MAT 0226 - Equações Diferenciais I IME-USP, Segundo Semestre de 2008 Segunda Lista

 $\bf 1$ - Sejam $p,\ q$ e r funções contínuas sobre $a \le x \le b$ tais que p(a)=p(b)=0, p(x)>0 se $a < x < b,\ q(x)>0$ se $a \le x \le b$ e

$$\int_{a}^{a+\epsilon} \frac{dx}{p(x)} = \int_{b-\epsilon}^{b} \frac{dx}{p(x)} = \infty \quad (0 < \epsilon < b-a)$$

Demonstre que todas as soluções da equação

$$p(x)\frac{dy}{dx} + q(x)y = r(x)$$

(que existem sobre o intervalo a < x < b) convergem para $\frac{r(b)}{q(b)}$ quando $x \to b$. Mostre que uma destas soluções converge para $\frac{r(a)}{q(a)}$ quando $x \to a$, enquanto as outras divergem a $+\infty$ ou $-\infty$.

- **2 -** Dada a equação diferencial y'+a(x)y=f(x), onde a e f são funções contínuas definidas num intervalo não-limitado à direita, $a(x) \geq c > 0 \ \forall x$ e $\lim_{x \to \infty} f(x) = 0$, mostre que toda solução tende a zero quando $x \to \infty$.
- ${\bf 3}$ Seja auma constante positiva e seja $\lim_{x\to 0^+} f(x)=b.$ Mostre que a equação xy'+ay=f(x)

tem uma única solução limitada quando $x \to 0^+$ e ache o limite desta solução quando $x \to 0^+$.

- **4 -** (a) Mostre que a equação y'+y=f(x) tem uma única solução limitada para $-\infty < x < \infty$, dado que $f: \mathbb{R} \to \mathbb{R}$ é contínua e limitada. [Sugestão: considere a solução $\phi_A(x)$ com $\phi_A(-A)=0$, e tome $\phi(x)=\lim_{A\to\infty}\phi_A(x)$].
- (b) Supondo que a função f do item (a) é periódica, mostre que a solução obtida acima é periódica. [Sugestão: faça uma mudança de variável na integral].
- 5 Exercício 7 da Seção 2.4 de Figueiredo-Neves.
- 6 Exercício 8 da Seção 2.4 de Figueiredo-Neves.
- 7 Exercício 13 da Seção 2.4 de Figueiredo-Neves.