacdo acima temos entdo que —c*c é positivo donde ¢ = 0 por (9.3). Segue-se que
a® =0 donde a_ = 0 e portanto a = a,, ou seja, a é positivo. O
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Uma consequéncia simples do resultado acima é:
9.5. Corolario. Se a é um elemento positivo entao b*ab também o é para todo b € A.

Prova. De fato, sabendo-se que a = c*c para algum ¢ € A temos que b*ab = b*c*cb =
(cb)*(cb). O

No histérico artigo [6] onde Gelfand e Neumark introduziram os axiomas de C*-
algebras, figurava um axioma que nao foi mencionado na definigdo (7.1), a saber que
a*a + 1 é inversivel para todo a € A.

Note que decorre do resultado acima que a*a é positivo, e que portanto o(a*a) C Ry,
donde —1 ¢ o(a*a). Portanto vemos que o “axioma”’ extra de Gelfand e Neumark pode
ser dispensado, por ser decorrente dos demais.

ExERcicios Do CAPITULO 9

Prove que o conjunto A formado por todos os elementos positivos de A é fechado. Sugestdo: (9.2.iii).
Prove que a decomposi¢ao em (9.2.i) é tnica.

Prove que o sub-espaco vetorial de A gerado pelos elementos positivos coincide com A.

Sejam a e b elementos positivos. Prove que ab é positivo se e somente se ab = ba.

Prove que a relacdo em A definida por a < b se e somente se b — a é positivo é uma relagdo de ordem.

Prove que para todo elemento auto-adjunto a € A tem-se que a < ||al|.

QmHEY QWP

Na prova de (i)=>(ii) em (9.4) o elemento b obtido é na verdade um elemento positivo. Prove que sob
esta hipétese extra b é tinico. Neste caso diz-se que b é a raiz quadrada de a e denota-se b = \/a.

i

Seja A uma C*-dlgebra sem unidade e seja a € A um elemento que é positivo como elemento de A
(veja o exercicio (7.B)). Prove que existe um elemento auto-adjunto b € A tal que b% = a.
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REPRESENTACOES E ESTADOS 10

Histéricamente o estudo de dlgebras de operadores, isto é, sub-C*-dlgebras de Z(H),
onde H é um espaco de Hilbert, precede em vdrios anos a introducao dos axiomas de C*-
algebras por Gelfand e Neumark em [6], cujo objetivo era, entre outros, permitir o estudo
abstrato destas importantes algebras.

Tal estudo é o que, em parte, fizemos acima. Entretanto é hora de voltar as origens e
restabelecer a ligacao entre o conceito abstrato de C*-algebras por um lado, e as dlgebras
de operadores, por outro.

O ponto de ligagao entre estes dois mundos é feito através do seguinte conceito:

10.1. Definigao. Seja A uma algebra de Banach com involugao e H um espago de Hilbert.
Uma representacdo de A em H é um *-homomorfismo

7:A— PB(H),
isto é, um homomorfismo que satisfaz w(a*) = w(a)* para todo a € A.

O nosso maior objetivo nestas notas serd o de provar que para toda C*-algebra existe
uma representacao isométrica, e portanto que toda C*-dlgebra é idéntica a uma sub-C*-
algebra de Z(H).

10.2. Exemplo. Seja A = Cy(X) a algebra do exemplo (2.5), onde X é um espago topolé-
gico localmente compacto. Seja ainda p uma medida boreliana regular em X e considere
o espago de Hilbert H = Lo(X, ). Para cada f € A defina o operador 7(f) em H pela
expressao

m(f)¢], = f(@)é(z), VE€H, VazeX.

E facil mostrar que 7(f) é de fato um operador linear continuo em H e que a fungao
7m: A — ZB(H) é uma representagao de A em H. Se o suporte da medida p coincidir com
X teremos que 7 é isométrica e portanto Cy(X) é isometricamente isomorfo a uma algebra
de operadores em Lo(X, ).

Seja A uma C*-dlgebra arbitriria e seja m uma representagao de A num espacgo de
Hilbert H. Tomando se um vetor £ € H defina a fungao f: A — C por

fla) = (m(a)§, &), VYae A (10.3)

E elementar verificarmos que f é um funcional linear em A e que além disto f é positivo
no sentido da seguinte:

10.4. Definigao. Um funcional linear f : A — C é chamado um funcional positivo se
para todo a € A tenhamos que f(a*a) é um numero real maior ou igual a zero. Se além
disto f(1) = 1 entao f é chamado um estado® de A

5 A terminologia “estado” provém da Mecanica Quéantica.
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Note que por (9.4) um funcional positivo manda elementos positivos em nimeros reais
positivos.

Como ja mencionado, a expressao (10.3) fornece portanto um funcional positivo para
cada vetor £ € H, que é obviamente um estado caso m(1) = 1 e ||| = 1. Por esta razao
o estudo dos funcionais positivos é extremamente relevante na teoria de representagoes de
C*-algebras.

Assim como em (5.2), temos o seguinte resultado de continuidade automatica:

10.5. Proposigao. Seja A uma C*-algebra com unidade e seja f um funcional positivo
em A. Dados a,b € A defina
(a,b) = f(a™d).

Entao

(i) Para todo a,b € A temos | {a,b)|*> < (a,a) (b, D).

(ii) f é continuo e ||f|| = f(1).
Prova. E elementar verificarmos que a fungao (-,-) definida acima satisfaz todas as pro-
priedades de um produto interno, exceto possivelmente pelo axioma de “nao degenerecén-
cia”, isto é o axioma segundo o qual (a,a) # 0 para a # 0. Note também que a desigual-
dade em (i) é precisamente a desigualdade de Cauchy-Schwartz. Como a prova usual desta

ultima nao requer a propriedade de nao degenerecéncia, (i) segue como no caso classico.
Tomando a = 1 em (i) concluimos que para todo b € A

(9.2.v)
FO)P < FA)FO*D) < FQ) (1] £(1) = f(1)*]bII?,
donde f é continuo e || f|| = f(1). 0

Nem sempre é simples verificarmos que um funcional linear é positivo. O seguinte
critério, essencialmente uma reciproca do resultado acima, é as vezes de grande utilidade:

10.6. Proposicao. Seja f um funcional linear continuo em A. Se f(1) = || f|| entao f é
positivo.
Prova. Normalizando podemos supor que f(1) = || f|| = 1. Seja a um elemento positivo

de A. Escreva f(a) = = + iy, onde x e y sdo numeros reais. Queremos portanto provar
quey=0ex >0.

Seja p um nimero real com p > ||a|| e note que por (9.2.iii) temos ||x — al| < p. Por
hipotese segue que

p—z<|p—x—1y|=|f(p—a)| <|p—a|l <p

donde = > 0. Seja agora b, = a — x + iny para cada inteiro positivo n. Notando que
f(bn) =i(n + 1)y temos que

(% + 20+ 1)y? = | F(ba)I? < Ilbal2 = [55bnll =
= [l(a — 2> + n%|| < lI(a — )] +n%>.

Segue-se que (2n + 1)y? < ||(a — x)?|| para todo n mas isto s6 é possivel se y = 0. O
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O resultado a seguir mostra que existem estados em abundéancia.

10.7. Proposicao. Seja A uma C*-dlgebra com unidade e seja a € A um elemento auto-

adjunto. Entao existe um estado f em A tal que |f(a)| = ||a|.
Prova. Seja B a sub-C*-algebra comutativa de A gerada por {1,a}. Como r(a) = ||a||, por
(7.11), existe A € o(a) com |\| = ||a||. Por (5.4) existe entdao ¢ € B tal que |¢(a)| = ||a].
Note que ¢ é um funcional continuo em B com ||¢|| =1 = (1) por (5.2). Usando o
Teorema de Hahn-Banach seja f um funcional linear continuo em A que estende ¢ com
1F1] = el
E 6bvio entao que ||f|| = 1 = f(1) e portanto f é um estado por (10.6). Como f
estende ¢ temos também que |f(a)| = ||al|- 0

ExErcicios Do CAPITULO 10

A. Prove que um elemento a € A é:
i) auto-adjunto se e somente se f(a) € R para todo estado f,
ii) positivo se e somente se f(a) > 0 para todo estado f.

B. Seja f um funcional linear em M, (C). Prove que f é positivo se e somente se existe uma matriz
positiva h tal que f(a) = tr(ah), para todo a € My, (C).

C. Seja a € A um auto-adjunto. Prove que o conjunto dos ntimeros reais da forma f(a), onde f é um
estado em A, coincide com a envoltéria convexa de o(a).

*

*D. Generalize o resultado acima supondo que a é normal, isto é, que aa™* = a*a.

E. Seja p uma medida de Borel regular complexa num espaco compacto X tal que p(X) = ||p|| (onde
||| é a variacdo total de p). Prove que p é uma medida positiva.
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EXISTENCIA DE REPRESENTACOES 1 1

Tendo obtido os resultados técnicos sobre funcionais positivos em C*-dlgebras dos
quais necessitaremos a seguir, concentrar-nos-emos agora no estudo propriamente dito de
representacoes.

11.1. Proposigao. Seja A uma dlgebra de Banach com involugao e 7 : A — %(H) uma
representacao. Entao ||7(a)|| < ||a|| para todo a € A, em particular m é continua.

Prova. Por (2.F) podemos supor que A tem unidade e que 7(1) = 1. Como 7 necessari-
amente manda elementos inversiveis em elementos inversiveis temos que o(w(a)) C o(a)
para todo a € A, donde r(7(a)) < r(a). Portanto

In(@)[I* = lIn(a*a)]| “="r(n(a"a)) < r(a”a) < [la*a] < [la| [lall = fla]*. 0

Note que o resultado acima, assim como sua demonstragao, se generaliza facilmente
para qualquer *-homomorfismo de uma algebra de Banach com involu¢ao para uma C*-
algebra.

11.2. Definigao. Seja m uma representagao da C*-algebra A num espaco de Hilbert H.
Dizemos que um subespago K C H é invariante por 7 se para todo a € A e tivermos que
m(a)K C K.

Dado um subespaco fechado e invariante K podemos considerar a restri¢ao p(a) de
cada operador m(a) para K, obtendo assim uma nova representagao

p:A— BK).

Por abuso de linguagem diremos que p é a restricio® de 7 para K.
Dado um vetor £ € H seja K o fécho do conjunto

T(A)¢ = {m(a)f 1 a € A}.

E claro que K é entao um subespaco fechado e invariante, ao qual chamaremos de espaco
ciclico gerado por &.

11.3. Defini¢cao. Uma representacao m da C*-algebra A em H é dita uma representacdo
ciclica se existe um vetor £ € H tal que m(A)¢ é denso em H (e portanto H coincide com
o espago ciclico gerado por £). Um vetor £ como acima é chamado um wvetor ciclico para
.

6 Note que na verdade K n&o é um subconjunto do dominio de 7, e sim de cada operador 7(a).
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Note que o funcional f em (10.3) nao se altera se substituirmos 7 pela sua restrigao
ao espaco ciclico gerado por &.

11.4. Teorema. Seja A uma C*-dlgebra com unidade e seja f um funcional positivo em
A. Entao existe uma representacao ciclica m de A num espaco de Hilbert H possuindo um
vetor ciclico & tal que

fla) = (m(a)¢,€), VYaceA
Se f é um estado entao ||£|| = 1.
Prova. Considere a fungao sesqui-linear (-,-) em A definida como em (10.5) e seja N =

{a € A:{(a,a) = O}. N é um subespaco vetorial de A em consequéncia da “desigualdade
triangular”

(a+b,a+b)"* < (a,a)'* + (b,0)"/*

que, como de costume, segue da desigualdade de Cauchy-Schwartz. E facil ver que a
expressao
(a+ N,b+ N) := (a,b)

produz uma forma sesqui-linear bem definida em A/N que é positiva e nao degenerada,
isto é, um produto interno. Consequentemente A/N torna-se um espago pré-hilbertiano.
Dado a € A considere a transformacao

mo(a) :b+ N € A/N—ab+ N € A/N.
Afirmamos que my estd bem definida e é continua. De fato, dado b € A temos que
lab+ N||? = (ab, ab) = f(b*a*ab).
Sabemos por (9.2.v) que ||a*a||—a*a é positivo e portanto o mesmo se aplica para b*(||a*a||—
a*a)b, por (9.5). Consequentemente
f(b*a*ab) < [la*a] f(b"b) = [lal/* (b+ N,b+ N).
Assim vemos que
lab+ N|| < [lall [[b+ NT|, (1)

0 que prova que m € bem definida pois se by + N = by + N entao

laby — aby + N|| < la]| |by — b2 + N|[ =0,

e portanto ab; + N = abs + N. Além disto é claro que (}) implica que my é continua.

Seja H o completamento de A/N e para cada a € A seja m(a) a tnica extensao
continua de my(a) para um operador limitado em H. O leitor podera agora verificar sem
dificuldade que a correspondéncia

m:a€A—m(a) € B(H)

é uma representacao ciclica de A em H com vetor ciclico £ =1+ N. E evidente também
que para todo a € A temos

(r(a)¢,§) = (a+ N,1+ N) = f(a). 0
A importancia do resultado acima reside no fato de que representagoes sao produzidas
a partir de funcionais positivos. Por outro lado (10.7) nos garante a existéncia de muitos

funcionais positivos e portanto representacoes devem existir em abundancia. A forma mais
eficaz de precisar esta idéia é talvez:
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11.5. Teorema. Seja A uma C*-dlgebra. Entao existe uma representacao isométrica de
A em um espacgo de Hilbert.

Prova. Sem perda de generalidade podemos supor que A tem unidade. Para cada a € A
seja f um estado de A tal que |f(a*a)| = ||a||* por (10.7). Seja 7, a representacao ciclica
de A, com vetor ciclico unitario &, dada em termos de f por (11.4). Temos

lall* = f(a*a) = (ma(a®a)§, &) = (Ta(a)é, ma(a)€) =

(11.1)
= [[ma(a)é]]? < ma(@)P[I€]? = IIma(a)I* < [lal®.

Temos entao que ||m,(a)|| = ||a||. Seja H, o espago de 7, e defina
H =P H,.
a€A

Seja m a representacao de A em H dada por

n(b) = P malh), Vbe A

acA

E claro portanto que 7 é uma representacao isométrica. O

ExERrcicios Do CAPITULO 11

A. Suponha que K é um espaco invariante por uma representacio w. Prove que K1 é também invariante.

B. Seja f o estado em C([0,1]) dado por f(z) = fol z(t) dt, para todo € C([0,1]). Descreva a
representacdo construida em (11.4) para f.

C. Descreva a representagio construida em (11.4) para o funcional trago em My (C).
D. Prove que se A é separdvel entdo o espago de Hilbert construido em (11.4) é também separavel.

E. Prove que se A é separdvel entao existe uma representagao isométrica de A em um espago de Hilbert
separavel.

F. Seja A uma C*-ilgebra com unidade. Suponha que para cada i = 1,2 é dada uma representagao
ciclica m; de A num espago H; com vetor ciclico &; tal que (m1(a)é1,&1) = (m2(a)é2,&2), Va € A.
Prove que existe um operador unitrio U : H1 — Ha tal que U(&1) = &2 e m2(a) = Un1(a)U~! para
todo a € A. Em resumo, a representacgio construida em (11.4) é tdnica.
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