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Introduction

The economic world is a misty region.

The first explorers used unaided vision.
Mathematics is the lantern by which whar
was before dimly visible now looms up in
firm, bold outlines. The old phantasmagoria'
disappear. We see better. We also see further.
—Irving Fisher (1892)

1.1 Why Economists Use Mathematics

Economic activity has been part of human life for thousands of years. The word
“economics” itself originates from a classical Greek word meaning “household
management.” Even before the Greeks there were merchants and traders who
exhibited an understanding of some economic phenomena; they knew, for instance,
that a poor harvest would increase the price of corn, but that a shortage of gold
might result in a decrease in the price of corn. For many centuries, the most
basic economic concepts were expressed in simple terms requiring only the use of
rudimentary mathematics. Concepts like integers and fractions, together with the
operations of addition, subtraction, multiplication, and division, were sufficient to
allow traders, merchants, farmers and other economic agents to discuss and debate
the economic activities and events that affected their daily lives. These tools were
enough to enable merchants to keep accounts and to work out what prices to charge.

!“Phantasmagoria” is a term invented in 1802 to describe an exhibition of optical illusions
produced by means of a magic lantern.
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Even calculations of interest on loans were not very complicated. Arithmetic could
perform the tasks that merchants required of it even without the concept of zero
and the decimal system of notation. Where a calculating device was required, the
abacus was powerful enough.

The science of economics reached a turning point in the eighteenth cen-
tury with the publication of works such as David Hume’s Political Discourses
(1752), Frangois Quesnay’s Tableau Economique (1758-1759), and Adam Smith’s
The Wealth of Narions (1776). Economic arguments began to be formalized and
developed into theories. This created the need to express increasingly complex
ideas and interrelationships in a straightforward manner. By the mid-1800s, some
writers were beginning to use mathematics to communicate their theories. Some
of the first to do this were economists such as. Antoine Cournot (the first writer to
define and draw an explicit demand curve, and to use calculus in solving a maxi-
mization problem in economics) and Léon Walras (who distinguished himself by
writing down and solving the first multiequation model of general equilibrium of
supply and demand in all markets simultaneously). They found that many of their
ideas could be formulated most effectively by means of mathematical language,
including algebraic symbols, simple diagrams, and graphs. Indeed, much more
sophisticated economic concepts and increasingly complex economic theories have
become possible as mathematical language has been used to express them.

Today, a firm understanding of mathematics is essential for any serious stu-
dent of economics. Although simple economic arguments relying on only two or
three variables can sometimes be made in a clear and convincing fashion without
mathematics, if we want to consider many variables and the way they interact, it
becomes essential to resort to a mathematical model.

As an example, suppose that some government agency is planning to allow
a large amount of new housing to be constructed on some land it controls. What
consequences will this have for employment? Initially, new jobs will be created
in the construction sector as laborers are hired for the project. Moreover, the
construction of new houses requires bricks, cement, reinforcing steel, timber, glass,
and other building materials. Employment must also grow in firms that manufacture
these materials. These producers in turn require materials from other producers,
and so on. In addition to all these production effects, increased employment leads
to increased incomes. If these income gains are not entirely neutralized by taxes,
then a greater demand for consumer goods results. This in turn leads to an increased
need for employment among producers of consumer goods, and again the flow of
Input requirements expands. At the same time, there are feedbacks in the system;
for example, increased incomes also generate more demand for housing. In this
manner, both positive and negative changes in one sector are transmitted to other
sectors of the economy.

The point of this example is that the economic system is so complex that the
final effects are difficuit to determine without resorting to more formal mathematical
devices such as a “circular-flow model” of the entire economy. An example will
be the input—output mode! presented in Section 12.1.
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Mathematical Analysis

The principal topic of this book is an important branch of mathematics called
mathematical analysis. This includes differential and integral calculus and their
extensions. Calculus was developed at the end of the seventeenth century by New-
ton and Leibniz. Their discoveries completely transformed mathematics, physics,
and the engineering sciences, giving them all new life. In similar fashion, the
introduction of calculus into economics has radically changed the way in which
economists analyze the world around them. Calculus is now employed in many
different areas of economics: for example, it is used to study the effects of relative
price changes on demand, the effects of a change in the price or availability of an
essential input such as oil on the production process, the consequences of popula-
tion growth for the economy, and the extent to which a tax on energy use might
reduce carbon dioxide emissions.

The following episode illustrates how economists can use mathematical anal-
ysis to solve practical problems. In February 1953, the Netherlands was struck by a
catastrophic flood far more extensive than any previously recorded. The dikes pro-
tecting the country were washed away and over 1800 people died. Total damages
were estimated at about 7% of national income for that year. A commission was
established to determine how to prevent similar disasters in the future. Rebuilding
the dikes to ensure 100% security would have cost an astronomical amount, even
if it were possible at all. The real problem therefore involved a trade-off between
cost and security: higher dikes would obviously cost more, but would reduce both
the probability and likely severity of future flooding. So the commission had to
try to select the optimal height for the dikes. Some economists on the commis-
sion applied cost-benefit analysis, a branch of economics that involves the use of
mathematical analysis, in order to weigh the relative costs and benefits of different
alternatives for rebuilding the dikes. This problem is discussed in more detail in
Problem 7 in Section 8.4.

Such trade-offs are central to economics. They lead to optimization problems
of a type that is naturally handled by mathematical analysis.

1.2 Scientific Method in the Empirical Sciences

Economics is now generally considered to be one of the empirical sciences. These
sciences share a2 common methodology that includes the following as its most
important elements:

1. Qualitative and quantitative observations of phenomena, either directly or by
carefully designed experiment.

2. Numerical and statistical processing of the observed data.

3. Constructing theoretical models that describe the observed phenomena and
explain the relationships between them.
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4. Using these theoretical models in order to derive predictions.
5. Correcting and improving models so that they predict better.

Empirical sciences thus rely on processes of observation, modeling, and verifica-
rion. If an activity is to qualify fully as an empirical science, each of the foregoing
points is important. Observations without theory can only give purely descriptive
pictures of reality that lack explanatory power. But theory without observation
risks losing contact with the reality that it 1s trying to explain.

Many episodes in the history of science show the danger of error when
“pure theory” lacks any foundation in reality. For example, around 350 B.C..
Aristotle developed a theory that concluded that a freely falling object travels at
a constant speed, and that a heavier object falls more quickly than a lighter one.
This was convincingly refuted by Galileo Galilei in the sixteenth century when
he demonstrated (partly by dropping objects from the Leaning Tower of Pisa)
that, excluding the effects of air friction, the speed at which any object falls is
proportional to the time it has fallen, and that the constant of proportionality is
the same for all objects, regardless of their weight. Thus, Aristotle’s theory was
eventually disproved by empirical observation.

A second example comes from the science of astronomy. In the year 1800,
Hegel advanced a philosophical argument to show that there could only be seven
planets in the solar system. Hegel notwithstanding, an eighth planetary body,
the asteroid Ceres, was discovered in January 1801. The eighth principal planet,
Neptune, was discovered in 1846, and by 1930 the existence of Pluto was
known.?

With hindsight, the falseness of these assertions by Aristotle and Hegel ap-
pears elementary. In all sciences, however, false assertions are being put forth
repeatedly, only to be refuted later. Correcting inaccurate theories is an important
part of scientific activity, and the previous examples demonstrate the need to ensure
that theoretical models are supported by empirical evidence.

In economics, hypotheses are usually less precise than in the physical sci-
ences, and so less obviously wrong than Aristotle’s and Hegel’s assertions just
discussed. But there are a few old theories that have since become so discredited
that few economists now take them seriously. One example is the “Phillips curve,”
that purported to show how an economy could trade off unemployment against
inflation. The idea was that employment might be created through tax cuts and/or
increased public expenditure, but at the cost of increased inflation. Conversely.
inflation could be reduced by tax increases or expenditure cuts. but at the cost of
higher unemployment.

>The process of discovery relied on looking at how the motion of other known planets deviated
from the orbits predicted by Newton's theory of gravitation. These deviations even suggested where to
look for an additional planet that could. according to Newton's theory. account for them. Until recently.
scientists were still using Newton's theory to search for a tenth planetary body whose existence they
suspected. However. more accurate estimates of the masses of the outer planets now suggest that there
are no further planets to find after all.
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Unlike Hegel, who could never hope to count all the planets, or Arnistotle, who
presumably never watched with any care the fall of an object that was dropped from
rest, the Phillips curve was in fact based on rather careful empirical observation. In
an article published in 1958, A. W. Phillips examined the average yearly rates of
wage increases and unemployment for the economy of the United Kingdom over
the long period from 1861 to 1957. The plot of those observations formed the
Phillips curve, and the inflation-unemployment trade-off was part of conventional
economic thinking until the 1970s. Then, however, the decade of simultaneous high
inflation and high unemployment (stagnation and inflation, generally abbreviated
“stagflation”) that many Westermn economies experienced during the period 1973—
1982 produced observations that obviously lay well above the usual Phillips curve.
The alleged trade-off became hard to discern.

Just as Aristotle’s and Hegel’s assertions were revised in the light of suitable evidence,
this stagflationary episode caused the theory behind the Phillips curve to be modified. It was
suggested that as people learn to live with inflation, they adjust wage and loan contracts to
reflect expected rates of inflation. Then the trade-off between unemployment and inflation
that seemed to be described by the Phillips curve becomes replaced by a new trade-off
between unemployment and the deviation in inflation from its expected rate. Moreover, this
expected rate increases as the current rate of inflation rises. So lowering unemployment was
thought to lead not simply to increased inflation, but to accelerating inflation that increased
each period by more than was expected previously. On the other hand, when high inflation
came to be expected, combating it with policies leading to painfully high unemployment
would lead only to gradual decreases in inflation, as people’s expectations of inflation fall
rather slowly. Thus, the original Phillips curve theory has been significantly revised and
extended in the light of more recent evidence.

Models and Reality

In the eighteenth century, the philosopher Immanuel Kant considered Euclidean
geometry to be an absolutely true description of the physical space we observe
through our senses. This conception seemed self-evident and was shared by all
those who had reflected upon it. The reason for this agreement was undoubtedly
that all the results of this geometry could be derived by way of irrefutable logic
from only a few axioms, and that these axioms were regarded as self-evident truths
about physical space. The first person to question this point of view was the
German mathematician Gauss at the beginning of the 1800s. He insisted that the
relationship between physical space and Euclid’s model could only be made clear
by empirical methods. During the 1820s, the first non-Euclidean geometry was
developed—that is, a geometry built upon axioms other than Euclid’s. Since that
time it has been accepted that only observations can decide which geometric model
gives the best description of physical space.

This shows how there can be an important difference between a mathematical
model and its possible interpretations in reality. Moreover, it may happen that
more than one model is capable of describing a certain phenomenon, such as the
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relationship between money supply and inflation in the United States or Germany.
Indeed, this often seems to be the case in economics. As long as all the models
to be considered are internally consistent, the best way to select among competing
explanations is usually to see which one gives the best description of reality. But
this is often surprisingly difficult, especially in economics.

In addition, we must recognize that a model intended to explain a phe-
nomenon like inflation can never be considered as absolutely true; it is at best only
an approximate representation of reality. We can never consider all the factors
that influence such a complex phenomenon. If we tried to do so, we would ob-
tain a hopelessly complicated theory. This is true not only for models of physical
phenomena, but for all models within the empirical sciences.

These comments are particularly relevant for economic research. Consider
once again the effects of allowing new housing to be built. In order to understand
the full implications of this, an economist would require an incredible amount of
data on millions of consumers, businesses, goods and services, etc. Even if it were
available in this kind of detail, the amount of data would swamp the capacities of
even the most modern computers. In their attempts to understand the underlying
relationships in the economy, economists are therefore forced to use various kinds
of aggregate data, among other simplifications. Thus, we must always remember
that a model is only able to give an approximate description of reality; the goal of
empirical researchers should be to make their models reflect reality as closely and
accurately as possible.

1.3 The Use of Symbols in Mathematics

Before beginning to study any subject, it is important that everyone agrees on a
common “language” in which to discuss it. Similarly, in the study of mathematics,
which is in a sense a “language” of its own, it is important to ensure that we all
understand exactly the same thing when we see a given symbol. Some symbols in
mathematics nearly always signify the same definite mathematical object. Examples
are 3, ~/2, 7, and [0, 1], which respectively signify three special numbers and
a closed interval. Symbols of this type are called logical constants. We also
frequently need symbols that can represent variables. The objects that a variable
1s meant 1o represent are said to make up the domain of variation. For example,
we use the letter x as a symbol for an arbitrary number when we write

X —16=(x +4)(x —4)
In words the expression reads as follows:
The difference between the square of the number (hereby called x)

and 16 1s always equal to the product of the two numbers obtained by
adding 4 to the number and subtracting 4 from the number x.
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The equality x> — 16 = (x + 4)(x — 4) is called an identiry because it is valid
identically for all x. In such cases, we sometimes write x> — 16 = (x +4)(x — 4),
where = is the symbol for an identity.

The equality sign (=) is also used in other ways. For example, we write
A = mr? as the formula for the area A of a circle with radius r. In addition, the
equality sign is used in equations such as

4+x—=12=0

where x stands as a symbol for the unknown number. If we substitute various
numbers for x, we discover that the equality sign is often invalid. In fact, the

equation is only true for x = 3 and for x = —4, and these numbers are therefore
called its solutions.

Example 1.1
A farmer has 1000 meters of fence wire with which to enclose a rectangle.
If one side of the rectangle is x (measured in meters), find the area enclosed
when x is chosen to be 150, 250, 350, and for general x. Which value of x
do you believe gives the greatest possible area?

Solution If the other side of the rectangle is y, then 2x + 2y = 1000.
Hence, x + y = 500, so that y = 500 — x. (See Fig. 1.1.) The area A (in
m?) of this rectangle is, therefore,

A = x(500 — x) = 500x — x*

Because both sides must be positive, x must be positive and 500 — x
must be positive. This means that x must be between 0 and 500 m. The areas
when x = 150, 250, and 350 are 150 - 350 = 52,500, 250 - 250 = 62,500,
and 350 - 150 = 52,500, respectively. Of these, x = 250 gives the greatest
value. In Problem 7 of Section 3.1 you will be asked to show that x = 250
really does give the greatest possible area.

When studying problems requiring several (but not too many) variables, we
usually denote these with different letters such as a, b, ¢, x, y, z, A, B, and so on.
Often, we supplement the letters of the Latin alphabet with lowercase and capital

FIGURE 1.1

500 - x
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Greek letters such as a, §, ¥, I, and 2. If the number of variables becomes large,
we can use subscripts or superscripts to distinguish variables from each other. For
example, suppose that we are studying employment in a country that is divided into
100 regions, numbered from 1 to 100. We can then denote employment in region 1
by N;, employment in region 2 by N, and so on. In general, we can define

N; = total employment in region i, i=1,2,...,100

The suffixes i = 1, 2, ..., 100 suggest that the index i can be an arbitrary number
in the range from 1 to 100. If Ns9 = 2690, this means that 2690 people are em-
ployed in region 59. If we want to go further and divide the employed into men
and women, we could denote the number of women (men) employed in region I
by N (N™). Then, we would have N + N™ = N, fori = 1,2, ..., 100.
Note that this notation is actually much clearer than if we were to use 100 different
letters to represent the variables N;—even if we could find 100 different letters
from some combination of the Latin, Greek, Cyrillic, and Sanskrit alphabets!

Many students who are used to dealing with algebraic expressions mvolving
only one variable (usually x) have difficulties at first in handling expressions in-
volving several variables. For economists, however, the previous example shows
how important it is to be able to handle algebraic expressions and equations with
many different variables. Here is another example.

Example 1.2
Consider the simple macroeconomic model

Y=C+1. C=a+bY (1]

where Y is the net national product, C is consumption, and ] is the total
investment, which is treated as fixed.> The three letters, I, a, and b, denote
positive numerical constants—for example, 1 = 100, a = 500, and b = 0.8
are possible values of these constants. Rather than thinking of the two mod-
els with 7 = 100, C = 500 + 0.8Y and with / = 150, C = 600 + 0.9Y as
entirely different, however, it is often more sensible to regard them as two
particular instances of the general model [1], where 1, a, and b are un-
known, and can vary; they are often called parameters. But they should be
distinguished from the variables C and Y of the model.

After this discussion of constants as parameters of the model. solve [1]
for Y.

Solution Substituting C = a + bY from the second equation of [1] for
C into the first equation gives

Y=a+bY+1

°In economics. we often use a bar over a symbol to indicate that it is fixed.
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Now rearrange this equation so that all the terms containing Y are on the
left-hand side. This can be done by adding —bY to both sides, thus canceling
the bY term on the night-hand side to give

Y—bY=a+]
Notice that the left-hand side is equal to (1 — b)Y, so (1 = b)Y =a + I.

Dividing both sides by 1 — b, so that the coefficient of ¥ becomes 1, then
gives the answer, which is

This solution is a formula expressing Y in terms of the three parameters I,
a, and b. The formula can be applied to particular values of the constants,
such as / = 100, a = 500, b = 0.8, to give the right answer in every case.
Note the power of this approach: The model is solved only once, and then
numerical answers are found simply by substituting appropriate numerical
values for the parameters of the model.

Problems

1. a. A person buys x;, x2. and x3 units of three goods whose prices per unit
are, respectively, p|, p2, and p;. What is the total expenditure?

b. A rental car costs F dollars per day in fixed charges and b dollars per kilo-
meter. How much must a customer pay to drive x kilometers in 1 day?

¢. A company has fixed costs of F dollars per year and variable costs of ¢
dollars per unit produced. Find an expression for the total cost per unit
(total average cost) incurred by the company if it produces x units in one
year.

d. A person has an annual salary of $L and then receives a raise of p%
followed by a further increase of g%. What is the person’s new yearly
salary?

e. A square tin plate 18 cm wide is to be made into an open box by cutting
out equally sized squares of width x in each corner and then folding over
the edges. Find the volume of the resulting box. (Draw a figure.)

2. a. Prove that

a-p_ 4+ Tog) 7
100 100

a-+

can be written as
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b. An item inidally costs $2000 and then its price is increased by 5%.
Afterwards the price is lowered by 5%. What is the final price?

c. An item initially costs a dollars and then its price is increased by p%.
Afterwards the (new) price is lowered by p%. What is the final price
of the item? (After considering this problem, look at the expression in
part (a).)

d. What is the result if one first lowers a price by p% and then increases it
by p%?

3. Solve the following equations for the variables specified:

a.x=§(y—3)+y for y b.ax-b=cx+d for x

c. AKNL=Y, for L d. px+gy=m for y
1
e. 1E ——cforr L Y=aW-tY-k)+b+1I,+Gfory
+b
1+r

4. The relationship between a temperature measured in degrees Celsius (or
Centigrade) (C) and in Fahrenheit (F) is given by C = %(F - 32).
a. Find C when F is 32; find F when C = 100.
b. Find a general expression for F in terms of C.
c. One day the temperature in Oslo was 40° F, while in Los Angeles it was
80°F. How would you respond to the assertion that it was twice as warm

in Los Angeles as in Oslo? (Hinz: Find the two temperatures in degrees
Celsius.)

5. If a rope could be wrapped around the earth’s surface at the equator, it
would be approximately circular and about 40 million meters long. Suppose
we wanted to extend the rope to make it 1 meter above the equator at every
point. How many more meters of rope would be needed? (Guess first,
and then find the answer by precise calculation. For the formula for the
circumference of the circle, see Appendix D.)

Harder Problems

6. Solve the following pair of simultaneous equations for x and y:
px+{l—q)y=R and gx+ (1 =p)y=S

7. Consider an equilateral triangle. and let P be an arbitrary point within the
mangle. Let h;, h>, and hs be the shortest distances from P to each of the
three sides. Show that the sum h; + h, + A3 is independent of where point

P 1s placed in the triangle. (Hinz: Compute the area of the mangle as the
sum of three triangles.)
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1.4 The Real Number System

God created the integers;
everything else is the work of man.
—L. Kronecker

Real numbers were originally developed in order to measure physical characteristics
such as length, temperature, and ttme. Economists also use real numbers to measure
prices, quantities, incomes, tax rates, interest rates, and average costs, among other
things. We assume that you have some knowledge of the real number system, but
because of its fundamental role, we shall restate its basic properties.

Natural Numbers, Integers, and Rational
Numbers

The everyday numbers we use for counting are 1, 2, 3, .... These are called
natural numbers. Though familiar, such numbers are in reality rather abstract and
advanced concepts. Civilization crossed a significant threshold when it grasped the
idea that a flock of four sheep and a collection of four stones have something in
common, namely “fourness.” This idea came to be represented by symbols such
as the primitive :: (still used on dominoes or playing cards), the modem 4, and
the Roman numeral IV. This notion is grasped again and again as young children
develop their mathematical skills.

During the early stages of many cultures, day-to-day problems motivated
the four basic arithmetic operations of addition, subtraction, multiplication, and
division. If we add or multiply two natural numbers, we always obtain another
natural number. Moreover, the operations of subtraction and division suggest the
desirability of having a number zero (4 —4 = 0), negative numbers (3 -5 = —-2),
and fractions (3 = 5 = 3/5). The numbers 0, &1, £2, +3, ... are called the inte-
gers. They can be represented on a2 number line like the one shown in Fig. 1.2.

The rational numbers are those like 3/5, that can be written in the form a/b,
where a and b are both integers. An integer n is also a rational number, because
n = n/1. Examples of rational numbers are

————

1
2’ 70 = 17 0= -19, —126=———

11 125 10 0 126
1 100

The rational numbers can also be represented on the number line. Imagine that
we first mark 1/2 and all the multiples of 1/2. Then we mark 1/3 and all the

FIGURE 1.2 The number line.

R

-5 -4 -3 -2 -1 0 1 2 3 4 5
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-1
FIGURE 1.3

[}8)
w

multiples of 1/3, and so forth. You can be excused for thinking that “finally” there
will be no more places left for putting more points on the line. But in fact this 1s
quite wrong. The ancient Greeks already understood that “holes” would remain in
the number line even after all the rational numbers had been marked off. This is
demonstrated in‘the construction in Fig. 1.3.

Pythagoras’ theorem tells us that s2 = 12 + 12 = 2, so s = +/2. It can be
shown, however, that there are no integers p and g such that V2= p/q. Hence,
/2 is not a rational number. (Euclid proved this fact in about 300 B.C. See Problem
3 in Section 1.6.)

The rational numbers are therefore insufficient for measuring all possible
lengths, let alone areas and volumes. This deficiency can be remedied by ex-
tending the concept of numbers to allow for the so-called irrational numbers.

This extension can be carried out rather naturally by using decimal notation for
numbers.

The Decimal System

The way most people write numbers today is called the decimal system, or the
base 10 system. It is a positional system with 10 as the base number. Every
natural number can be written using only the symbols, 0, 1, 2, ..., 9, that are
called digits. You will note that “digit” also means “finger,” or “thumb,” and that
most humans have 10 digits. The positional system defines each combination of
digits as a sum of exponents of 10. For example,

1984 =1-10°+9-102+8-10" +4-10°

Each natural number can be uniquely expressed in this manner. With the use of
the signs + and —, all integers, positive or negative, can be written in the same

way. Decimal points also enable us to express rational numbers other than natural
numbers. For example,

3.1415 =3+ 1/10" +4/10> + 1/10° + 5/10*

Rational numbers that can be written exactly using only a finite number of decimal
places are called finite decimal fractions.

Each finite decimal fraction 1s a rational number, but not every rational num-
ber can be written as a finite decimal fraction. We also need to allow for infinite
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decimal fractions such as

100/3 = 33.333. ..

where the three dots indicate that the decimal 3 recurs indefinitely.

If the decimal fraction is a rational number, then it will always be periodic—
that 1s, after a certain place in the decimal expansion, it either stops or continues to
repeat a finite sequence of digits. For example, 11/70 = 0.1 571428 5714285. ...

N N e’

Real Numbers

The definition of a real number follows from the previous discussion. We define a
real number as an arbitrary infinite decimal fraction. Hence, a real number is of the
form x = £m.a o003 ..., where m is an integer, and a, (n = 1, 2...) is an infinite
series of digits, each in the range 0 10 9. We have already identified the periodic
decimal fractions with the rational numbers. In addition, there are infinitely many
new numbers given by the nonperiodic decimal fractions. These are called irra-
tional numbers. Examples include v2, —+/3, 7, 2¥2, and 0.12112111211112. . ..

It turns out that, in general, it is very difficult to decide whether a given
number is rational or irrational. It has been known since the year 1776 that « is
irrational and since 1927 that 2V2 is irrational. However, we still do not know as
of 1993 whether 2¥2 + 3V is irrational or not. One might gain the impression that
there are relatively few irrational numbers. In fact, there are (in a certain precise
sense) infinitely more irrational numbers than there are rational numbers.

We mentoned earlier that each rational number can be represented by a
point on the number line. But not all points on the number line represent rational
numbers. It is as if the irrational numbers *close up” the remaining holes on
the number line after all the rational numbers have been positioned. Hence, an
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unbroken and endless straight line with an origin and a positive unit of length is
a satisfactory model for the real numbers. We frequently state that there is a one-
to-one correspondence between the real numbers and the points on a number line.

The rational and irrational numbers are said to be “dense” on the number
line. This means that between any two different real numbers, irrespective of how
close they are to each other, we can always find both a rational and an irrational
number—in fact, we can always find infinitely many of each.

When applied to the real numbers, the four basic arithmetic operations always
result in a real number. The only exception is that we cannot divide by O.

% is not defined for any real number a

This is very important and should not be confused with 0/a = 0, for all a ¢ 0. No-
tice especially that 0/0 is not defined as any real number. For example, if a car re-
quires 60 liters of fuel to go 600 kilometers, then its fuel consumption is 60/600 = 10
laters per 100 kilometers. However, if told that a car uses 0 liters of fuel to go O kilo-
meters, we know nothing about its fuel consumption; 0/0 is completely undefined.

Inequalities

In mathematics and especially in economics, inequalities are encountered almost
as often as equalities. It is important, therefore, to know and understand the rules
for carring out calculations involving inequalities. These are presented in Section
A.71n Appendix A. The following example is of interest in statistics.

Example 1.3
Show that if a > 0 and b > 0, then

Vab < 422 (1.1]

Solution (You should first test this inequality by choosing some specific
numbers. using a calculator if you wish.) To show the given inequality. it 1s
enough to verify that ab < (a + b)*/4 because then the square root of the
left-hand side cannot exceed the square root of the right-hand side—that is.
vab < 1(a + b). To verify this, it is enough to check that the right-hand
side minus the left-hand side is nonnegative. But indeed

(a +b)? b a’>+2ab+b>—4ab a*—-2ab+b> (a-—b)? S
—a = = =
4 4 4 -

0

In fact. essentially the same proof can be used to show that v/ab < %(a +b)
unless a = b.
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The number 1(a + b) is called the arithmetic mean of  and &, and vab

1s called the geometric mean. What does the inequality in [1.1] state about the
different means?

Intervals

If 2 and b are two numbers on the number line, then we call the set of all num-
bers that lie between a and o an interval. In many situations, it is important to
distinguish between the intervals that include their endpoints and the intervals that
do not. When a < b, there are four different intervals that all have a and b as
endpoints, as shown in Table 1.1. Note that the names in the table do not distin-
guish [a, b) from (a, b]). To do so, one could speak of “closed on the left,” “open
on the right,” and so on. Note, too, that an open interval includes neither of its
endpoints, but a closed interval includes both of its endpoints. All four intervals,
however, have the same length, b — a.

We usually illustrate intervals on the number line as in Fig. 1.4, with in-
cluded endpoints represented by dots, and excluded endpoints at the tips of arrows.
The intervals mentioned so far are all bounded intervals. We also use the word
“Interval” to signify certain unbounded sets of numbers. For example, we have

[a, c0) = all numbers x, with x > a

(=00, b) = all numbers x, with x < b

with oo as the common symbol for infinity. Note that the symbol co is not a number
at all, and therefore the usual arithmetic rules do not apply to it. In [a, oo), the
symbol oo is only a handy notation indicating that we are are considering the col-
lection of all numbers larger than or equal to a, without any upper limit to the size
of the number. From the preceding, it should be readily apparent what we mean

TABLE 1.1
The interval consists
Notation Name of all x satistying:
(a,b) The open interval from a to b. a<x<b
[a,b] The closed interval from a to b. as<x<b
(a,b] The half-open interval from a to b. a<x<b
[a,b) The half-open interval from a to b. a<x<b

FIGURE 1.4 A=[—4,-2], B =[0,1), and C = (2,5).
A B _ C

& 2 N .
o—p —

5-4-3-2-101 2 3 4 5 6 7
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by (a, o0) and (—o0, b]. The collection of all real numbers is sometimes denoted
by the symbol (—o0, oc).

Absolute Value

Let a be a real number and imagine its position on the number line. The distance
between a and 0 is called the absolute value of a. If a is positive or 0, then the
absolute value is the number q itself; if a is negative, then because distance must
be positive, the absolute value is equal to the positive number —a.

The absolute value of a 1s denoted by |al, and

' al = a, ifa>0 [1.2)
| —aq, ifa<O

For example, |13| = 13, |-5| = —(=5) =5, |-1/2| =1/2, and |0| = 0.

Note: It is a common fallacy to assume that a must denote a positive number, even
if this is not explicitly stated. Similarly, on seeing —a, many students are led to
believe that this expression is always negative. Observe, however, that the number
—a 1s positive when a itself is negative. For example, if a = -5, then —a =
—(—5) = 5. Nevertheless, it is often a useful convention in economics to define
variables so that, as far as possible, their values are positive rather than negative.
Where a variable has a definite sign, we shall try to follow this convention.

Example 1.4

(a) Compute |x — 2| forx = =3, x =0, and x = 4.
(b) Rewrite |x — 2| using (1.2).

Solution
(a) For x = =3,
x =2{={-3-2/=[-5|=5
For x =0, l
x =2|=0-2|=|-2|=2
For x =4,
x=2=4-2 =2 =2

(b) According to [1.2], [x =2 = x =2 if x =2 > 0, that1s, x > 2.
However, x =2 = —-(x -2)=2—-x1f x =2 < 0. thatis. x < 2.



Sec. 1.4 / The Real Number System 17

Hence.

x—2 = x -2, fx>2
T 12-=nx, ifx <2

(Check this answer by trying the values of x tested in part (a).)

Let x; and x> be two arbitrary numbers. The distance between x; and x; on
the number line is equal to x; — x> if x; > x», and equal to —(x; — x2) if x| < x2.
Therefore, we have

x; — x»| = distance between x; and x> on the number line [1.3]

In Fig. 1.5, we have indicated geometrically that the distance between 7 and 2 is
S, whereas the distance between —3 and —5 is equal to 2, because |[—3 — (=5)| =
|=3+5|=12|=2.

Suppose |x| = 5. What values can x have? There are only two possibilities:
either x = 5 or x = —5, because no other numbers have absolute values equal to 5.
Generally, if a is greater than or equal to O, then |x| = a means that x = a or x =
—a. Because [x| > 0 for all x, the equation |x| = a has no solution when a < 0.

If a is a positive number and [x| < a, then the distance from x to O is less
than 4, and so

|x] <a means that —a <x <a [1.4]

Furthermore, when a is nonnegative, it is clear that

x| <a means that —a <x <a [1.5]

Example 1.5

Find all the x such that [3x — 2| < 5. Check first to see if this inequality is
fulfilled for x = -3, x =0, x =7/3, and x = 10.

FIGURE 1.5 The distance between 7 and 2, and between —3 and —5.
f=3~(=5)=2 7-2/=5

-y

7 6 -5 4 -3 -2 -1 0 1 2 3 4 s 6 7
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Solution For x = =3, |3x = 2] = |-9 - 2| = 11; for x = 0, we have
3x = 2| =|-2| =2;forx =7/3, |3x =2| = 1|7~ 2| = 5; and for x = 10,
|3x —2| = |30 —2| = 28. Hence, we see that the given inequality is satisfied
for x = 0 and x = 7/3, but not for x = -3 or x = 10.

From [1.5] we see that |[3x —2| < 5 means —5 < 3x—2 < 5. Adding 2
to all three expressions gives —5+2 <3x—-2+2<5+2,or-3<3x <7.
Dividing by 3 gives —1 < x < 7/3.

Problems

. Which of the following numbers is a natural number, an integer, or a rational

number?

a. 3.1415926  b. \/2-% o (V3+V2)(¥V3-v2) d. 37—}

Which of the following statements are correct?
1984 is a natural number.

-5 is to the right of —3 on the number line.
—13 is a natural number.

There is no natural number that is not rational.
3.1415 is not rational.

The sum of two irrational numbers is irrational.

L R L i

. For what real numbers x is each of the following expressions defined?

3 b x—1 3x 1/4

a. « —— C —/——— - >
x—4 x(x+2) x*+4x =5 x> +4x+4

. Solve the following inequalities for y in terms of the other variables:

a. 3x+4y <12 b. —x+3y—z>y—(x——y)+%z

C. px+gy<m  (9>0)

Consider Problem 1(c) in Section 1.3. Set up an inequality that determines
how many units x the company must produce before the average cost falls

below $gq. Solve the inequality for x. Put F = 100,000, ¢ = 120, g = 160.
and solve the problem for this case.

Calculate |2x — 3|, for x = 0, 1/2, and 7/2.

a. Calculate |5 — 3x|, for x = —1. 2. and 4.
b. Solve the equation |5 — 3x| = 0.
c. Rewrite |5 — 3x| by using [1.2].

Determine x such that
a. 3—-2x|=5 b. x| <2 ¢. x =2 <1
d 3-8x <5 e. x| > 2 £ x2 -2 <1

A 5-meter iron bar is to be produced. It is necessary that the length does not
deviate more than 1 mm from its stated size. Write a specification for the
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rod’s length x in meters: (a) by using a double inequality and (b) with the
aid of an absolute-value sign.

1.5 A Few Aspects of Logic

An astronomer, a physicist, and a mathematician were travelling on a train in
Scotland. Through the window they saw a flock of sheep grazing in a meadow.
The astronomer remarked, “In Scotland all sheep are black.”

The physicist protested, “Some Scottish sheep are black.”

The mathematician declared, “In Scotland there exists a flock of sheep all of
which are black on at least one side.”

So far we have emphasized the role of mathematical models in the empirical
sciences, especially in economics. The more complicated the phenomena to be
described, the more important it is to be exact. Errors in models applied to practical
situations can have catastrophic consequences. For example, in the early stages of
the U.S. space program, a rocket costing millions of dollars to develop and build
had to be destroyed only seconds after launch because a semicolon had been left
out of the computer program intended to control the guidance system.

Although the consequences may be less dramatic, errors in mathematical
reasoning also occur rather easily. In what follows, we offer a typical example

of how a student (or professor) might use faulty logic and thus end up with an
1ncorrect answer to a problem.

Example 1.6
Find a possible solution for the equation x + 2 = /4 — x.

“Solution”  Squaring each side of the equation gives (x + 2)? =
(V4=x)%, and thus x2 +4x +4 = 4 — x. Rearranging this last equation
gives x> + 5x = 0. Canceling x results in x + 5 = 0, and therefore x = —3.

According to this reasoning, the answer should be x = —5. Let us
check this. For x = —5, we have x + 2 = =3. Yet /4 — x = /9 = 3,
so this answer is incorrect. In Example 1.9. we explain how the error arose.

(Note the wisdom of checking your answer whenever you think you have
solved an equation.)

This example highlights the dangers of routine calculation without adequate

thought. It may be easier to avoid similar mistakes after studying more closely the
structure of logical reasoning.

Propositions

Assertions that are either true or false are called statements, or propositions. Most
of the propositions in this book are mathematical ones, but others may arise in daily
life. “All individuals who breathe are alive” is an example of a true proposition,
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whereas the assertion “all individuals who breathe are healthy” is an example of
a false proposition. It should be noted that if the words used to express such
assertions lack a precise meaning, it will often be difficult to distinguish between
a true and a false proposition.

Suppose an assertion such as “x> — 1 = 0” includes one or more variables.
By substituting various real numbers for the variable x, we can generate many
different propositions, some true and some false. For this reason we say that the
assertion is an open proposition. In fact, the proposition x> — 1 = 0 happens
to be true if x = 1 or —1, but not otherwise. Thus, an open proposition 1is
not simply true or false. It is neither true nor false until we choose a particular
value for the vanable. In practice we are somewhat careless about this distinction
between propositions and open propositions; instead, we simply call both types
propositions.

Implications

In order to keep track of each step in a chain of logical reasoning, it often helps
to use implication arrows.

Suppose P and Q are two propositions such that whenever P is true, then
Q is necessarily true. In this case, we usually write

P = Q0 [*]

This 1s read as “P implies Q.” or “if P, then Q,” or “Q is a consequence of P.”
The symbol = is an implication arrow, and it points in the direction of the
logical implication. Here are some examples of correct implications.

Example 1.7

@ x>2 = x2>4.

b) xy=0 = x=00ry=0.

(c) x is a square == x is a rectangle.

(d) x is a healthy person = x is breathing.

Notice that the word “or’” in mathematics means the “inclusive or,” signifying
that “P or Q07 means “either P or Q or both.”

All the propositions in Example 1.7 are open propositions, just as are most
propositions encountered in mathematics. An implication P = (Q means that
for each value of some variable for which P is true. Q is also true.

In certain cases where the implication [x] is valid. it may also be possible to
draw a logical conclusion in the other direction:

Q = P
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In such cases, we can wnte both implications together in a single logical equiva-
lence:

P < (O

We then say that “P is equivalent to Q,” or “P if and only if Q,” or just “P iff
Q.” Note that the statement “P only if Q” expresses the implication 7 = Q.
whereas “P if Q7 expresses the implication 0 =— P.

The symbol <= 1is an equivalence arrow. In previous Example 1.7, we
see that the implication arrow in (b) could be replaced with the equivalence arrow,
because it is also true that x = 0 or y = O implies xy = 0. Note, however, that
no other implication in Example 1.7 can be replaced by the equivalence arrow.
For even if x* is larger than 4, it is not necessarily true that x is larger than
2 (for instance, x might be —3); also, a rectangle is not necessarily a square;

and, finally, just because person x is breathing does not mean that he or she is
healthy.

Necessary and Sufficient Conditions

There are other commonly used ways of expressing that proposition P implies
proposition Q, or that P is equivalent to Q. Thus, if proposition P implies
proposition Q, we state that P is a “sufficient condition” for Q. After all, for
Q to be true, it is sufficient that P is true. Accordingly, we know that if P is
satisfied, then it is certain that Q is also satisfied. In this case, we say that Q

is a “necessary condition” for P. For Q must necessarily be true if P is true.
Hence,

P is a sufficient condition for Q means: P = Q
Q is a necessary condition for P means: P = Q

For example, if we formulate the implication in Example 1.7(c) in this way, it
would read:

A necessary condition for x to be a square is that x be a rectangle.

or

A sufficient condition for x to be a rectangle is that x be a square.

The corresponding verbal expression for P <= Q is simply: P is a necessary
and sufficient condition for Q, or P if and only if Q, or P iff Q. It is evident
from this that it is very important to distinguish between the propositions “P is a
necessary condition for Q” (meaning Q = P) and “P is a sufficient condition



22  Chapter 1 / Introduction
for Q” (meaning P =— Q). To emphasize the point, consider two propositions:

1. Breathing is a necessary condition for a person to be healthy.
2. Breathing is a sufficient condition for a person to be healthy.

Evidently proposition 1 is true. But proposition 2 is false, because sick (living)
people are still breathing. In the following pages, we shall repeatedly refer to
necessary and sufficient conditions. Understanding them and the difference between

them is a necessary condition for understanding much economic analysis. It is not
a sufficient condition, alas!

Solving Equations

We shall now give examples showing how using implication and equivalence ar-
rows can help avoid mistakes in solving equations like that in Example 1.6.

Example 1.8
Find all x such that 2x — 1)* — 3x? = 2 (5 — 4x).

Solution By expanding (2x — 1)* and also multiplying out the right-hand
side, we obtain a new equation that obviously has the same solutions as the
original one:

2x -1 -3x"=2(3 —4x) & 4’ —4x+1-3x"=1-28

Adding 8x — 1 to each side of the second equality and then gathering terms
gives the equivalent expression

4x? —4x+1-3x>=1—-8x < x> +4x=0

Now x2 +4x = x(x + 4), and the larter expression is 0 if and only if x = 0
or x +4 = 0. That 1s,

P +4x =0 &= x(x+4) =0 < x=0 or x+4=0
= x =0 or x=—4
Putting everything together, we have derived a chain of equivalence arrows

showing that the given equation is fulfilled for the two values x = 0 and
x = —4, and for no other values of x. That is,

2

2x =1 =3x>=2( —4x) < x=0 or x = —4

19—

Example 1.9
Find all x such that x + 2 = +/4 — x. (Recall Example 1.6.)
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Solution Squaring both sides of the given equation yields

(x+2)" = (Va-x)’

Consequently, x> +4x + 4 = 4 — x, that is, x> + 5x = 0. From the latter
equation it follows that

x(x+5 =0

which implies x = 0 or x = —5. Thus, a necessary condition for x to solve
x+2 =4+/4—xisthat x =0 or x = —5. Inserting these two possible values
of x into the original equation shows that only x = 0 sausfies the equation.
The unique solution to the equation is, therefore, x = Q.

In finding the solution to Example 1.9, why was it necessary to test whether
the values we found were actually solunons, whereas this step was unnecessary in
Example 1.8? To answer this, we must analyze the logical structure of our solution
to Example 1.9. With the aid of numbered implication and equivalence arrows, we
can express the previous solution as

¢! Q)
x+2=vV4-x = (x+2P=4—-x = x*+4x+4=4—x

) - ) )
= x"+5%=0= x(x+5)=0= x=0o0rx=-5

Implication (1) is true (because a = b == a°> = b* and (ﬁ)z = a). Itis
important to note, however, that the implication cannot be replaced by an equiva-
lence. If a*> = b?, then either a = b or a = —b; it need not be true that a = b.
Implications (2), (3), (4), and (5) are also all true; moreover, all could have been
written as equivalences, though this is not necessary in order to find the solution.
Therefore, a chain of implications has been obtained that leads from the equation
X +2 = /4 — x to the proposition “x = 0 or x = —5.” Because the implication
(1) cannot be reversed, there is no corresponding chain of implications going in the
opposite direction. We have verified that if the number x satisfies x +2 = /4 — x,
then x must be either 0 or —5; no other value can satisfy the given equation.
However, we have not yet shown that either 0 or —5 really satisfies the equation.
Until we try inserting O and —5 into the equation, we cannot see that only x = 0
1s a solution. Note that in this case, the test we have suggested not only serves to
check our calculations, but is also a logical necessity.

Looking back at Example 1.6, we now realize that two errors were committed.
Firstly, the implication x> + 5x = 0 = x + 5 = 0 is wrong, because x = 0 is also
a solution of x> + 5x = 0. Secondly, it is logically necessary to check if 0 or —5
really satisfies the equation.

The method used to solve Example 1.9 is the most common. It involves
setting up a chain of implications that starts from the given equation and ends with
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a set of its possible solutions. By testing each of these trial solutions in turn, we
find which of them really do satisfy the equation. Even if the chain of implications
is also a chain of equivalences (as it was in Example 1.8), such a test is always a
useful check of both logic and calculations.

Problems

1. Implications and equivalences can be expressed in ways that differ from those
already mentioned. Use the implication or equivalence arrows to mark in
which direction you believe the logical conclusions proceed in the following
propositions:

a. The equation 2x — 4 = 2 is fulfilled only when x = 3.
b. If x =3, then 2x — 4 =2.

c. The equation x> — 2x + 1 = 0 is satisfied if x = 1.

d. If x? > 4, then x > 2 or x < —2, and conversely.

2. Consider the following six implications and decide in each case: (i) if the
implication is true, and (ii) if the converse implication is true. (x, y. and z
are real numbers.)

ax=2andy=5S=x+y=7

b. x—-1Dx-2)x-3)=0=x=1
¢ x>+y’=0=x=00ry=0

d x=0and y=0=x>+3y>=0

C XYy=XI==>Yy =2
fx>y’=2x>0

3. Consider the proposition 2x + 5 > 13.

a. [s the condition x > 0 necessary, sufficient, or both necessary and suffi-
cient for the proposition to be satisfied?

b. Answer the same question when x > 0 is replaced by x > 50.

¢. Answer the same question when x > 0 is replaced by x > 4.

4. Solve the equation

(x +1)? . (x —1)? _3x+1
x(x=1) x(x+1 “x2-1

0

3. Solve the following equations:

a. x+2=+Ax+13 b x+2/=vd-x ¢ x*=2x|-3=0
6. Solve the following equations:
a. Vx—4=Vx+5-9 b. Vx—4=9—+/x+5

7. Fill in the blank rectangles with “iff” (if and only if) when this results in a
true statement, or alternatively with “if” or “only if.”

a. x =+/4 \ L x=2
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b. x2> 0 x>0

|
c. x> <9 x <3
d x(x>+1)=0 x=0

e. x(x+3) <0 x> =3

8. Consider the following attempt to solve the equation x ++/x + 4 = 2: “From
the given equation, it follows that ~/x + 4 = 2—x. Squaring both sides gives
x+4 = 4 —4x +x?. After rearranging the terms, it is seen that this equation
implies x> — 5x = 0. Canceling x, we obtain x —5 = 0 and this equation is
satisfied when x = 5.

a. Mark with arrows the implications or equivalences expressed in the text.
Which ones are correct?
b. Give a correct solution to the equation.

9. For each of the following 6 propositions, state the negation as simply as
possible.

x>0and y>0.

All x satisfy x > a.

Neither x nor y is less than 5.

For each ¢ > 0, there exists a § > 0 such that B is satisfied.
No one can avoid liking cats.

Everyone loves someone at certain times.

R L i o

10. “Supreme Court refuses to hear challenge to lower court’s decision approving

a trial judge’s refusal to allow a defendant to refuse to speak.” Has the
defendant the right not to speak?

1.6 Mathematical Proof

In science, what can be proved should not be believed without proof.*
—R. Dedekind (1887)

In every branch of mathematics, the most important results are called theorems.
Constructing logically valid proofs for these results often can be rather complicated.
For example, the “four-color theorem” states that any map in the plane needs at
most four colors in order that all contiguous regions should have different colors.
Proving this involved checking hundreds of thousands of different cases, a task
that was impossible without a sophisticated computer program.

In this book, we often omit formal proofs of theorems. Instead, the empha-
sis is on providing a good intuitive grasp of what the theorems tell us. However,

*Here is the German original: “Was beweisbar ist, soli in der Wissenschaft nicht ohne Beweis
geglaubt werden.”
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although proofs do not form a major part of this book, it is still useful to understand
something about the different types of proof that are used in mathematics. In fact,
a proof that is actually readable is likely to some extent to rely on the reader’s
intuition. Although many mathematical logicians do take care to present every step
and every argument. and this may indeed be a necessary step in enabling computers
to check a proof, the overall result is usually unreadable by most people.

Every mathematical theorem can be formulated as an implication

P= 0 [*]

where P represents a proposition or a series of propositions called premises (“what
we know”), and Q represents a proposition or a series of propositions that are called
the conclusions (“what we want to know”). A statement of the form P < Q
can be regarded as two theorems.

Usually, it is most natural to prove a resuit of the type [*] by starting with the
premises P and successively working forward to the conclusion Q; we call this a
direct proof. Sometimes, however, it is more convenient to prove the implication
P = Q by an indirect proof. In this case, we begin by supposing that Q is not
true, and on that basis demonstrate that neither can P be true. This is completely
legitimate, because we have the following equivalence:

P= Q isequivalentto  not Q = not P (1.6]

It is helpful to consider how this rule of logic applies to some concrete examples:
If it is raining, the grass is getting wet

asserts precisely the same thing as
If the grass is not genting wet, then it is not raining.

If T denotes a triangle, then

The base angles of T are equal implies that T is isosceles asserts the
same as If T is not isosceles, then its base angles are not equal.

There is a third method of proof that is also sometimes useful. It is called proof by
contradiction. The method is based upon a fundamental logical principle: that it
is impossible for a chain of valid inferences to proceed from a true proposition to a
false one. Therefore, if we have a proposition R and we can derive a contradiction
on the basis of supposing that R 1s false, then it follows that R must be true.
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Example 1.10
Use three different methods to prove that

x4+ 5%x—-4>0=x >0
Solution

(a) Direct proof- Suppose —x> + 5x —4 > 0. Adding x” + 4 to each side
of the inequality gives 5x > x> + 4. Because x*> +4 > 4, for all x, we
have Sx > 4, and so x > 4/5. In particular, x > 0.

(b) Indirect proof: Suppose x < 0. Then 5x < 0 and so —x* + 5x — 4, as
a sum of three nonpositive terms, is < 0.

(¢) Proof by contradiction: Suppose that the statement is not true. Then
there has to exist an x such that —x?> 4+ 5x —4 > 0 and x < 0. But if
x <0, then —x? +5x —4 < —x> — 4 < —4, and we have arrived at a
contradiction.

Deductive vs. Inductive Reasoning

The three methods of proof just outlined are all examples of deductive reasoning,
that is, reasoning based on consistent rules of logic. In contrast, many branches
of science use inductive reasoning. This process draws general conclusions based
only on a few (or even many) observations. For example, the statement that “the
price level has increased every year for the last n years; therefore, it will surely
increase next year t0o,” demonstrates inductive reasoning. Owners of houses in
California know how dangerous such reasoning can be in economics. This induc-
tive approach is nevertheless of fundamental importance in the experimental and
empirical sciences, despite the fact that conclusions based upon it never can be
absolutely certain.

In mathematics, inductive reasoning is not recognized as a form of proof.
Suppose, for instance, that the students taking a course in geometry are asked
to show that the sum of the angles of a triangle is always 180 degrees. If they
painstakingly measure as accurately as possible 1000 or even 1 million different
triangles, demonstrating that in each case the sum of the angles is 180, would this
not serve as proof for the assertion? No; although it would represent a very good
indication that the proposition 1s true, it is not a mathematical proof. Similarly,
in business economics, the fact that a particular company’s profits have risen for
each of the past 20 years 1s no guarantee that they will rise once again this year.

Nevertheless, there is a mathematical form of induction that is much used in
valid proofs. This is discussed in Section B.5 in Appendix B.

Problems

1. Consider the following (dubious) statement: “If inflation increases, then un-
employment decreases.” Which of the following statements are equivalent?
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a. For unemployment to decrease, inflation must increase.

b. A sufficient condition for unemployment to decrease is that inflation in-
creases.

¢. Unemployment can only decrease if inflation increases.

d. If unemployment does not decrease, then inflation does not increase.

e. A necessary condition for inflation to increase is that unemployment de-
creases.

2. Analyze the following epitaph: (a) using logic and (b) from a poetic view-
point.

Those who knew him, loved him.
Those who loved him not, knew him not.

3. Fill in the details of the following proof that +/2 is irrational. Suppose it were
true that +/2 = p/q, where p and g are integers with no common factor.
Then p?> = 242, which would mean that p®, and hence p, would have 2 as
a factor. Therefore, p = 2s for some integer s, and so 4s> = 2g°. Thus,
q* = 2s>. It follows that g4 would also have 2 as a factor, a contradiction of
the hypothesis that p and g have no common factor.

1.7 Set Theory

If you know set theory up to the hilt, and no other mathematics, you would
be of no use to anybody. If you knew a lot of mathematics, but no set theory,
vyou might achieve a great deal. But if you knew just some set theory, you
would have a far better understanding of the language of mathematics.

—I1. Stewart (1975)

In daily life, we constantly group together objects of the same kind. For instance,
we refer to the university faculty to signify all the members of the academic staff
at the university. A garden refers to all the plants that are growing in it. We talk
about all firms with more than 1000 employees, all taxpayers in Los Angeles who
earned between $50,000 and $100,000 in 1992, and so on. In all these cases, we
have a collection of objects viewed as a whole. In mathematics, such a collection
1s called a set, and the objects are called the elements of, or the members of. the
set.

How is a set specified? The simplest way is to list its members, in any order,
between the two braces { and }. An example is the set

S ={a,b.c}

whose members are the first three letters in the alphabet of most languages of Eu-
ropean origin, including English. Or it might be a set consisting of three members
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represented by the letters a, b. and ¢. For example, if a =0, b = 1. and ¢ = 2,
then S = {0, 1.2}. Also S denotes the set of roots of the cubic equation

x—ayx-bx—-c)Y=0

in the unknown x, where a. b, and ¢ are any three real numbers.
Alternatively, suppose that you are to eat a meal at a restaurant that offers
a choice of several main dishes. Four choices might be feasible—fish, pasta,

omelette, and chicken. Then the feasible set F has these four members, and is
fully specified as

F = {fish, pasta, omelette, chicken}

Notice that the order in which the dishes are listed does not matter. The feasible
set remains the same even if the order of the items on the menu is changed.

Two sets A and B are considered equal if each element of A is an element
of B and each element of B is an element of A. In this case, we write A = B.
This means that the two sets consist of exactly the same elements. Consequently,
{1,2,3} = {3,2,1}, because the order in which the elements are listed has no
significance; and {1,1,2,3} = {1,2,3}, because a set is not changed if some
elements are listed more than once.

Specifying a Property

Not every set can be defined by listing all its members, however. Some sets can
be infinite, that is, they contain an infinite number of members.

Actually, such infinite sets are rather common in economics. Take, for in-
stance, the budget set that arises in consumer theory. Suppose there are two goods
with quantities denoted by x and y that can be bought at prices p and g, respec-
tively. A consumption bundle (x, y) is a pair of quantities of the two goods. Its
value at prices p and g is px + qy. Suppose that a consumer has an amount m to
spend on the two goods. Then the budget constraint is px + qy < m (assuming
that the consumer 1s free to underspend). If one also accepts that the quantity con-
sumed of each good must be nonnegative, then the budger set, that will be denoted
by B, consists of those consumption bundles (x, y) satisfying the three inequalities

px+qy <m,x 20, and y > 0. (The set B is shown in Fig. 2.41.) Standard
notation for such a set 1s

B={(x,y):px+qy=m, x20, y20} [1.7]

The braces { } are still used to denote “the set consisting of.” However, instead
of listing all the members, which is impossible for the infinite set of points in the
triangular budget set B, the set is specified in two parts. To the left of the colon,
{x, y) is used to denote the form of the typical member of B, here a consumption
bundle that is specified by listing the respective quantities of the two goods. To the
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right of the colon, the three properties that these typical members must satisfy are all
listed, and the set thereby specified. This is an example of the general specification:

S = {typical member : defining properties}

Note that it is not just infinite sets that can be specified by properties—finite sets
can also be specified in this way. Indeed, even some finite sets almost have to be
specified in this way, such as the set of all human beings currently alive. or even
(we hope!), the set of all readers of this book.

Mathematics makes frequent use of infinite sets. For example, in Section
1.4, we studied the set of positive integers, which is often denoted by N, as well

as the set of rational numbers, denoted by Q, and the set of real numbers, denoted
by R. All these sets are infinite.

Set Membership

As we stated earlier, sets contain members or elements. There is some convenient
standard notation that denotes the relation between a set and its members. First.

xeS

indicates that x is an element of S. Note the special symbol € (which is a variant
of the Greek letter €, or “epsilon™). Occasionally, one sees S 2 x being used to
express exactly the same relationship as x € S. The symbol “ 3™ is generally read
as “owns,” but is not used very often. To express the fact that x is nor a member
of §, we write x ¢ S. For example, d ¢ {a. b, ¢} says that d is not an element of
the set {a, b, c}.

For additional illustrations of set membership notation, let us return to our ear-
lier examples. Given the budget set B in [1.7], let (x*, y*) denote the consumer’s
actal purchases. Then it must be true that (x*, y*) € B. Confronted with the
choice from the set of feasible main courses F = {fish, pasta, omelette, chicken}.
let s denote your actual selection. Then, of course, s € F. This is what we mean
by “feasible set”—it is possible only to choose some member of that set but nothing
outside it.

In the example of choice from four main courses, it may be argued that if
none 1s to the customer’s liking, then she cannot be prevented from ordering nothing
at all from the menu. She can eat somewhere else instead. or simply go hungry. If
that is what she does, she is not really choosing outside her feasible set. Rather, our
previous description of the feasible set should be expanded to include the option of
ordening none of the four available dishes. Thus, the customer’s true feasible set is

Fs = {fish, pasta, omelette. chicken, none of the previous four}

In the end, she can only avoid choosing something from this by choosing more
than one item. If this is not allowed, then Fs is her true feasible set.

PRV

T ———
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Subsets

Let A and B be any two sets. Then A is a subset of B if it is true that every mem-
ber of A is also a member of B. So A is smaller than B in some sense, even though

A and B could actually be equal. This relationship is expressed symbolically by
A C B:

ACB < [x€e A= x € B]

A special case of a subset is when A is a proper subser of B, meaning that A C B
and A # B?

Set Operations

Sets can be combined in many different ways. Especially important are three
operations: union, intersection, and the difference of sets, as shown in Table 1.2.

TABLE 1.2
Notation Name The set consists of
AUB A union B The elements that belong to at least
one of the sets A and B.
AnB A intersection B The elements that belong to both
A and B.
A\ B A minus B The elements that belong to A,
but not to B.
Thus,
AUB={x:xeAorxe B}
ANB={x:x€ Aand x € B}
A\B={x:x€ Aand x ¢ B}
Example 1.11

Let A={1,2,3,4,5}and B = {3,6}. Find AUB, ANB, A\ B,and B\ A.

Soluton AUB ={1.2,3,4,5.6}, ANB = {3}, A\ B = {1.2,4,5},
B\ A={6).

SSometimes the notation A C B is reserved for the case when A is a subset of B satisfying
A # B.justas a < b is reserved for when a < b and @ 5 b. Then A C B is used to denote that A is
a subset of B. However, there is rarely any need to specify that A is a proper subset of B. and when
there is. this can easily be done verbally.
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An economic example can be obtained by considering particular sets of tax-
payers in 1990. Let A be the set of all those taxpayers who had an income of at
least $15,000 and let B be the set of all who had a net worth of at least $150,000.
Then AUB would be those taxpayers who earned at least $15,000 or who had a net
worth of at least $150,000, whereas A N B are those taxpayers who earned at least.
$15.000 and who also had a net worth of at least $150,000. Finally, A \ B would
be those who earned at least $15,000 but who had less than $150,000 in net worth.

If two sets A and B have no elements in common, they are said to be disjoint.
The symbol “0” denotes the set that has no elements. It is called the empty set.
Thus, sets A and B are disjoint if and only if AN B = 0.

A collection of sets is often referred to as a family of sets. When considering
a certain family of sets, it is usually natural to think of each set in the family as
a subset of one particular fixed set €2, hereafter called the universal set. In the
previous example, the set of all taxpayers in 1990 would be an obvious choice for
a universal set.

If A is a subset of the universal set €2, then according to the definition of
difference, 2\ A is the set of elements of 2 that are not in A. This set is called
the complement of A in 2 and is sometimes denoted by CA, so that CA = Q\ A.
Other ways of denoting the complement of A include A and A.

When using the notation CA, it is important to be clear about which universal
set €2 is used to construct the compiement.

Example 1.12
Let the universal set 2 be the set of all students at a particular university.
Moreover, let F denote the set of female students, M the set of all mathe-
matics students, C the set of students in the university choir. B the set of all
biology students, and T the set of all tennis players. Describe the members of
the following sets: Q\ M, MUC, FNT, M\(BNT), and M \B)U(M\T).

Solution 2\ M consists of those students who are not studying math-
ematcs, M U C of those students who study mathematics and/or are in the
university choir. The set F NT consists of those female students who play
tennis. The set M \ (B N T) has those mathematics students who do not
both study biology and play tennis. Finally, the last set (M \ B)U (M \ T)
has those students who either are mathematics students not studying biol-
ogy or mathematics students who do not play tennis. Do you see that the
last two sets are equal? (For arbitrary sets M, B. and T, it is true that
(M\B)UM\T)=M\(BNT). It will be easier to verify this equality
after you have read the following discussion of Venn diagrams.)

Venn Diagrams

When considering the relationships between several sets, it is instructive and ex-
wremely helpful to represent each set by a region in a plane. The region is drawn so
that all the elements belonging to a certain set are contained within some closed re-

R P RO YR T 0
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gion of the plane. Diagrams constructed in this manner are called Venn diagrams.
The definitions discussed in the previous section can be illustrated as in Fig. 1.6.
By using the definitions directly, or by illustrating sets with Venn diagrams,
one can derive formulas that are universally valid regardless of which sets are being
considered. For example, the formula A N B = BN A follows immediately from
the definition of the intersection between two sets. It is somewhat more difficult

to verify directly from the definitions that the following relationship 1s valid for all
sets A, B, and C:

AN(BUC)=(ANB)U(ANC) [¥]

With the use of a Venn diagram, however, we easily see that the sets on the right-
and left-hand sides of the equality sign both represent the shaded set in Fig. 1.7.
The equality in [*] is therefore valid.

It is important that the three sets A, B, and C in a Venn diagram be drawn
in such a way that all possible relations between an element and each of the three
sets are represented. In other words, the following eight different sets all should be
nonempty: (1): (ANB)\C;(2): (BNC)Y\A; (3): (CNA)\B; 4): A\(BUCO);
(5): B\ (CUA); (6): C\(AUB); (7): ANBNC;and (8): C(CAUBUC). (See
Fig. 1.8.) Notice, however, that this way of representing sets in the plane easily
becomes unmanageable if four or more sets are involved, because then there would
have to be at least 16 (= 2%) regions in any such Venn diagram.

From the definition of intersection and union (or by the use of Venn diagrams),
it easily follows that AU(BUC) = (AUB)UC and that AN(BNC) = (ANB)NC.

FIGURE 1.6 Venn diagrams.
A A A
A
B B B
CcaA AUB ANB A\ B
FIGURE 1.7 FIGURE 1.8

A A og
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Consequently, it does not matter where the parentheses are placed. In such cases,
the parentheses can be dropped and the expressions written as A U B U C and
AN BNC. Note, however, that the parentheses cannot generally be moved in the
expression AN (BUC), because this set is not always equal to (ANB)UC. Prove
this fact by considering the case where A = (1,2, 3}, B ={2,3}, and C = {4, 5},
or by using a Venn diagram.

Problems

1 Let A={2.3,4}, B={2.5,6}, C ={5,6,2},and D = (6}. f
a. Determine if the following statements are wue: 4 € C; 5 € C; A C B; L
DCC;B=C;and A =B. -

b. ind ANB; AUB; A\B; B\A;(AUB)\(ANB); AUBUCUD; ;,
ANBNC;and ANBNCND. ‘

2. a. Are the greatest painter among the poets and the greatest poet among the ¥
painters one and the same person?
b. Are the oldest painter among the poets and the oldest poet among the
painters one and the same person? '

B U

3. With reference to Example 1.12, write the following statements in set termi-
nology: -
a. All biology students are mathematics students.
b. There are female biology students in the university choir.

c. Those female students who neither play tennis nor belong to the university
choir all study biology.

4. Let F, M, C. B, and T be the sets in Example 1.12. Describe the following
sets: FNBNC; MNF;and (MNB)\C)\T.

5. Justify the following formulas by either using the definitions or by using
Venn diagrams:

a. AUB=BUA b. AUA=A
c. ANA=A d. ANg=9¢
e. AUB=A f. AUBNC)=(AUB)N(AUCQ)

6. Determine which of the following formulas are true. If any formula is false,
find a counterexample to demonstrate this, using a Venn diagram if you find

1t helpful.

a. A\B=B\A b.ACB < AUB=8B

¢. ACB & ANB=A d. ANB=ANC=B=C
e. AUB=AUC=B=C f. AN(B\C)=(A\B)\C

7. Make a complete list of all the different subsets of the set {a.b.c}. How
many are there if the empty set and the set itself are included? Do the same
for the set {a. b. c.d}.



8.

10.

11.

Sec. 1.7 / Set Theory 3D

A survey revealed that 50 people liked coffee, 40 liked tea, 35 liked both

coffee and tea, and 10 did not like either coffee or tea. How many persons
in all responded to the survey?

. If A is a set with a finite number of elements, let n(A) denote the number

of elements in A. If A and B are arbitrary finite sets, prove the following:
a. n(AUB)=n(A)+n(B) —n(ANB)
b. n(A \ B) = n(A) — n(A N B)

If A and B are two arbitrary sets, define the symmetric difference between
A and B as

AAB=(A\B)U(B\A)

Obviously, A A B = B A A, whereas A\ B # B\ A (in general). Prove by

using a Venn diagram, or in some other way, the following:

a. AAB=(AUB)\(ANB)

b. (A A B) A C consists of those elements that occur in just one of the sets
A, B, and C, or else in all three.

One of the following identities is not generally valid. Which one?
a. (AABY)AC=AABALC)

b. ( ANC)AB=(AAB)N(C A B)

c. AAA=Y

12. a. A thousand people took part in a survey to reveal which newspaper, A,

B, or C, they had read on a certain day. The responses showed that 420
had read A, 316 had read B, and 160 had read C. Of these responses,
116 had read both A and B, 100 had read A and C, 30 had read B and
C, and 16 had read all three papers.

(1) How many had read A, but not B?

(11) How many had read C, but neither A nor B?
(iit) How many had read neither A, B, nor C?

b. Denote the complete set of all 1000 persons in the survey by 2 (the
universal set). Applying the notation in Problem 9, we have n(A) = 420
and n(A N BN C) = 16, for example. Describe the numbers given in
part (2) in a similar manner. Why is the following equation valid?

n(Q\(AUBUC))=n(2) —n(AUBUC)
¢. Prove that if A, B, and C are arbitrary finite sets, then

n(AUBUC)=n(A)+n(B)+n(C)—n(ANB)—n(ANC)
-n(BNC)+n(ANBNC)
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Functions of One
Variable: Introduction

. mathematics is not so much a subject
as a way of studying any subject, not
so much a science as a way of life.
—G. Temple (1981)

Functions are of fundamental importance in practically every area of pure and
applied mathematics, including mathematics applied to economics. The language
of mathematical economics is full of terms like supply and demand functions, cost
functions, production functions, consumption functions, and so on. Here and in
the next chapter, we present a general discussion of functions of one real variable,
illustrated by some very important examples.

2.1 Introduction

36

-

One variable is a function of another if the first variable depends upon the second.
For instance, the area of a circle is a function of its radius. If the radius r is given,
then the area A is determined. In fact A = 77>, where = is the numerical constant
3.14159....

The measurement of temperature provides another example of a function. If
C denotes the temperature expressed in degrees Centigrade (or Celsius), this is
a function of F, the same temperature measured in degrees Fahrenheit, because
C = 3(F -32).

In ordinary conversation, we sometimes use the word “functior” in a similar
way. For example, we might say that the infant mortality rate of a country is a
function of the quality of its health care, or that a country’s national product is
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TABLE 2.1 Personal consumption expenditure in the United States, 1985-1991

Year 1985 1986 1987 1988 1989 1990 1991
Personal 2,667.4 2,850.6 3,052.2 3,296.2 3,523.1 3,748.4 3,887.7
consumption’

'n billions of dollars.

a function of the level of investment. In both these cases, it would be a major
research task to obtain a formula that represents the function precisely.

One does not need a mathematical formula to convey the idea that one van-
able is a function of another: A table can also show the relationship. For instance,
Table 2.1 shows the growth of annual total personal consumption expenditures,
measured in current dollars, in the United States for the peniod 1985-1991. It is
taken from figures in the Economic Report of the President dated January 1993.
This table defines consumption expenditures as a function of the year. No al-
lowance is made for inflation.

The dependence between two variables can also be illustrated by means of a
graph or chart. Consider the following two examples.

In Fig. 2.1, we have drawn a curve that allegedly played an important role
some years ago in the discussion of “supply side economics.” It shows the pre-
sumed relationship between a country’s income tax rate and its total income tax
revenue. Obviously, if the income tax rate is 0%, then tax revenue is 0. However,
if the tax rate is 100%, then tax revenue will also be (about) 0, because virtually no
one is willing to work if his or her entire income 1s going to be confiscated. These
ideas are obvious to virtually all competent economists (in cases like Problem | of
Section 3.2). Nevertheless, a controversy was created by the American economist
Arthur Laffer, who claimed to have drawn this curve on a restaurant napkin, and
then later popularized its message with the public. Economists have hotly disputed
what is the percentage rate a at which the government collects the maximum tax
revenue.

FIGURE 2.1 The “Laffer curve,” which relates tax revenue to tax rates.

Tax Rﬁvcnue

Tax Rate
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Figure 2.2 reproduces a postage stamp showing how Norway’s gross national
product grew during the first 100 years of the lifetime of its Central Bureau of
Statistics.

o -~ - .
mﬂt N N o oo 0 _,'c_’

NORGE. .20

FIGURE 2.2 The national product of Norway (volume index) 1876-1976.

All of the relationships just discussed have one characteristic in common:
A definite rule relates each value of one variable to a definite value of another
variable.

Notice that in all of the examples, it is implicitly assumed that the variables
are subject to certain constraints. For instance, in the temperature example, F can-
not be less than —459.67, the absolute zero point (which corresponds to —273.15
degrees Centigrade). In Table 2.1, only the years between 1985 and 1991 are
relevant.

2.2 Functions of One Real Variable

The examples we studied in the preceding section lead to the following general
definition of a real valued function of one real variable:

A function of a real variable x with domain D is a rule that assigns a unique
real number to each number x in D. -

The word “rule” is used in a very broad sense. Every rule with the properties
described in [2.1] is called a function. whether that rule is given by a formula.
descnibed in words, defined by a table, illustrated by a curve. or expressed by any
other means.

Functions are often given letter names, such as f, g. F,or ¢. If f is a
function and x is a number in its domain D. then f(x) denotes the number that the
functon f assigns to x. The symbol f(x) is pronounced “ f of x.” It is important
to note the difference between f, which is a symbol for the function (the rule),
and f(x). which denotes the value of f at x.
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If f is a function, we sometimes let y denote the value of f at x, so
y=f) [*]

Then we call x the independent variable, or the argument of f, whereas y is
called the dependent variable, because the value y (in general) depends on the
value of x. In economics, x is often called the exogenous variable, whereas y is
the endogenous vanable.

A function is often defined by a particular formula of the type [*], such as
y = 8x% 4+ 3x + 2. The function is then the rule that assigns the number 8x2+
3x +2to x. .

Functional Notation

To become familiar with the relevant notation, it helps to look at some examples
of functions that are defined by formulas.

Example 2.1
A function is defined for all numbers by the following rule:

Assign to any number the third power of that number. (1]

This function will assign 0° =0 to 0, 3° =27 to 3, (—2)° = -8 to —2, and
(1/4)> = 1/64 to 1/4. In general, it assigns the number x> to the number x.
If we denote the function by f, then

fx)=x° [2]

So f(O) =0 =0, f3) =3 =27, f(-2) = (-2)° = -8, f(1/4) =
(1/4)° =1/64.
Substituting @ for x in the formula for f gives f(a) = a’, whereas

f@+ =@+’ =@+ Na+Da+)=a’+3a>+3a+1 [3]

Note: A common error is to presume that f(a) = a® implies f(a +1) =a> + 1.
The error can be illustrated by looking at a simple interpretation of f. If a is
the edge of a cube measured in meters, then f(a) = a® is the volume of the
cube measured in cubic meters. Suppose that each edge of the cube has its
length increased by 1 m. Then the volume of the new cube is f(a + 1) =
(@ + 1) cubic meters. The number a®> + 1 can be interpreted as the number
obtained when the volume of a cube with edge a is increased by 1 m>. In fact,
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FIGURE 2.3 Volume FIGURE 24 Volume
fa+1)=(a+1)5. ad+1.

fl@a+1) = (a+1)° is quite different from a* + 1, as illustrated in Figs. 2.3
and 2.4.

Example 2.2
The total dollar cost of producing x units of a product is given by

C(x) = 100x+/x + 500

Find the cost of producing 16, 100, and a units. Suppose the firm pro-
duces a units; find the increase in the cost from producing one additional
unit.!

Solution The cost of producing 16 units is found by substituting 16 for
x in the formula for C(x):

C(16) = 100 - 16+/16 + 500 = 100 - 16 - 4 + 500 = 6900
Similarly.

C(100) = 100 - 100 - /100 + 500 = 100.500
C(a) = 100a+/a + 500

The cost of producing a + 1 units is C(a + 1), so that the increase in cost is

Cla+1) - C(a) = 100(a + DHva+ 1+ 500 — 100a~/a — 500
=100{(@a+ 1)Va+1—a/a]

'This is the concept that economists often call marginal cost. However. they should really call
it incremental cost. In Section 4.3. we will explain the difference between the two.
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So far we have used x to denote the independent variable, but we could
just as well have used almost any other symbol. For example, all of the fol-
lowing formulas define exactly the same function (and hence we can set f = g

= ¢):

x? 3 _1?-3 -3
o - T U

fx)=

For that matter, we could also express the function in [*] as follows:

183

) =3
¥+ 1

- (-
fe)=

(-

Here it is understood that the dot between the parentheses can be replaced by

an arbitrary number or an arbitrary letter or even another function (like 1/y).
Thus,

(1)2—3__ k-3 _(1/y)?* =3
(1)4+1_1’ fO =ty f(l/y)_(l/y)“+l

f(=

In economic theory, we often study functions that depend on a number of
parameters in addition to the independent variable. A typical example follows.

Example 2.3
Suppose that the cost of producing x units of a commodity is

C(x) = Ax/x+B (A and B are positive constants) [1)

Find the cost of producing 0, 10, and x + /4 units.

Solution The cost of producing O units is
C0)=A-0-4/0+B=0+B=B

(Parameter B simply represents fixed costs. These are the costs that must
be paid whether or not anything is actually produced, such as a taxi driver’s
annual license fee.) Similarly,

C(10)=A-10v410+B

Finally, substituting x 4+ & for x in (1) gives

Cx+h)=Ax+hvx+h+B



42 Chapter 2 / Functions of One Variable: Introduction

The Domain and the Range

The definition of a function is incomplete unless its domain has been specified.
The domain of the function f defined by f(x) = x> (see Example 2.1) is the
set of all real numbers. In Example 2.2, where C(x) = 100x./x + 500 denotes
the cost of producing x units of a product, the domain was not specified, but the
natural domain is the set of numbers 0, 1, 2, ..., x5, Where xp is the maximum
number of items the firm can produce. If output x is a continuous variable, the
natural domain is the closed interval [0, xp].

If a function is defined using an algebraic formula, we adopt the conven-
tion that the domain consists of all values of the independent variable for which
the formula gives a meaningful value (unless another domain is explicitly men-

tioned).
Example 2.4
Find the domains of
) fx) 1
x)=——
x+3
(b) glx) =+/2x+4
Solution
(a) For x = -3, the formula reduces to the meaningless expression “1/0.”

For all other values of x, the formula makes f(x) a well-defined num-
ber. Thus, the domain consists of all numbers x # —3.

(b) The expression +/2x + 4 is defined for all x such that 2x +4 is nonneg-
ative. Solving the inequality 2x +4 > 0 for x gives x > —2. Hence.
the domain of g is the interval [—2. 00).

Let f be a function with domain D. The set of all values f(x) that the
function assumes is called the range of f. Often, we denote the domain of f
by Dy, and the range by R;. These concepts_are illustrated in Fig. 2.5, using the
idea of the graph of a function. (Graphs are discussed in the next section, but you
probably have been exposed to them before.)

Alternatively, we can think of any function f as an engine operating so that
if the number x in the domain is an input. the output is the number f(x). (See
Fig. 2.6.) The range of f is then all the numbers we get as output using all num-
bers x in the domain as inputs. If we try to use as an input a number not in the
domain, the engine does not work, and there is no output.

Example 2.5
Show that the number 4 belongs to the range of the function defined by
g(x) = +/2x +4. Find the entire range of g. (Remember that ./u denotes
the nonnegative square root of u.)
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Vi N\

X —p — f(x)
o /\—/\
FIGURE 2.5 The domain and the FIGURE 2.6 Function engine.
range of f.

Solution To show that a number such as 4 is in the range of g, we
must find a number x such that g(x) = 4. That is, we must solve the
equation +/2x + 4 = 4 for x. By squaring both sides of the equation, we get
2x +4 = 4*> = 16, that is, x = 6. Because g(6) = 4, the number 4 does
belong to the range R,.

In order to determine the whole range of g, we must answer the ques-
tion: As x runs through the whole of the interval [—2, co), what are all the
possible values of +/2x +4? For x = =2, «/2x+4 = 0, and +/2x + 4
can never be negative. We claim that whatever number y, > 0 is cho-
sen, there exists a number xo such that \/2xo +4 = y,. Squaring each
side of this last equation gives 2xo + 4 = yg. Hence, 2x¢ = yg — 4,
which implies that xo = 3(y§ — 4). Because y; > 0, we have xo =
1 (03 —4) = 1(—4) = —2. Hence, for every number y, > O, there is

a number xo > =2 such that g(xo) = yo. The range of g is, therefore,
[0, c0).

Even if we have a function that is completely specified by a formula, includ-
ing a specific domain, it is not always easy to find the range of the function. For
example, without using the methods of differential calculus, it is not at all simple
to find R; when f(x) =3x> —2x*> — 12x —= 3 and D; = [-2, 3].

Many pocket calculators have some special functions built into them. For
example, many have the / function that, given a number x, assigns the square
root of the number, /x. If we enter a nonnegative number such as 25, and press
the square-root key, then the number 5 appears. If we enter —3, then the word
“Error” is shown, which is the way the calculator tells us that +/—3 is not defined.

The concept of a function is entirely abstract. In Example 2.2, we studied a
function that finds the production cost C(x) in dollars associated with the number
of units x of a commodity. Here x and C(x) are concrete, measurable quantities.
On the other hand, the letter C, which is the name of the function, does not rep-
resent a physical quantity; rather, it represents the dependence of cost upon the
number of units produced, a purely abstract concept.
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Problems

1. Let f(x) =x>+1.
a. Compute 7(0), f(—1), f(1/2), and f(~/2).
b. For what x is it true that (i) f(x) = f(=x)? (1) f(x+1) = f(x)+f(1)?
i) f(2x) =2f(x)?
2. Suppose F(x) = 10, for all x. Find F(0), F(—3), and F(a+ h)— F(a).
3. Let f(z1) =a*— (t —a)* (ais a constant).
a. Compute f(0), f(a), f(-a), and f(2a).
b. Compute 3 f(a) + f(—2a).
4. Let f be defined for all x by

F@= 1+x2

a. Compute f(—1/10), f(0), f(1/v2). f(JT), and f(2).
b. Show that f(x) = — f(—x) forall x, and that f(1/x) = f(x), for x # 0.

5. The cost of producing x units of a commodity is given by
C (x) = 1000 -+ 300x + x>

a. Compute C(0), C(100), and C(101) — C(100).
b. Compute C(x + 1) — C(x), and explain in words the meaning of the
difference.

6. Let F(t) = /12 —2t +4. Compute F(0). F(-3), and F(z + 1).

7. H. Schultz has estimated the demand for cotton in the United States for the
period 1915-1919 to be D(P) = 6.4 — 0.3P [with appropriate units for the
price P and the quantity D(P)].

a. Find the demand if the price is 8, 10, and 10.22.
b. If the demand is 3.13, what is the price?

8. The cost of removing p% of the impurities in a lake is given by

10p
105-p

b(p) =

a. Find 5(0), b(50), and b(100).
b. What does 5(50 + h) — b(50) mean? (A > 0.)
9. a. If f(x) = 100x2, show that for all 7, f(tx) = > f(x).
b. If P(x) = x'/?, show that for all + > 0, P(tx) = t'? P(x).

10. Only for special “additive” functions is it true that f(a + b) = f(a) +
f(b) for all a and b. Determine whether f(2+ 1) = f(2) + f(1) for the




11.

12.

13.

14.

15.
16.

17.
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following:
a. f(x) =2x> b. f(x) = —3x c. fx)=+x
a. If f(x) = Ax, show that f(a+b) = f(a) + f(b), forall a and b.

b. If f(x) = 10*, show that f(a+b) = f(a)- f(b), for all natural numbers
a and b.

A student claims that (x + 1)*> = x> + 1. Can you use a geometric argument
to show that this is wrong?

Find the domains of the functions defined by the following equations:

2x — 1
a. y=+5—-x b. y = —
x> —x
Cy= il d y=x+D"7+1/x-D'"
(x—2)(x+3)
Consider the function f defined by the formula
3x+6
f) ===
x=2

a. Find the domain of f.
b. Show that the number 5 is in the range of f by finding a number x such
that 3x + 6)/(x —2) = 3.
c. Show that the number 3 is not in the range of f.
Find the domain and the range g(x) =1 — +/x + 2.
Let f(x) = |x|. Which of the the following rules are valid for all possible
pairs of numbers x and y?

a. fx+y)=fx)+ f(y) b. fx+y» = f+f)
c. fxy)=fx)-f» d. f(2x) =2f(x)
e. f(=2x) = —2f(x) f. f(x)=+x2
g f(=2x)=2f(x) h. [f(x)=fO)] <lx—y]
Let
Flx) = ax+b
cxX —a

where a, b, and ¢ are constants, and ¢ # 0. Assuming that x # a/c, show

that
b
f(ax+ >=x
cx —a
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2.3. Graphs

Three examples of equations in two variables x and y are
y=2x-1, x2+y* =16, xJy=2 [*]

In this section, we shall explain how any equation in two variables can be rep-
resented by a curve (a graph) in a coordinate system. In particular, any function
given by an equation y = f(x) has such a representation, that helps us to visualize
the equation or the function. This is because the shape of the graph reflects the
properties of the equation or the function.

A Coordinaté System in the Plane

In Section 1.4, we claimed that real numbers can be represented by a number line.
Analogously, every pair of real numbers can be represented by a point in a plane.
Draw two perpendicular lines, called respectively the x-axis (or the horizontal axis)
and the y-axis (or the vertical axis). The intersection point O is called the origin.
We measure the real numbers along each of these lines, as shown in Fig. 2.7. Often.
we measure the numbers on the two axes so that the length on the x-axis that repre-
sents the distance between x and x+1 is the same length as that along the y-axis that
represents the distance between y and y + 1. But this does not have to be the case.

Figure 2.7 illustrates a rectangular, or a Cartesian, coordinate system, that
we call the zy-plane. The coordinate axes separate the plane into four quadrants,
which can be numbered as in Fig. 2.7. Any point P in the plane can be represented
by a pair (a, b) of real numbers. These can be found by dropping perpendiculars
onto the axes. The point represented by (a, b) lies at the intersection of the vertical
straight line x = a with the horizontal straight line y = b. Conversely, any pair of
real numbers represents a unique point in the plane. For example, in Fig. 2.8, the
ordered pair (3. 4) corresponds to the point P that lies at the intersection of x = 3

FIGURE 2.7 A coordinate system. -

Quadrant 2 Quadrant 1

—_—

b — - — ——ip '
¥
bad

Quadrant 3
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L

Q=(=5-2--------

—
b —— e

FIGURE 2.8 The points (3,4) and (-5, —2).

-

with y = 4. Thus, P lies 3 units to the right of the y-axis and 4 units above the
x-axis. We call (3.4) the coordinates of P. Similarly, Q lies 5 units to the left
of the y-axis and 2 units below the x-axis, so the coordinates of Q are (—5. —2).

Note that we call (a.b) an ordered pair, because the order of the two
numbers in the pair is important. For instance, (3.4) and (4, 3) represent two
different points.

Example 2.6
Draw coordinate systems and indicate the coordinates (x, y) that satisfy each
of the following three conditions:

(a) x=3
() x>0and y >0
(¢) 2<x<land -2<y<3

Solution

(a) See Fig. 2.9, which represents a straight line.
(b) See Fig. 2.10, which represents the first quadrant.
(c) See Fig. 2.11, which represents a rectangle.

FIGURE 29 A FIGURE 2.10 The FIGURE 2.11
straight line. first quadrant. A rectangle.
¥ y
y a
; 2«
1 . 1 ,
Ly 2 EISEEEN
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Graphs of Equations in Two Variables

A solution of an equation in two variables x and y is a pair (a, b) that satisfies the
equation when we substitute g for x and b for y. The solution set of the equation
is the set of all possible solutions. If we plot all the ordered pairs of the solution set
in a coordinate system, we obtain a curve that is called the graph of the equation.

Example 2.7
Find some numerical solutions for each of the equations y = 2x—1, x>+32 =
16, and x,/y = 2, and try to sketch the graphs.

Solution For y = 2x — 1, point (0, —1) is a solution, because if x =0,
then y = 2 -0 — 1 = —1. Other solutions are (1, 1), (3,5). and (-1, -3).
In Fig. 2.12, we have plotted the four solutions, and they all appear to lie on
a straight line. There exist infinitely many other solutions, so we can never
write them all down.

¥y
5
4 \r=2.x—1
3
1
o
T—r— a— -+ X
-3-2 1 23 45

FIGURE 2.12 y =2x — 1.

For x? + y2 = 16, point (4, 0) is a solution. Some other solutions are
shown 1n Table 2.2.

TABLE 2.2 Solutions of x2 + y2 = 16

x -4 -3 -1 0 1 3 4
y 0 +7 +=J/15 = 4 +/15 +7 0

Figure 2.13 shows the plot of the points in the table, and the graph
appears to be a circle.

From x,/¥ = 2, we obtain y = 4/x>. and it is easy to fill in Table 2.3.
The graph is shown in Fig. 2.14.

Note: When plotting the graph of an equation such as x? + y* = 16, we must try
to find a sufficient number of solution pairs (x, y). otherwise we might miss some
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FIGURE 2.13 x2?+y2? = 16.

TABLE 2.3 Solutions
of x.Jy=2

y 4 1 1/4 1/9

"1 2 3 4 5 6

FIGURE 214 x./y=2.

important features of the graph. Actually, by merely plotting a finite set of points,
we can never be entirely sure that there are no wiggles or bumps we have missed.
We shall see in what follows that the graph of the equation x? + y? = 16 really is
a circle. For more complicated equations, we have to use differential calculus to
decide how many bumps and wiggles there are.

The Distance Between Two Points in the Plane

Let P, = (x;,y;) and P» = (x2, y2) be the two points shown in Fig. 2.15. By
Pythagoras’ theorem, the distance d between these points satisfies the equation
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d? = (xy — x1)? + (y2 — y1)*. Therefore, note that because (x; — x2)? = (x2 — x1)?
and (y; — y2)*> = (y» — y1)?, it does not make any difference which point is P, and
which is Ps.

The Distance Formula

The distance between points (x1, y;) and (x2, y2) is

d =/ (x1 — x2)* + (31 = y)° [2.2]

To prove the distance formula, we considered two points in the first quadrant.
It turns out that the same formula is valid regardless of where the two points, P
and P, lie.

Example 2.8
Find the distance d between points P, = (—4,3) and P, = (5, —1). (See
Fig. 2.16.)

Solution Using [2.2) with x; = —4, yy =3, and x» =5, y» = —1, we
have

d=\(=4-52+@3—(=1))

= V(=92 + 82 = /81 + 16 = /97 ~ 9.85

FIGURE 2.15 FIGURE 2.16

Circles

Let (a, b) be a point in the plane. The circle with radius r and center at (a, b) is the
set of all points (x, y) whose distance from (a. b) is equal to r. Considering Fig. 2.17
and using the distance formula gives \/(x —a)> + (y — b)? = r. Squaring each
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side yields

The Equation of a Circle
The equation of a circle with center at (a, b) and radius r is

(x—a)X+@G-=-b?>=r’ [2.3]

Note that if we let a = b = 0 and r = 4, then [2.3] reduces to x2 + y> = 16. This
is the equation of a circle with center at (0. 0) and radius 4, as shown in Fig. 2.13.

-

(x.¥)

(a.b)

FIGURE 2.17 Circle with center (a, b) and radius r.

Example 2.9
Find the equation of the circle with center (—4, 1) and radius 3.

Solution Here a = —4, b =1, and r = 3 (see Fig. 2.18). So the general
formula in [2.3] becomes the specific equation

x+42+ @ -17=9 [1]

FIGURE 2.18 Circle with center (—4, 1) and radius 3.

(—4.1)
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Expanding the squares in [1] gives
x>+ 8x+164+y" —2y+1=9 [2]
This can be written as
x4y +8x—-2y+8=0 (3]
Note: The equation of the circle given in [3] has the disadvantage that we cannot
immediately read off its center and radius. If we are given equation [3], we can
“argue backwards” in order to deduce [1] via [2]. We then say that we have

“completed the squares,” which is actually one of the oldest tricks in mathematics.
(See Section A.8, Appendix A.) The method is illustrated in Problem 9.

Problems
1. Draw a Cartesian coordinate system and plot the points (2, 3), (-3, 2),

(=3/2,1/4), (4,0), and (0, 4).
2. Sketch the six sets of points (x, y) satisfying the following conditions:

a. y=4 b. x <0 c.x>land y>2
d. [x|=2 e. y=2x f. y>x
3. Sketch the graphs of each of the following equations:
a. y=4x -3 b. xy=1 c. y¥=x
4. Try to sketch the graphs of each of the following equations:
a x>+2y°=6 b. y+v/x—-1=0 c. Y —x>=1
5. Find the distance between each pair of points:
a. (1,3) and (2,4) b. (—=1,2) and (-3, -3)
c. (3/2. -2) and (-5.1) d. (x.y) and (2x,y+ 3)
e. (a,b) and (—a,b) f: (a.3) and 2+a.5)

6. The distance between (2. 4) and (5, y) is +/13. Find y. (Explain geometri-
cally why there must be two values of y. What would happen if the distance
were 27)

7. Find the approximate distance between each pair of points:

a. (3.998,2.114) and (1.130, —2.416) b. (r,27) and (-7, 1)

8. Find the equations of the following circles:
a. Center at (2. 3) and radius 4.
b. Center at (2, 5) and passes through (—1, 3).

9. We can show that the graph of x> + y%> 4+ 8x — 2y +8 = 0 is a circle
by arguing like this: First, rearrange the equation to read (x> + 8x...) +




10.

11.
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(y?> = 2y...) = —8. Completing the two squares gives (x> + 8x + 4%) +
(3> — 2v+ (=1)’) = =8 + 4* + (=1)? = 9. Thus. the equation becomes
(x +4)>+ (v = 1) = 9. whose graph is a circle with center (—4, 1) and
radius +/9 = 3. Use this method to find the center and the radius of the two
circles with equations:

a 2+ +10x—6y+30=0  b. 3x>+3y>+ 18x — 24y = —39
Point P moves in the plane so that it i1s always equidistant from each of
the points A = (3,2) and B = (5. —4). Find a simple equation that the
coordinates (x, y) of P must satisfy. Illustrate the problem and its solution
geometrically. (Hinz: Compute the square of the distance from P to A and
to B, respectively.)

Prove that if the distance from a point (x, y) to the point (—2. 0) is twice the
distance from (x, y) to (4, 0), then (x, y) must lie on the circle with center
(6, 0) and radius 4.

Harder Problems

12.
13.

14.

Try to sketch the graph of the equation /x + /y = 1.

A firm has two plants A and B located 60 kilometers apart at the two points

(0,0) and (60, 0). See Fig. 2.19. It supplies one identical product priced at

$p per unit. Shipping costs per kilometer per unit are $10 from A and $5

from B. An arbitrary purchaser is located at point (x, y).

a. Give economic interpretations for the expressions:
p+10/x2+y2> and  p+5/(x —60)2 +)?

b. Find the equation for the curve that separates the markets of the two
firms, assuming that customers buy from the firm for which total costs
are Jower.

Generalize Problem 13 to the case where A = (0,0) and B = (a.0), and

assume that shipping costs per kilometer are r and s dollars, respectively.

Show that the curve separating the markets 1s a circle, and find its center and

radius.

FIGURE 2.19

v
Iy

(x.¥)
,"‘\\

- X

(0.0 (60.0)
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15. Show that the graph of

x>*+y +Ax+By+C=0 (A, B, and C are constants)

is a circle if A2+ B?> > 4C. Find its center and radius. (See Problem 9.)
What happens if A% 4+ B> < 4C?

2.4 Graphs of Functions

The graph of a function f is the set of all points (x, f(x)), where x belongs to
the domain of f. This is simply the graph of the equation y = f(x). Typical
examples of graphs of functions are given in Figs. 2.20 and 2.21.

In Fig. 2.20, we show the graph of f(x) = x> —3x. It is found by computing
points (x. f(x)) on the graph and then drawing a smooth curve through the points.

)
5

-3
|

FIGURE 2.20 The graph of f(x) = x2 — 3x.

The function whose graph is shown in Fig. 2.21 is of a type often encountered
in economics. It is defined by different formulas on different intervals.

Example 2.10 (U.S. Federal Income Tax (1991) for Single Persons)
In Fig. 2.21, we show the graph of this income tax function. Income up to

FIGURE 2.21 U.S. federal income tax.
Tax (S1000)

20
15
i0

: : Income
10 20 30 40 50 60 70 (S1000)
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$20.250 was taxed at 15%, income between $20.251 and $49.300 was taxed
at 28%. and income above $49.300 was taxed at 31%.

Graphs of different functions can have innumerable different shapes. However, not
all curves in the plane are graphs of functions. A function assigns to each point x in
the domain only one y-value. The graph of a function therefore has the property that
a vertical line through any point on the x-axis has at most one point of intersection
with the graph. This simple vertical line test 1s illustrated in Figs. 2.22 and 2.23.

The graph of the circle x> + y? = 16, as shown in Fig. 2.13, is a typical
example of a graph that does nor represent a function, because it does not pass the
vertical line test. The vertical line x = a for any a with —4 < a < 4 intersects
the circle at two points. When we solve the equation x> + y> = 16 for y, we
obtain y = =*++/16 — x2. Note that the upper semicircle alone is the graph of
the function y = +/16 — x? and the lower semicircle is the graph of the function
y = —+/16 — x2. Both these functions are defined on the interval [—4, 4].

Choice of Units

A function of one variable is a rule assigning numbers in its range to numbers in
its domain. When we describe an empirical relationship by means of a function,
we must first choose the units of measurement. For instance, we might measure

FIGURE 2.22 This graph represents a function.

FIGURE 2.23 This graph does not represent a function.

y
4

L

_—
_




56 Chapter 2 7 Functions of One Variable: Introduction

Consumption (5 1000 biltions) Consumption ($ 1000 billions)
A

4.0'(
357
307
351 2,51
207
157
1.0

! 0.5

407

301

Year

Year

25 , ‘ ‘
85 8 87 88 8 90 91 8 8 87 8 8 90 91

FIGURE 2.24 Graphical representations of the function defined in Table 2.1 with
different units of measurement.

time in years, days, or weeks. We might measure money in dollars, yen, or francs.
The choice we make may influence the visual impression conveyed by the graph
of the function.

Figure 2.24 illustrates a standard trick that is often used to influence people’s
impressions of empirical relationships. In both diagrams, time is measured in years
and consumption in billions of dollars. They both graph the same function. (Which
graph would you think the Republicans in the United States might prefer for their
advertising, and which is more to the liking of the Democrats?)

Shifting Graphs

Given the graph of a function f, it is sometimes useful to know how to find the
graphs of the related functions:

fx)+e, f(x+0). - f(x). and f(—x) [2.4]

Problem 3 of this section asks you to study these graphs in general. Here we
consider a simple economic example.

Example 2.11

Suppose a person earning y (dollars) in a given year pays f(y) (dollars)
in income tax. It is decided to reduce taxes. One proposal is to allow
all individuals to deduct d dollars from their taxable income before tax is
calculated. An alternative proposal involves calculating income tax on the
full amount of taxable income and then allowing each person a “tax credit”
that deducts 4 dollars from the total tax due. Illustrate graphically the two
proposals for a “normal” tax function f, and mark off the the income y*,
where the two proposals give the same tax.

Solution Figure 2.25 illustrates the solution. First, draw the graph of the
original tax function, T = f(y). If taxable income is y and the deduction is
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Tax (T)

+ Income (y)

*

v

FIGURE 2.25 The graphs of Ty = f(y — ¢} and T, = f(y) — d.

d, then y—d is the reduced taxable income, and so the tax hability is f(y—d).
By shifting the graph of the original tax function d units to the right, we obtain
the graph of T; = f(y—d).?> The graph of T> = f(y)—c is obtained by low-
ering the graph of T = f(y) by ¢ units. The income y* that gives the same
tax under the two different schemes is the value of y satisfying the equation

fo-d)y=f@)—c

This value of y is marked y* in the figure.

Problems

1. Determine the domain on which each of the following equations defines y
as a function of x:

a. y=x+2 b. y =2/ c. y=x* d. y* =x
x

e. x> -y’ =1 fLy=—— g Y =x h. ®+y =1
x -3

2. The graph of the function f is given in Fig. 2.26.

FIGURE 2.26

y

2As an example: y = x? is a parabola. whereas y = (x — 1) is a parabola obtained by shifting
the first parabola 1 unit to the right.
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a. Find f(-5), f(=3), f(-2), f(0), f(3), and f(4) by examining the
graph.
b. Find the domain and the range of f.
3. Explain how to get the graphs of the four functions defined by [2.4] based
on the graph of y = f(x).

4. Use the rules obtained in Problem 3 to sketch the graphs of the following:
a y=x>+1 b. y = (x + 3)?
c. y=3—(x+1)> d. y=2-(x+2)72

2.5 Linear Functions

A linear relationship between the variables x and y takes the form
y=ax+b (a and b are constants)

The graph of the equation is a straight line. If we let f denote the function
that assigns y to x, then f(x) = ax + b, and f is called a linear function.> The
number a 1s called the slope of the function and of the line. Take an arbitrary value
of x. Then f(x+1)— f(x) = a(x+1)+b—ax—b = a. This shows that the slope a
measures the change in the value of the function when x increases by 1 unit.

If the slope a is positive, the line slants upward to the right, and the larger the
value of q, the steeper is the line. On the other hand, if a is negative, then the line
slants downward to the right, and the absolute value of a measures the steepness
of the line. For example, when @ = —3, the steepness is 3. In the special case
when @ = 0, then y = ax + b = b for all x, and the line is parallel to the x-axis.
The three cases are illustrated in Figs. 2.27 t0 2.29. If x =0, then y = ax+b = b,
and b 1s called the y-intercept (or often just the intercept).

FIGURE 2.27 FIGURE.2.28
Y ¥

A A

y=ax+b (a < 0)
(a>0

3 Actually. mathematicians usually reserve the term “linear™ for the functions defined by v = ax
(with the y-intercept # = 0). They call y = ax + b with b % 0 an “affine” function. Most economists
call f(x) =ax + & a linear function.
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Y

FIGURE 2.29

Example 2.12
Find and interpret the slopes of the following straight lines:

(a) C =55.73x + 182,100,000

which is the estimated cost function for the U.S. Steel Corp. over the
period 1917-1938 (C 1is the total cost in dollars per year, and x is the
production of steel in tons per year).

which is the estimated annual demand function for rice in India for the
pertod 1949-1964 (p 1is the price, and ¢ is consumption per person).

Solution

(a) The slope is 55.73, which means that if production increases by 1 ton,
then the cost increases by $55.73.

(b) The slope is —0.15, which tells us that if the price increases by 1 unit,
then the quantity demanded decreases by 0.15 unit.

Finding the Slope

Consider an arbitrary, nonvertical (straight) line in the plane. Pick two distinct
points on the line, P = (x), y;) and Q = (x2, y»). as shown in Fig. 2.30. Because
the line is not vertical and because P and Q are distinct, x; # x3. The slope of
the line is the ratio (y» — y,)/(x2 — x;). If we denote the slope by a, then the
following holds.

The slope of a straight line / is

Ya—Wn
a= , X) # X2 [2.5]
X2 — X

where (x;, y;) and (x>, y,) are any two distinct points on /. -
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'y
Q = (x2.y2)
y2—»n
P = (x;, 1) i
4 —e
P’ Qa X2 — X T R=(x2.3)
AR
X

FIGURE 2.30 Slope a = (Y2 — y1)/(x2 — x3).

Multiplying both the numerator and the denominator of the fraction in [2.5] by
—1, we obtain the fraction (y; — y»2)/(x; — x2). This shows that it does not make
any difference which point is P and which is Q. Moreover, using the properties
of similar triangles, we see by studying the two triangles POR and P'Q'R’ in
Fig. 2.30 that the number a in [2.5] is equal to the change in the value of y when
x increases by 1 unit.

Example 2.13
Determine the slopes of the three straight lines [, m, and n in Figs. 2.31-2.33
using [2.5].

Solution The lines [, m, and n all pass through P = (2, 2). In Fig. 2.31,
Q 1s (4,3). In Fig. 2.32, Q is (1. -2). And in Fig. 2.33, Q is (5. —1).
Therefore, the respective slopes of the lines /, m, and n are

_3-2_1 22, —1-2_
= —= -, m = =4, a, = = -
'T427 2 1-2 5-2

The following example illustrates a problem that is important in differential
calculus, as will be seen in Chapter 4.

-

FIGURE 2.31 The line /.

Yy
Iy 1
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FIGURE 2.32 The line m. FIGURE 2.33 The line n.

Example 2.14
Find an expression for the slope of the line through the two points (xo, x3)
and (xo + h, (xo + h)z), where A #£ 0.

Solution  Apply formula [2.5] with (x;,y1) = (xo.x3) and (x2, y2) =
(xo + k. (xo + h)?) to obtain

. (xo + h)> — x3 =x§+2xoh+h2—x§ =2x0h+h2 P
Xo+h —Xxg h h

The Point-Slope and Point-Point Formulas

Let us find the equation of a straight line ! passing through point P = (x;, y;) with
slope a. If (x, y) 1s any other point on the line, the slope a is given by formula [2.5]:

y—mn
X — X3

Multiplying each side by x — x;, we obtain y — y; = a(x — x;). Hence:

Point-Slope Formula of a Straight Line
The equation of the straight line passing through (x;, y;) with slope a is

y—y1 =ax—xy) [2.6]

Note that when using equation [2.6], x; and y, are fixed numbers giving the
coordinates of the fixed point. On the other hand, x and y are variables denoting
an arbitrary point on the line.

Example 2.15
Find the equation of the line through (—2. 3) with slope —4. Then find the
point at which this line intersects the x-axis.
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Solution The point-slope formula with (x, y;) = (=2,3) and a = —4
gives

y—=3=(—4)[x — (-2)] or y—3=—-4(x+2) (1]

The line intersects the x-axis at the point where y = 0, that is, where 0—3 =
—4(x +2) or =3 = —4x — 8. Solving for x, we get x = —5/4, so the point
of intersection with the x-axis is (=5/4, 0).

Often we need to find the equation of a straight line that passes through two
given points. Combining [2.5] with [2.6], we obtain the following formula:

Point-Point Formula of a Straight Line

The equation of the straight line passing through (x;. y;) and (x2, y»), where
X1 5% X2, 1s obtained as follows:

1. Compute the slope of the line:

Y2— 0
X2 — X

a=

2. Substitute the expression for a into the point-slope formula y — y; =
a(x — x;). The result is

vy =27~ x)) 2.7]

Example 2.16
Find the equation of the line passing through (—1.3) and (5, —2).

Solution Let (x;, y;) = (—1.3) and (x2, y2) = (5. —2). Then the point-
point formula gives

.

N - _[x;(_.l)" or v—3——3(x+l)
y=3= ] y=3=-2

or 5x +6y =13

Linear Models

Linear relations occur frequently in applied models. The relationship between
the Celsius and Fahrenheit temperature scales is an example of an exact linear
relation between two variables. Most of the linear models in economics are ap-
proximations to more complicated models. Two typical relations are those shown
in Example 2.12. Statistical methods have been devised to construct linear func-
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tions that approximate the actual data as closely as possible. Let us consider a very
naive attempt to construct a linear model based on some data.

Example 2.17

In a United Nations report, the European population in 1960 was estimated as
641 million, and in 1970 the estimate was 705 million. Use these estimates
to construct a linear function of ¢ that approximates the population in Europe
(in millions), where 7 is the number of years from 1960 (r = 01is 1960, r = 1
is 1961, and so on). Make use of the equation to estimate the population
in 1975 and in 2000. How do you estimate the population in 1930 on the
basis of this linear relationship?

Solution If P denotes the population in millions. we construct an equa-
tion of the form P = ar + b. We know that the graph must pass through
the points (71, P1) = (0, 641) and (12, P») = (10, 705). Using the formula
in [2.7], replacing x and y with 1 and P. respectively, we obtain

705 — 641 64
— 641 0=0 -0 Et
or
P =641+ 64] 1]

In Table 2.4, we have compared our estimates with UN forecasts. Note that
because ¢ = 0 corresponds to 1960, 1 = —30 will correspond to 1930.

Note that the slope of line [1] is 6.4. This means that if the European
population had developed according to [1], then the annual increase in the
population would have been constant and equal to 6.4 million.

Actually, Europe’s population grew unusually fast during the 1960s.
Of course, it grew unusually slowly when millions died during the war years
1939-1945. We see that formula [1] does not give very good results compared
to the UN estimates. (For a better way to model population growth, see
Example 3.12 in Section 3.5.)

Example 2.18 (The Consumption Function)

In Keynesian macroeconomic theory, total consumption expenditure on
goods and services, C, is assumed to be a function of national income

TABLE 2.4 Population estimates for

Europe
Year 1930 1975 2000
t =30 15 40
UN estimates 573 728 854

Formula [1] gives 449 737 897
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Y, with
C=f) [2.8]

In many models, the consumption function is assumed to be linear, so that

C=a+bY

The slope & is called the marginal propensity to consume. If C and Y are
measured in millions of dollars, the number b tells us by how many millions
of dollars consumption increases if the national income increases by 1 million
dollars. The number b will usually lie between 0 and 1.

In a study of the U.S. economy for the period 1926-1941, T. Haavelmo
found the following consumption function:

C =95.05+0.712Y

Here, the marginal propensity to consume is equal to 0.712.

Example 2.19

Some other economic examples of linear functions are the following demand
and supply schedules:

D=a-bP

S=a+ BP
Here a and b (both positive) are parameters of the demand function D,
while o and B (both positive) are parameters of the supply function. Such
functions play an important role in quantitative economics. It is often the
case that the market for a particular commodity, such as a specific brand
of 3%-inch computer diskettes, can be represented approximately by linear

demand and supply functions. The equilibrium price P¢ must equate demand
and supply, so that D = § at P = P¢. Thus,

a—bP¢ =a+ BP¢
Adding b P¢ — « to each side gives
a—bP'+bP —a=a+BP‘+bP'—«

Thus, a — a = (B + b) P¢. The corresponding equilibrium quantity is Q¢ =
a — bP¢. Hence. equilibrium occurs when

B+

N
R

a—a _aﬁ-{-ab

P¢ = - =
B+b B+b

0=a

N
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If the four parameters, a, b, a, and B, were all known, then the model
would be complete and the equilibrium price and quantity could be predicted.
Suppose that there is a later shift in the supply or demand function—for
instance, suppose supply increases so that § becomes @ + P, where & > «.
Then we could predict that the new equilibrium price and quantity would be

. a-a Qe_aﬂ+&b
B+b’ T B+b

Here P¢ is less than P¢, whereas Q¢ is greater than Q€. In fact,

-

Ae _ e_(&——a)b__ pe __ pe
and O Q_ﬂ+b = —b(P* - P9

1

- o —
Pe—Pez
B+

S

This is in accord with Fig. 2.34. The rightward shift in the supply curve from
S to § moves the equilibrium down and to the right along the unchanged
demand curve.

A peculiarity of Fig. 2.34 is that, although quantity is a function of price,
here we measure price on the vertical axis and quantity on the horizontal axis.
This has been standard practice in elementary price theory since the work of
Alfred Marshall late in the nineteenth century.

The trouble with this method of analysis comes when the param-
eters are not known, so the supply and demand curves cannot be
drawn with any certainty. Indeed, if all an economist observes
is a decrease in price and an increase in quantity from (P¢, Q¢)
to (P¢, 0°), there is no way of knowing (without more infor-
mation) whether this results from just a rightward shift in the
supply curve, as illustrated in Fig. 2.34, or from some combi-
nation of a shift to the right (or left) in demand and a shift to

FIGURE 2.34

L
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FIGURE 2.36

the right in supply, as illustrated in Figs. 2.35 and 2.36. All that
can be said is that, because the equilibrium price falls and the
quantity increases, there must have been some rightward shift in
supply—but demand could have fallen, risen, or stayed the same.
Moreover, there is also the possibility that the demand and supply
curves could have changed their slopes—that is, the parameters
b and B could also have changed.

The General Equation for a Straight Line

Any nonvertical line in the plane has the equation y = ax +b. A vertical line, that
1s parallel to the y-axis, will intersect the x-axis at some point (¢, 0). Every point
on the line has the same x-coordinate c, so the line must be

X =cC

This is the equation for a straight line through (c,0) parallel to the y-axis.
The equations y = ax + b and x = ¢ can both be written as

Ax+By+C=0 [2.9]
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for suitable values of the constants A, B, and C. Specifically, y = ax + b corre-
sponds to A =a, B= —1, and C = b, whereas x = c correspondsto A =1, B =
0. and C = —c. Conversely, every equation of the form [2.9] represents a straight
line in the plane, disregarding the uninteresting case when A = B =0. If B =0. it
follows from [2.9] that Ax = —C, or x = —C/A. This is the equation for a straight
line parallel to the y-axis. On the other hand, if B # 0, solving [2.9] for y yields
_ A C
Y=TB" "B
This is the equation for a straight line with siope —A/B. Equation [2.9] thus
deserves to be called the general equation for a straight line in the plane.

Graphical Solutions of Linear Equations

Section A.9 of Appendix A deals with algebraic methods for solving a system
of linear equations in two unknowns. The equations are linear, so their graphs
are straight lines. The coordinates of any point on a line satisfy the equation
of that line. Thus, the coordinates of any point of intersection of these lines
will satisfy both equations. This means that a point of intersection solves the
system.

Example 2.20
Solve each of the following three pairs of equations graphically:

@ x+y=5and x —y = -1
) 3x+y=-Tandx—4y=2
(¢) 3x+4y=2and 6x + 8y =24

Solution

(a) Figure 2.37 shows the graphs of the straight lines x +y = 5 and
x —y = —1. There is only one point of intersection (2,3). The
solution of the system is, therefore, x =2, y = 3.

FIGURE 2.37

v
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x—4y=2
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(-2.-D

FIGURE 2.38

y

\L 6x + 8y =24
— \\~x

3x+4y=2

FIGURE 2.39

(b) Figure 2.38 shows the graphs of the straight lines 3x + y = —7 and
x — 4y = 2. There is only one point of intersection (—2, —1). The
solution of the system is, therefore, x = =2, y = —1.

(c) Figure 2.39 shows the graphs of the straight lines 3x + 4y = 2 and
6x + 8y = 24. These lines are parallel and have no point of inter-
section. The system has no solutions.

Linear Inequalities

This chapter concludes by discussing how to represent linear inequalities geomet-
rically. Consider two examples.

Example 2.21
Sketch in the xy-plane the set of all pairs of numbers (x. y) that satisfy the
inequality 2x + y < 4. (Using set notation, this is {(x, y) : 2x + y < 4}.)

Solution The inequality can be written as y < —2x +4. The set of points
(x,y) that satisfy the equation y = —2x + 4 is a straight line. Therefore,
the set of points (x. y) that satisfy the inequality y < —2x + 4 must have
y-values below those of points on the line y = —2x + 4. So it must consist
of all points that lie on or below this straight line. See Fig. 2.40.

Example 2.22
A person has $m to spend on the purchase of two commodities. The prices
of the two commodities are $p and $¢q per unit. Suppose x units of the first
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2x+y=4

1 ":)\3 4

FIGURE240 {(x,y):2x+y.<4}.

commodity and y units of the second commodity are bought. Assuming one
cannot purchase negative units of x and y, the budget set is

B={(x,y): px+qy<m, x>0, y >0}

as in (1.7) in Section 1.7. Sketch the budget set B in the xy-plane. Find the
slope of the budget line px + gy = m, and its points of intersection with the
two coordinate axes.

Solution The set of points (x, y) that satisfy x > 0 and y > 0 was
sketched in Fig. 2.10. It is the first (nonnegative) quadrant. If we impose the
additional reqhirement that px + gy < m, we obtain the triangular domain
B shown in Fig. 2.41.

If we solve px +qy = m for y, we get y = (—p/q)x + m/q, so the
slope is —p/q. The budget line intersects the x-axis when y = 0. Then
px = m, so x = m/p. The budget line intersects the y-axis when x = 0.
Then gy = m, so y = m/q. So the two points of intersection are (m/p, 0)
and (0, m/q), as shown in Fig. 2.41.

FIGURE 2.41 Budget set: px+qy <m,x > 0,and y > 0.

(0.m/q) N

¥

t

px+qgy=m

! (m/p.0)
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Problems

1. Find the slopes of the lines passing through the following points by using
the formula in [2.5].

a. (2.3)and (5,8) b. (—=1,—3)and 2,=5) ¢ (1, 2) and (1 -1

2. The consumption function C = 4141 + 0.78 Y for the UK was estimated for
the period 1949-1975. What is the marginal propensity to consume?

3. Find the slopes of the five lines L; to Ls shown in Fig. 2.42, and give
equations describing them. (L; is horizontal.)

-2 =1
_] L.
N

FIGURE 2.42

4. Draw graphs for the following equations:
X y
a. 3x+4y=12 b. —=-=-=1 c. x=3
¢ 105 *

5. Decide which of the following relationships are linear:
a. 5y +2x=2 b. P=10(1-0.31) c. C=(0.5x+2)(x-3)
d. pix;+ poxs =R (p1, p2. and R constants)

6. a. Determine the relationship between Centigrade and Fahrenheit tempera-
ture scales when you know that (i) the relation is linear; (ii) water freezes
at 0°C and 32°F; and (iii) water boils at 100°C and 212°F. '

b. Which temperature is measured by the same number in both Centigrade
and Fahrenheit scales?

7. Determine the equations and draw graphs for the following straight lines:
a. L, passes through (1, 3) and has a slope of 2.
b. L, passes through (—2.2) and (3. 3).
¢. L3 passes through the origin and has a slope of —1/2.
d. L. passes through (a.0) and (0.56) (suppose a # 0).

8. A line L passes through the point (1.1) and has a slope of 3. A second
line M passes through (—1.2) and (3. —1). Find the equations for L and M




10.

11.

12.

13.

14.

15.
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and their point of intersection, P. Also determine the equation for the line N
that passes through (—1. —1) and is parallel to M. Draw the figure.

The total cost y of producing x units of some commodity is a linear function.
Records show that on one occasion, 100 units were made at a total cost of
$200. and on another occasion, 150 units were made at a total cost of $275.
Express the linear equation for total cost in terms of the number of units x
produced.

Find the equilibrium price in the model in Example 2.19 for the following.
a. D=75-3P, §=20+2P b. D=100-05P, S=10+05P

According to 20th report of the International Commission on Whaling, the
number N of fin whales’in the Antarctic for the period 1958-1963 was given
by

N = —17,400r + 151.000. 0<r<5s

where 1 = 0 corresponds to January 1958, tr = 1 cormresponds to January

1959, and so on.

a. According to this equation, how many fin whales would there be left in
April 19607

b. If the decrease continued at the same rate, when would there be no fin
whales left? (Actually, the 1993 estimate was approximately 21,000.)

The expenditure of a household on consumer goods, C. is related to the
household’s income, y. in the following way: When the household’s income
is $1000, the expenditure on consumer goods is $900, and whenever income
is increased by $100, the expenditure on consumer goods is increased by
$80. Express the expenditure on consumer goods as a function of income,
assuming a linear relationship.

Solve the following three systems of equations graphically:
a x—y=35 and x+y=1

b. x+ y=2, x—=2y=2 and x— y=2
c. 3x+4y=1 and 6x +8y =6

Show that —1/[xq(xp + k)] is the slope of the line passing through P and Q
in Fig. 2.43.

The following table shows the total consumption and net national income
in some country for the period from 1955-1960, measured in millions of
dollars. Plot the points from the table in the Y C-plane. Draw the straight
line through the “extreme points™ (21.3,17.4) and (24.7,20.4). Find the
equation for this line. What is the interpretation of its slope?

Year 1955 1956 1957 1958 1959 1960

Total consumption (C) 17.4 18.0 18.4 18.6 19.3 204
Net national product (Y) 21.3 224 23.0 22.6 23.4 24,7
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Q(xo + h.1/(xo + h))
y=1/x

xlo X()-i:h\

FIGURE 2.43

16. Sketch in the xy-plane the set of all pairs of numbers (x, y) that satisfy the
following inequalities:
a. 2x+4y >S5 b. x—=3y+2<0 c. 100x + 200y < 300

17. Sketch in the xy-plane the set of all pairs of numbers (x, y) that satisfy all
the following three inequalities: 3x +4y < 12; x —y <1;and 3x +y > 3.
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Polynomials, Powers,
and Exponentials

The paradox is now fully established that the
utmost abstractions are the true weapons with

which to control our thought of concrete facts.
—A. N. Whitehead

The linear functions and associated linear models that were studied in some detail
in the previous chapter are particularly simple. Not surprisingly, most economic
applications require much more accuracy than is possible with only linear functions,
and so economists most often use more complicated functions.

3.1 Quadratic Functions

Many economic models involve functions that either decrease down to some min-
imum value and then increase, or else increase up to some maximum value and
then decrease. Simple functions with this property are the general quadratic func-
tions

flx) = ax>+bx +¢ (a, b, and are ¢ constants, a # 0) [3.1]

(If a = 0, the function is linear, hence, the restricion a # 0.) Figure 2.20
of Section 2.4 shows the graph of f(x) = x> — 3x, which is obtained from
[3.1] by choosing @ = 1, b = =3, and ¢ = 0. In general, the graph of
f(x) = ax® + bx + c is called a parabola. The shape of this parabola roughly

73
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FIGURE 3.1 Graphs of the parabola y = ax2 + bx + c.

resembles N when a < 0 and U when a > 0. Three typical cases are illustrated in
Fig. 3.1.

In order to understand the function f(x) = ax? + bx -+ ¢ in more detail, we
are interested in the answers to the following questions:

1. For what values of x (if any) is ax®> + bx + ¢ = 0?
2. What are the coordinates of the maximum/minimum point P?

In the case of question 1, we have to find solutions to the equation f(x) = O.
Geometrically, this involves determining points of intersection of the parabola
with the x-axis. These points are called the zeros of the quadratic function. In
Fig. 3.1(a), the zeros are given by x; and x,, in Fig. 3.1(b) there are no zeros,
whereas the graph in Fig. 3.1(c) has x; as its only point of intersection with the
x-axis. In Section A.8 of Appendix A it is proved that, in the case when b*> > dac
and a # 0, then

ax"+bx+c=0 < x= 22 ¢ [3.2]

To derive this formula, we used the method known as “completing the square.”
This technique will also help us answer question 2. In fact, when a # O, the
function defined by [3.1] can be expressed as

”

x*+2 <£> X+ (£>2} —a (i> -—+-c =a (x + -—b—>2—bz_;4ac
2a 2a 2a 2a 4a

[3.3]

Consider the expression after the second equality sign of [3.3]. When x varies,

only the value of a(x +b/2a)* changes. This term is equal to O when x = —b/2a,
and if a > 0. it is never less than 0. This means that when a > 0, then the

fx)=a
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function f(x) attains its minimum when x = —b/2a, and the value of f(x) is
then equal to f(—b/2a) = —(b* — 4ac)/4a = ¢ — b*/4a. If a < O on the other
hand, then a(x + b/2a)? < 0 for all x, and the squared term is equal to 0 when
x = —b/2a. Hence, f(x) attains its maximum when x = —b/2a in this second
case. To summarize, we have shown the following:

If a > 0, then f(x) = ax®> + bx + ¢ has a2 minimum at
b b?
%' ¢ 1

) [3.4]

If a <0, then f(x) = ax®> + bx + ¢ has a maximum at
b b?
-——,C—-——
2a 4a

If you find it difficult to follow the argument leading up to [3.4], you should study
the following special examples very carefully.

Example 3.1
Complete the square as in [3.3] for the following functions and then find the

maximum/minimum point of each:

@ f(x)=x>—4x+3

(b) f(x) = —2x>+40x — 600

© fx)y=3x2+3x-%

Solution
@ x?—4x+3=(x*—-4x)+3=(x*-4x+4)-4+3=(x-27°-1

The expression (x — 2)> — 1 attains its smallest value, which is —1, at
x =2.
(b) —2x*+40x — 600 = —2(x* — 20x) — 600
= —2(x? = 20x + 100) + 200 — 600
= —2(x — 10)* - 400

The expression —2(x — 10)? — 400 attains its largest value, which is
—400, at x = 10.
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(© 3x*+3x-— (x? +2x) — §

Wico
I

2 1 8
(x7+2x+1)—§—-§

W= W= W

(x+1)?*-3

The expression 1(x + 1)*> — 3 attains its smallest value, which i3 -3,
atx = —1.

A useful exercise is to solve the three cases in Example 3.1 by using the
expressions set out in [3.4] directly, substituting appropriate values for the three
parameters a, b, and ¢. You should then check that the same results are obtained.

Problems

1. a. Let f(x) = x* —4x. Complete the following table:

b. Using the table in part (a), sketch the graph of f.
c. Using [3.3], determine the minimum point.
d. Solve the equaton f(x) = 0.

2. a Let f(x) =—4x? — x+ 3. Complete the following table:

X ~4 -3 -2 -1 O—l 1 2

£(x) ‘

b. Use the information in part (a) to-sketch the graph of f.
¢. Using [3.3], determine the maximum point.
d. Solve the equation —1x? — x + 3 = 0 for x.
e. Show that f(x) = —1(x — 1)(x + 3), and use this to study how the sign
of f varies with x. Compare the result with the graph.
3. Complete the squares as in [3.3] for the following quadratic functions, and
then determine the maximum/minimum points:

a. x> +4x b. x> +6x + 18 c. —3x2+30x — 30
d 9x’—6x—44 e. —x2>—200x +30.000 f. x?+100x — 20,000

4. Find the zeros of each quadratic function in Problem 3, and write each func-
tion in the form a(x — x;)(x — x3) (if possible).
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5. Use the formula in [3.2] to find solutions to the following equations, where

p and g are positive parameters.

a. x?—3px+2p°=0 b. x>~ (p+¢g)x+pg =0

c. *+px+q=0

6. A person is given a rope of length L with which to enclose a rectangular
area.

a. If one of the sides is x, show that the area of the enclosure is A(x) =
Lx/2—x?, where 0 < x < L/2. Find x such that the area of the rectangle
1s maximized.

b. Will a circle of circumference L enclose an area that is larger than the one
we found in part (a)? (It is reported that certain surveyors in antiquity
wrote contracts with farmers to sell them rectangular pieces of land in
which only the circumference was specified. As a result, the lots were
long narrow rectangles.)

7. Consider the function given by the formula A = 500x — x? in Example 1.1

of Section 1.3. What choice of x gives the largest value for the area A?

8. a. Solve x*—5x>+4 = 0. (Hint: Put x> = u and form a quadratic equation
in w.)
b. Solve the equations (i) x* —8x> —9 =0 and (i) x® — 9x°> + 8 = 0.
9. A model occurring in the theory of efficient loan markets involves the functon

Ux)=72 - (44+x)> = (4 — rx)?

where r is a constant. Find the value of x for which U(x) attains its largest
value.

10. Find the equation for the parabola y = ax? + bx + ¢ that passes through
the three points (i, —3), (0, —6), and (3, 15). (Hint: Determine a, b,
and c.)

Harder Problems
11. The graph of a function f is said to be symmerric about the line x = p if
flp—=t)=f(p+1) (forallr)

Show that the parabola f(x) = ax + bx + ¢ is symmetric about the line
x = —b/2a. (Hint: Use [3.3].)

12. Letay. as, ....a, and by, ba, ..., b, be arbitrary real numbers. We claim that
the following inequality (called the Cauchy-Schwarz inequality) is always
valid:

(@b +asby+- - -+a,b,)* < (@ +a3+---+a) B +b3+---+b2)  [3.5]



78  Chapter 3 / Polynomials, Powers, and Exponentials

a. Check the inequality for (i) a; = 1, a2 = 3, by = 2, and by = 5;

and for (i) a; = =3, a» = 2. by = 5, and b» = —2. (In both cases,
n=2)

b. Prove [3.5]) by means of the following trick: first, define f for all x
by

f(x) = (@x + b))’ +--- + (@x + by)’

We see that f(x) > 0 for all x. Write f(x) as Ax*>+ Bx +C, where the
expressions for A, B, and C are related to the terms in [3.5]. Because
Ax?+ Bx + C > 0 for all x, we must have B> — 4AC < 0. Why? The
conclusion follows.

3.2 Examples of Quadratic Optimization
Problems

Much of mathematical economics is concemed with optimization problems. Eco-
nomics, after all. is the science of choice. and optimization problems are the form
in which choice is usually expressed mathematically.

A general discussion of such problems must be postponed until we have
developed the necessary tools from calculus. Here we show how the simple re-
sults from the previous section on maximizing quadratic functions can be used to
illustrate some basic economic ideas.

Example 3.2 (A Monopoly Problem)
Consider a firm that is the only seller of the commodity it produces, possibly
a patented medicine, and so enjoys a monopoly. The total costs of the
monopolist are assumed to be given by the quadratic function

C=a0+ B0 Q>0 [1]

of its output level Q, where a and 8 are positive constants. For each Q, the
price P at which it can sell its output is assumed to be determined from the
linear “inverse” demand function

P=a-b0. 03>0 2]

where a and b are constants with a > 0 and b > 0. So for any nonnegative
Q, the total revenue R is given by the quadratic function

R=PQ=(a-5b0)Q
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and profit by the quadratic function'

n(Q)=R~-C=(@-b0)0—aQ-BQ°
=(@—-a)0—(b+p)Q° (3]

The monopolist’s objective 1s to maximize 7 = 7(Q). By using [3.4], we
see that there is a maximum of 7 (for the monopolist M) at

,
a—«o . v (a—a)

“%exph M T T3 p “

QM

This is valid if a > «; if @ < «, the firm will not produce, but will have
QY = 0 and m™ = 0. The two cases are illustrated in Figs. 3.2 and 3.3.
The associated price and cost can be found by routine algebra.

If we put 6 = 0 in [2], then P = g for all Q. In this case, the firm’s
choice of quantity does not influence the price at all and so the firm is said
to be perfectly competitive. By replacing a by P in [3] and putting b = 0,
we see that profit is maximized for a perfectly competitive firm at

Q,,:P—a with 7,*:(1)——,0‘)-

26 46

provided that P > a. If P < ¢, then O0* =0 and n* = 0.

FIGURE 3.2 The profit function, FIGURE 3.3 The profit function,
a>a ala
T b4
' i 0
: 7 a~u
g a—a ¢ 26+ )
26+ B) b+ B

IPreviously. 7 has been used to denote the constant ratio 3.14159 ... between the circumference

of a circle and its diameter. In economics. this constant is not used very often. so  has come to denote
profit. or probability.
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Solving the first equation in [5] for P yields P = a + 28 Q*. Thus,
P=a+280 [6]

represents the supply curve of this perfectly competitive firm for P > «
when Q* > 0, whereas for P < ¢, the profit maximizing output QO is 0.
The supply curve relating the price on the market to the firm’s choice of
output quantity is shown in Fig. 3.4; it includes points between the origin
and (0, x).

Let us return to the monopoly firm (which has no supply curve). If it
could somehow be made to act like a competitive firm, taking price as given,
it would be on the supply curve [6]. Given the demand curve P =a — b0,
equilibrium between supply and demand occurs when [6] is also satisfied,
and so P = a—bQ = a + 28Q. Solving the second equation for Q, and
then substituting for P and 7 in turn, we see that the equilibrium level of
output, the corresponding price, and the profit would be

oo @78 g _MBrab . pla-or
T b+28° T b+28 T (b+28)?

(7]

In order to have the monopolist mimic a competitive firm by choosing to
be at (Q¢, P¢), it may be desirable to tax (or subsidize) the output of the
monopolist. Suppose that the monopolist is required to pay a specific tax
of ¢ per unit of output. Because the tax payment z(Q is added to the firm’s
costs, the new total cost function is

C=aQ+B0*+10
=(@+1)Q+ B0’ [8]

Carrying out the same calculations as before, but with ¢ replaced by o + 7.

FIGURE 3.4 The supply curve of a perfectly competitive firm.

P
?

P=a+280
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gives the monopolist’s choice of output as

a—oa—1 o>t
Q,”={2(b+,9)’ raza [9]
0, otherwise

So QM = Q¢ when (a — a —1)/2(b + B) = (a — @) /(b + 2B8). Solving this
equation for ¢ yields t = —(a — a)b/(b + 28). Note that ¢ is actually neg-
ative, indicating the desirability of subsidizing the output of the monopolist
in order to encourage additional production. (Of course, subsidizing monop-
olists is usually felt to be unjust, and many additional complications need
to be considered carefully before formulating a desirable policy for dealing
with monopolists. -Still the previous analysis suggests that if justice requires
lowering a monopolist’s price or profit, this is much better done directly than
by taxing output.)

Problem

1. If a cocoa shipping firm sells Q tons of cocoa in England, the price received
is given by P = a; — 0. On the other hand, if it buys Q tons from its
only source in Ghana, the price it has to pay is given by P = a» + % Q. In
addition, it costs y per ton to ship cocoa from its supplier in Ghana to its
customers in England (its only market). The numbers ¢;, o>, and y are all
positive.

a. Express the cocoa shipper’s profit as a function of Q, the number of tons
shipped.

b. Assuming that oy — @2 — y > 0, find the profit maximizing shipment of
cocoa. What happens if ¢; —ar — ¥y < 0?

¢. Suppose the government of Ghana imposes an export tax on cocoa of r
per ton. Find the new expression for the shipper’s profits and the new
quantity shipped.

d. Calculate the government’s export tax revenue as a function of z, and
advise it on how to obtain as much tax revenue as possible.

3.3 Polynomials

After considering linear and quadratic functions, the logical next step is to examine
cubic functions of the form

fGx)=ax’+bx*+cx+d  (a, b,c.and d are constants; a # 0)  [3.6]

It is relatively easy to understand the behavior of linear and quadratic functions
from their graphs. Cubic functions are considerably more complicated, because
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y
l fx)=-x3+4x2~-x—6

VSR

FIGURE 3.5 A cubic function.

> <

y=C(Q)

FIGURE 3.6 A cubic cost function.

the shape of their graphs changes drastically as the coefficients a. b, ¢, and 4 vary.
Two examples are given in Figs. 3.5 and 3.6.

Cubic functions do occasionally appear in economic models. Let us look at

a typical example.

Example 3.3 -

Consider a firm producing a single commodity. The total cost of producing
Q units of the commodity is C(Q). Cost functions often have the following
properues: First, C(0) is positive, because an initial fixed expenditure 1s
mvolved. When production increases, costs also increase. In the beginning,
costs increase rapidly. but the rate of increase slows down as production
equipment 1s used for a higher proportion of each working week. However,
at high levels of production, costs again increase at a fast rate, because of
technical bottlenecks and overtime payments to workers, for example. The
cubic cost function C(Q) = aQ? + bQ? + ¢Q + d exhibits this type of
behavior provided thata > 0, b < 0, ¢ > 0, and d > 0 with 3ac > b>. Such
a function is sketched in Fig. 3.6.
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General Polynomials

Linear, quadratic, and cubic functions are all examples of polynomials. The func-
tion P defined for all x by

1 +---4+ax +ag (a’S are constants; a, # 0) [37]

Px)=a.,x" +a,_1x""
is called the general polynomial of degree n. When n = 4, we obtain P(x) =
asx* + a;x® + a»x® + a; x + ap, which is the general polynomial of degree 4.

Numerous problems in mathematics and its applications involve polynomials.
Often, one is particularly interested in finding the number and location of the zeros
of P(x)—that is, the values of x such that P(x) = 0. The equation

ApX" + qy X" + - t+ax+ay=0 [3.8]

is called the general nith-order equation. It will soon be shown that this equation
has at most n (real) solutions, also called roots, but it need not have any.

According to the fundamental theorem of algebra, every polynomial of the
form (3.7] can be written as a product of polynomials of first or second degree.
Here is a somewhat complicated case:

x5—-x4+x—1=(x—1)(x4—:-1)=(x-—1)(x2—\/ix+1)(x2+x/ix+l)

Integer Roots

Suppose that xq is an integer that satifies the cubic equation —x3 +4x*—x—6 = 0,
or, equivalently, —x®> 4+ 4x? — x = 6. Then xo must also satisfy the equation

xo(—xg’ +4xp—1)=6 [*]

Because xg is an integer, it follows that xg', 4x, and —xg' + 4xy — | must also be
integers. But because x, multiplied by the integer —xj + 4xp — 1 is equal to 6, the
number xg must be a factor of 6—that is, 6 must be divisible by xo. Now, the only
integers by which 6 is divisible are 1, £2, =3, and 6. Direct substitution into
the left-hand side (LHS) of equation [x] reveals that of these eight possibilities,
—1, 2, and 3 are roots of the equation. A third degree equation has at most three
roots, so we have found all of them. In general, we can state the following result:

Suppose that a,, a,-1, ..., a1, ap are all integers. Then all possible integer
roots of the equation

X"+ ap 1 x" '+ +ax+ag=0 [3-9]

must be factors of the constant terin ag.
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Proof If xg is an integer root, then xo must satisfy the equation
- -2
xo(a,,xg ! +a,,_|x6' ‘4.4 a))=—ap

Both factors on the left are integers, so —ag must be divisible by each of them,
and in particular by xg. So must ap.

Example 3.4
Find all possible integer roots to the equation 3x> —x? + 3x — 1 = 0.

Solution We multiply both sides of the equation by 2 to obtain an equa-
ton whose coefficients are all integers:

P =274+x=-2=0

According to [3.9], all integer solutions of the equation must be factors of
—2. So only %1 and %2 can be integer solutions. A check shows that x =2
is the only integer solution. In fact, because x> —2x>+x—2 = (x—2) (x> +1),
there is only one real root.

The Remainder Theorem

Let P(x) and Q(x) be two polynomials for which the degree of P(x) is greater
than or equal to the degree of Q(x). Then there always exist unique polynomials
g(x) and r(x) such that

P(x)=qx)Q(x)+r(x) [3.10]

where the degree of r(x) is less than the degree of Q(x). This fact is called the
remainder theorem. When x is such that Q(x) # 0, then [3.10] can be written in
the form

P(x) - 00 + r(x)

— = [3.11]
Q(x) Q(x)

If r(x) = 01n [3.10] and [3.11], we say that Q(x) is a factor of P(x), or that P(x)
is divisible by Q(x). Then P(x) = q(x)Q(x) or P(x)/Q(x) = q(x), which is the
quotient. When r(x) # 0, it is the remainder.

An important special case is when Q(x) = x — a. Then Q(x) is of degree 1.
so the remainder r(x) must have degree 0, and is therefore a constant. In this
special case, for all x,

Px)y=qx)(x—a)+r
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For x = a in particular, we get P(a) = r. Hence, x — a divides P(x) if and
only if P(a) = 0. This is an important observaton that can be formulated as
follows:

Polynomial P(x) has the factor x —a <= P(a) =0 [3.12]

It follows from [3.12] that an nth-degree polynomial P(x) can have ar most n
different zeros. To see this, note that each zero x =a,, x = as, .... x = a; gives
rise to a different factor of the form x — a. From this it follows that P(x) can be
expressed as P(x) = AX)(x —ay)...(x —ay) for some polynomial A(x). Thus,
P(x) has degree > k, and so k cannot exceed n.

Example 3.5
Prove that the polynomial f(x) = —2x3+2x?+10x +6 has a zero at x = 3,
and factorize the polynomial.

Solution Inserting x = 3 into the polynomial yields
fB3)=-2-3+2-32410-3+6=-54+18+30+6=0

So x — 3 is a factor. It follows that the cubic functon f(x) can be ex-
pressed as the product of (x — 3) with a second degree polynomial. In
fact,

Fx) = =23 +2x*+10x + 6 = =2(x — 3)(x> + ax + b)
We must determine a and b. Expanding the last expression yields
f(x) = =2x%+ (6 — 2a)x> + (6a — 2b)x + 6b

If this polynomial f(x) is to equal —2x> + 2x* + 10x + 6 for all x, then the
coefficients of like powers of x must be equal; thus, 6—2a = 2, 6a—2b = 10,
and 6b = 6. Hence, b= 1 and a = 2. Because x> +2x + 1 = (x + 1)%, we
conclude that

fx)= -2 +2x*+10x +6 = =2x =) (x> +2x + 1)
=—2(x =3)x + 1)?

The factorization procedure used in this example is called the method of
undetermined coefficients. (Here a and b were the undetermined coefficients.) The
alternative “long-division” method for factorizing polynomials will be considered
next.
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Polynomial Division

One can divide polynomials in much the same way as one divides numbers. Con-
sider first a simple numerical example:

2735 +5
2500
235
200
B
35
0

= 50044047

remainder

Hence, 2735 + 5 = 547. Note that the horizontal lines instruct you to subtract the
numbers above the lines. (You might be more accustomed to a different way of
arranging the numbers, but the idea is the same.)

Consider next

(—x° +4x> —x = 6) = (x = 2)

We write the following:

(—x°+ 4x"— x —6)+(x—-2) = —x- + 2x + 3
~x3 4 2x2 <« —x*(x=2)
2x>— x =6
21 ~4x < 2 (x —2) [¢e—
3x —6
3x —6 « 3(x —2) —m—!
0 remainder

(You can omit the boxes, but they should hélp you to see what is going on.) We

conclude that (—x> +4x% — x — 6) +

(x —2) = —x* + 2x + 3. Because it is easy

to see that —x” + 2x + 3 = —(x + 1)(x — 3). we have

— x> +4xP—x—6=—(x+1(x —3)(x —2)

Polynomial Division with a Remainder

The division 2734 = 5 gives 546 and leaves the remainder 4. So 2734/5

546 + 4/5. We consider a similar form of division for polynomials.

Example 3.6
(x* +3x% —4) = (x2 + 2x)
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Solution
(x* + 3x2 —D = (2 +2W)=x*=2x+7
x* 4+ 2x3
— 2x3 + 3x? —4
—2x3 —4x?
7x? -4
7x? + 14x

— 14x —4 remainder
(The polynomial x* +3x% — 4 has no terms in x> and x, so we inserted some
extra space between the powers of x to make room for the terms in x> and x
that arise in the course of the calculations.) We conclude that

x*+3x7 — 4= (x? = 2x + (x> + 2x) + (—=14x — 4)

Hence,

Rational Functions

A rational function is a function R(x) = P(x)/Q(x) that can be expressed
as the ratio of two polynomials P(x) and Q(x). This function is defined for
all x where Q(x) # 0. The rational function R(x) is called proper if the
degree of P(x) is less than the degree of Q(x). When the degree of P(x)
is greater than or equal to that of Q(x), then R(x) is called an improper ra-
tional function. By using polynomial division, any improper rational function
can be wrtten as a polynomial plus a proper rational function, as in [3.11] and
Example 3.6.

Problems

1. By making use of [3.9], find all integer roots of the following equations:
ax’+x—-2=0 b.xX’-x*-25%x+25=0 ¢ x’—-4x’-3=0

2. Find all integer roots of the following equations:

a - -Ix*+x+6=0 b. 2x° + 11x* = Tx -6 =0

e x*+xr+22x*+x+1=0 d -1 -x+1=0
3. Perform the following divisions:

a. (x>~x—20)=(x—5) b. (x> -1+ @x=1)

¢ (=3x° +48x) =+ (x — 4)
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4. Perform the following divisions:
a. (2.x3+2x—l)+(x—1) b. (x4+x3+x2+x)+(x2+x)
¢ Bx¥+X2+D=0-2x+1) A @-RF+D=E+x+1)

5. Which of the following divisions leave no remainder? (a and b are constants;
n is a natural number.)

a. (P —x=-D/x-1 b. 223 —x=1)/(x=1)
c. (x> —ax*+bx—ab)/(x —a) d ™ =1)/(x+1)
6. Write the following polynomials as products of linear factors:
a. p(x)=x>+x> -1 b. q(x)=2x3+3x2—18x+8
7. Find possible formulas for each of the three polynomials with graphs in
Fig. 3.7.
X i
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3.4 Power Functions
Consider the power function f defined by the formula

fx)=x" [3.13]

We know the meaning of x” if r is any integer—thatis, r = 0, 1. £2..... In fact.
if r is a natural number, x” is the product of r x’s. Alsoifr = 0,thenx” = x° =1
for all x # 0, and if r = —n, then x” = 1/x” for x # 0. In addition, for r = 1/2,
x" = x1? = /x, defined for all x > 0. (See Section A.2 of Appendix A.) This
section extends the definition of x” so that it has meaning for any rational number r.

Here are some examples of why powers with rational exponents are needed:

1. The flow of blood (in liters per second) through the heart of an individual is
approximately proportional to x%7, where x is the body weight.

2. The formula S = 4.84V>/> gives the approximate surface S of a ball as a
functon of its volume V. (See Example 3.10, which follows.)
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3. The formula Y = 2.262K%2031%763(1.02)" appears in a study of the growth
of natonal output, and shows how powers with fractional exponents can arise
in economics. (Here Y is the net national product, K is capital stock, L is
labor, and 7 1s time.)

These examples illustrate the need to define x” for r = 0.7 = 7/10, r = 2/3,
r = 0.203, and r = 0.763 = 763/1000. In general, we want to define x” for x > 0
when r is an arbitrary rational number.

The following basic power rules (discussed in Section A.1, Appendix A) are
valid for all integers r and s:

() a”a® =a"™* (i) (@) =a" [3.14]

When extending the definition of x” so that it also applies to rational exponents r,
it is natural to require that these rules retain their validity.

Let us first examine the meaning of a'/?, where n is a natural number, and
a is positive. For example, what does 5'72 mean? If rule [3.14](ii) is stll to apply
in this case, we must have (5'7)> = 5. This implies that 5' must be a solution
of the equation x> = 5. This equation can be shown to have a unique positive
solution, denoted by /5, the cube root of 5. (See Example 7.2 in Section 7.1.)
Therefore, we must define 5% as +/5. In general, (a'/*)" = a. Thus, ¢!/ is a
solution of the equation x"” = a. This equation can be shown to have a unique
positive solution denoted by </a, the nth root of a:

a* = a [3.15]
In words: if a is positive and n is a natural number, then a'/" is the unique positive
number that, raised to the nth power, gives a—that is, (a'*)" = a' = a. For
example,

275 = Y27 =3  becauwse 3° = (27'")} =27
1/4 1 1 14 1 4
(@) =Vems=3 beawe (3) =[x"] =g
Usually, we write a'”?> as ./a rather than Ja (see Section A.2 of Appendix A).

We proceed to define a”/4 whenever p is an integer, ¢ is a natural number,
and a > 0. Consider 5%/, for example. We have already defined 5'7. For rule
[3.14](ii) to apply, we must have 57 = (5'”)2. So we must define 5%° as (ﬁ)z
In general, for a > 0, we define

a’t = (a'#)" = (¥a)?.  p an integer, g a natural number [3.16)
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Note: If ¢ is an odd number and p is an integer, a?/¢ can be defined even when
a < 0. For example, (—8)' = /=8 = —2, because (—2)*> = —8. However, in
defining a?/¢ when a < 0, the fraction p/g must be reduced to lowest terms. If
not, we would get contradictions such as “—2 = (—8)!3 = (—8)*% = {/(—8)2 =

%Z =27
Example 3.7

Compute 625%7 and 32737,

Solution  625%7° = 625 = (625'/4)® =5° = 125
32735 — (321/5)"3 = 2—3 =1/8

Many scientific calculators have a power key, often denoted by H For
instance, suppose we let y = 625 and x = 0.75, then instruct the calculator
to compute y* (the way this is done varies from calculator to calculator).
The display may show the number 125.000—or possibly, if 7 decimals are
shown, 125.0000001. This shows that the key E does not always give
an exact answer, even in simple cases. Try it with 23, and check the value
for 3273/5. Simple pocket calculators are usually exact enough for practical
purposes, however.

With this definition of a?/9, we can show that rules [3.14] are still valid when
r and s are rational numbers. In particular,

aPld = (al/q)" = (ap)‘/‘l = Yar

Thus, to compute a”/9, we could either first take the gth root of a and
raise the result to p, or first raise a to the power p and then take the
gth root of the result. We obtain the same answer either way. For
example,

62507 = 625°1 = (625°)"* = (244140625)'"* = /244140625 = 125

Note that this procedure involves more difficult computations than the one
used in Example 3.7.

Example 3.8
If z denotes demand for coffee in tons per year and p denotes its price per ton.
the approximate relationship between them over a specific ime period is

z = 694,500p %"

(a) Write the formula using roots.

(b) Use a calculator to compute demand when p = 35,000 and when p =
55,000.
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Solution

111
0 ps'

L

-03 _
@ p - ) - p3/10 BT

SO we obtain
694,500
/3
(b) p = 35,000 gives z = 694,500- (35,000)"%3 = 30,092 (tons)
p = 55,000 gives z = 694,500 (55,000)~%3 =~ 26,276 (tons)

7
<

Note that when price increases, demand decreases.

Using the Power Rules

Powers with rational exponents often occur in economic applications, so you must
learn to use them correctly. Before we consider some more examples, note that
the power rules can easily be extended to more factors. For instance, we have

(abed)? = (ab)?(cd)? = a’bPcPdP

Example 3.9
Simplify the following expression so that the answer contains only a single
exponent for each variable x and y:

5x=2y23 -1
(625x4y4/3>
Solution One method begins by simplifying the expression inside the
parentheses:

5x‘2y2/3 -173 1 x2 }'2/3 =173 1 % - =1/3
_— = - - — =| —-x -y
62554 y—h 125 %%y 125 Y

5x2

1\ —en—1/3 -1/3 3 2 353
= (E) )77 0N) T = 0297 = S

Alternatively, we can also raise all the factors to the power —1/3 and use
the relation 625 = 5* to obtain

-2.2 =1/3 -1/3,2/3.,-2/9
5x2y*? _ ST iy | B 249
625x3y =43 T (54T ARy 7

5x2

— 5§l 2,-23
=5x"y =35
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Example 3.10
The formulas for the surface S and the volume V of a ball with radius r are
S =4mr? and V = (4/3)nr>. Express S in terms of V.

Solution =~ We must eliminate . From V = (4/3)7r> we obtain r> =
3V /4m. By raising each side of this equation to the power 1/3 and using
(r*)!3 =r, we obtain r = (3V/4x)'/. Hence,

, N ARME (3V)2/3
=g = = — et 4 ———
S=4nr 47{(4,,) T ZImETE

= (47)'~CPIB YV = (4m)' P (31 P VP = 36 VP
We have thus shown that
S =361 V¥’ ~4.84 Vv [1]

Note: Perhaps the most commonly committed error in elementary algebra is to
replace (x + y) by x? + y? and hence lose the term 2xy. If we replace (x + y)°
by x> + y3, then we lose the terms 3x2y + 3xy>. What error do we commit if
we replace (x — ¥)® by x* — y3? Tests also reveal that students who are able to

handle these simple power expressions often make mistakes when dealing with

. . : : 12
more complicated powers. A surprisingly common error is replacing (25 — 1x) &

by 2572 — (%x)m, for example. In general:

(x + y)* is usually NOT equal to x* + y©
(x =y — 2)1* is usually NOT equal to x!/@ — yl/x _ 7}/a

The only exception, for general values of x, ¥. and z, occurs when o = 1.

Graphs of Power Functions

We return to the power function f(x) = x” in [3.13], which is now defined for
all rational numbers r provided that x > 0. We always have f(1) = 1" =
1, so the graph of the function passes through the point (1. 1) in the xy-plane.
The behavior of the graph depends crucially on whether r is positive or neg-
ative.

Example 3.11
Sketch the graphs y = x%% and y = x~'".
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Solution Using a pocket calculator allows us to complete the following

table:
x 0 13 2/3 1 2 3 4
y =x%3 0 072 08 1t 123 139 152

y=x"13 . 417  1.69 1 0.41 0.24 0.16

*Not defined.

The graphs are shown in Figs. 3.8 and 3.9.
Figure 3.10 illustrates how the graph of y = x" changes with changing
values of the exponent. Try to draw the graphs of y = x>, y = x7/,

y=x"12 and y = x7'A,

y
2 "
v = 503
1 b
— — X
1 2 3 4
FIGURE 3.8 FIGURE 3.9
¥
y=x,
2l y=x
2 v=x
L
y=x:
- y=x1
h
X
1 2
FIGURE 3.10
Problems

1. Compute the following:
a. 161/4 b. 243—]/5 C. 5]/7 56ﬁ d. (48)—3/16
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2.

10.

11.

Using a pocket calculator or computer, find approximate values for the fol-
lowing:
a. 100'° b. 1673 c. 5.23M%.2.1173!
Compute the following:
43717 -1/3 2 2\~1/2
e b. (0.064)" c. (3*+4%)

How can the number 50%!6 be expressed as a root?

Simplify the following expressions so that each contains only a single expo-
nent of a.
a. {[(a]ﬂ)2/3]3/4}4/5 b. al/l02/3(13/4a4/5
. 3 ]/12\"/_3
—19=2(n =21y ;=3 Jaa a
¢ {[Ba)"122a™) ") /a d
Solve the following equations for x:
a. 2% =38 b. 3%+ = 1/81 c. 10°72%2 = 100
. Which of the following equations are valid for all x and y?
2 .3
a. ()P =2 b. 3% = ——
35y
1 1
=l/x _ x —
c.3 "_—3—1/; x#0 d.5 = (x #0)
e. ¥ =a" + 4’ f. 2% . 2% = 2¥F  (x and y positive)

Solve the following equations for the variables indicated:

a. 3K~'2L? =1/5 for K

b. p—abx{™' =0 for xg

c. ax(ax + b)) + (ax + b)'? =0 for x

d. [(1-Na? +xr~°] "7 =c forb

A sphere of capacity 100 m? is to have its outside surface painted. One liter
of paint covers 5 m>. How many liters of paint are needed? (Hint: Use

formula [1] in Example 3.10.)
Show by using a pocket calculator (or-a computer) that the equation

Y ‘____ 2.262K0'203L0'763 ( 1 02)!

has an approximate solution for K given by K = 0.018Y*9%61=3.759(0.907)".
Then determine K numerically when ¥ = 100, L = 6, and r = 10.

Simplify the following expressions:
a. (a!? _bl,’3) (az/s +alBplf3 -+-b7-/3)
bx'? — (x — a)bgx~'"

b (bx'/z)z x>0
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3.5 Exponential Functions

A quantity that increases (or decreases) by a fixed factor per unit of time is said
to increase (or decrease) exponentially. If this fixed factor is a, this leads to the
study of the exponential function f defined by

f(1) = Ad' [3.17]

where a and A are positive constants. Note that if f(z) = Aa’, then f(r + 1) =
Ad't! = Aa’ - a' = af (1), so the value of f at time ¢ + 1 is a times the value of
f attime r. If @ > 1, then f is increasing; if 0 < a < 1, then f is decreasing.
Because f(0) = Aa® = A, we can write f(1) = f(0)a’.

Exponential functions appear in many important economic, social, and physi-
cal models. For instance, economic growth, population growth, continuously accu-
mulated interest, radioactive decay, and decreasing illiteracy have all been described
by exponential functions. In addition, the exponential function is one of the most
important in statistics.

Example 3.12 (Population Growth)
Consider a growing population like that of Europe. In Example 2.13, we
constructed a linear function

P =641+ 641

where P denotes the population in millions, r = 0 corresponds to the year
1960 when the population was 641 million, and ¢ = 10 corresponds to the
year 1970 when the population estimate was 705 million. According to this
formula, the annual increase in population would be constant and equal to
6.4 million. This is a very unreasonable assumption. After all, populations
 tend to grow faster as they get bigger because there are more people to
have babies, and the death rate usually decreases or stays the same. In fact,
according to UN estimates, the European population was expected to grow
by approximately 0.72% annually during the period 1960 to 2000. With a
population of 641 million in 1960, the population in 1961 would then be

641-0.72 0.72
—— =61 |1+ — | = -1.0072
641 + 100 64 ( + 100) 641 - 1.007
which is approximately 645 million. Next year, in 1962, it would have
grown to
641-1.0072-0.72
641-1.0072 + 100 = 641-1.0072 - (1 +0.0072)

= 641 - 1.0072>

which is approximately 650 million. Note how the population figure grows
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by the factor 1.0072 each year. If the growth rate were to continue at 0.72%
annually, then r years after 1960 the population would be given by

P (1) = 641 -1.0072 [1]

Thus, P(r) is an exponential function of the form [3.17]. For the year 2000,
corresponding to r = 40, the formula yields the estimate P(40) =~ 854
million.

Many countries, particularly in Africa and Latin America, have recently had
far faster population growth than Europe. For instance, during the 1970s and 1980s,
the growth rate of Zimbabwe’s population was close to 3.5% annually. If we let
¢t = 0 correspond to the census year 1969 when the population was 5.1 million,
the population ¢ years after 1969 is given by

P(1) =5.1-1.035

If we calculate P(20), P(40), and P(60) using this formula, we get roughly 10,
20, and 40. Thus, the population of Zimbabwe roughly doubles after 20 years:
during the next 20 years, it doubles again, and so on. We say that the doubling
time of the population is approximately 20 years. Of course, extrapolating so far
into the future is quite dubious, because exponential growth of population cannot
go on forever. (If the growth rate continued at 3.5% annually, and the Zimbabwean
termtory did not expand, in the year 2697, each Zimbabwean would on average
have only 1 square meter of land. See Problem 7.)

Ifa>1and A > 0, the exponential function f(r) = Aa’ is increasing. Its
doubling time is the time it takes for it to double. Its value at r = 0 1s A, so the
doubling time #* is given by the equation f(z*) = Aa’ = 2A, or after cancelling A,
by a” = 2. Thus the doubling time of the exponential function f(¢) = Ad’ is the
power to which @ must be raised in order to get 2.2 (In Problem 8 you will be asked
to show that the doubling time is independent of which year you take as the base.)

Example 3.13
Use your calculator to find the doubling time of

(a) a population (like tha}t of Zimbabwe) increasing at 3.5% annually (thus
confirming the earlier calculations)

(b) the population of Kenya in the 1980s (which had the world’s highest
annual growth rate of 4.2%).

Solution

(a) The doubling time 7* is given by the equation 1.035" = 2. Using a
calculator shows that 1.035'> x 1.68, whereas 1.035% = 2.36. Thus,

2By using natural logarithms as explained in Section 8.2. we find that r* = In2/Ina.
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* must lie between 15 and 25. Because 1.035%° = 1.99, r* is close to
20. In fact, t* = 20.15.

(b) The doubling time z* is given by the equation 1.042"" = 2. Using a
calculator, we find that t* = 16.85. Thus, with a growth rate of 4.2%,
Kenya’s population would double in less than 17 years.

Example 3.14 (Compound Interest)
A savings account of $X that increases by p% interest each year will have
increased after ¢ years to

K (1 + p/100y (1]

(see Section A.l of .Appendix A). According to this formula. $1 (K = 1)

eamning interest at 8% per annum (p = 8) will have increased after ¢
years to

(1 + 8/100) = 1.08 (2]

Table 3.1 indicates how this dollar grows over time:

TABLE 3.1 How $7 of savings increases with time

t 1 2 5 10 20 30 50 100 200

(1.08)! 1.08 1.17 1.47 216 466 10.06 46.90 2,199.76 4,838,949.60

After 30 years, $1 of savings has increased to more than $10, and after
200 years, it has grown to more than $4.8 million! This growth is illustrated
in Fig. 3.11. Observe that the expression 1.08" defines an exponential func-
tion of the type [3.17] with a = 1.08. Even if a is only slightly larger than
1, f(z) will increase very quickly when ¢ is large.

Example 3.15 (Radioactive Decay)
Measurements indicate that radioactive materials decay by a fixed percentage
per unit of time. Plutonium 239, which is a waste product of certain nuclear
power plants and is used in the production of nuclear weapons, decays by 50%
every 24,400 years. We say, therefore, that the half-life of plutonium 239 is
24,400 years. If there are I units of plutonium 239 at time ¢ = O, then after
t years, there will be

)1/24.400

I=1I-(3 = Iy - 0.9999716°

units remaining. (Observe that this is consistent with /(24,400) = 11o.)
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Capital (in )

101

10 20 30 40 50

FIGURE 3.11 The growth of $1 of savings after t years when the interest rate is 8%
per year.

- Number of years

Chapter 8 discusses the exponential function in much greater detail. Observe
the fondamental difference between the two functions

f(x)=a" and g(x) =x°

The second of these two is the power function discussed in Section 3.4. For the
exponential function a*, it is the exponent that varies, while the base is constant.
For the power function x?, on the other hand, the exponent is constant, while the
base varies.

The most important properties of the exponential function are summed up by
the following:

The general exponential function with ‘base a > 0 is
f(x) = Aa*

where f(0) = A, and a is the factor by which f(x) changes when x increases
by 1.

Ifa=1+ p/100, where p >0 and A > 0, then f(x) will increase by
p% for each unit increase in x.

Ifa=1- p/100, where p > 0 and A > 0, then f(x) will decrease
by p% for each unit increase in x.
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Problems

1.

If the population of Europe grew at the rate of 0.72% annually, what would
be the doubling time?

. The population of Botswana was estimated to be 1.22 million in 1989, and

to be growing at the rate of 3.4% annually.
a. If 1 = 0 denotes 1989, find a formula for the population at date 7.
b. What is the doubling time?

A savings account with an initial deposit of $100 earns 12% interest per year.
a. What is the amount of savings after z years?
b. Make a table similar to Table 3.1. (Stop at 50 years.)

Suppose that you are promised $2 on the first day, $4 on the second day, $8

on the third day, $16 on the fourth day, and so on (so that every day you get

twice as much as the day before).

a. How much will you receive on the tenth day?

b. Find a function f(r) that indicates how much you will obtain on the
rth day.

c. Explain why £(20) is more than $1 million. (Hint: 2'0 is a little larger
than 10°.)

Fill in the following table and then make a rough sketch of the graphs of
y=2and y =27".

x -3 -2 -1 0 1 2 3

2X

2—X

Fill in the following table and then sketch the graph of y = 27,

X -2 —1 0 1 2

ox?

The area of Zimbabwe is approximately 3.91 - 10'! square meters. Referring
to the text following Example 3.12 and using a calculator, solve the equation
5.1-1.035 = 3.91- 10" for ¢, and interpret your answer. (Recall that t = 0
corresponds to 1969.)

With f(r) = Ad', if f(t +1*) = 2f(t), prove that o = 2. Explain
why this shows that the doubling time of the general exponential function is
independent of the initial time.
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9.

10.

11.

12.

13.
14.

(2.8) 3 ‘
1.6
(1.6) \4

In 1964 a five-year plan was introduced in Tanzania. One objective was

to double the real per capita income over the next 15 years. What is the

average annual rate of growth of real income per capita required to achieve

this objective?

Consider the function f defined for all x by f(x) =1—-27*.

a. Make a table of function values for x = 0, &1, £2, and 3. Then sketch
the graph of f.

b. What happens to f(x) as x becomes very large and very small?

Which of the following equations do not define exponential functions of x?

a, y=3" b.y=x‘/§ c.y=(x/§)"
d. y=x" e y= (2.7 f.y=1/2
Fill in the following table and then sketch the graph of y = x?2*
X -10 -5 -4 -3 -2 -1 0 1 2
‘ x22%

Find possible exponential functions for the graphs of Fig. 3.12.
The radioactive isotope iodine 131, which has a half-life of § days, is often

used to diagnose disease in the thyroid gland. If there are Iy units of the
material at time ¢ = 0, how much remains after + days?

¥ ¥

3

X

a<0.b>0
{a)

a>0b<0 a>0.b>0.b>=4ac
(b) ()

FIGURE 3.12

3.6 The General Concept of a Function

So far we have studied functions of one variable. These are functions whose
domain i1s a set of real numbers, and whose range is also a set of real num-

bers.

Yet a realistic description of many economic phenomena requires con-
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sidering a large number of variables simultaneously. For example, the demand
for a good like butter is a function of several vanables such as the price of
the good, the prices of complements and substitutes, consumers’ incomes, and
SO on.

Actually, we have already seen many special functions of several variables.
For instance, the formula V = mrh for the volume V of a cylinder with base
radius r and height / involves a function of two variables. (Of course. in this case
7 =~ 3.14159 is a mathematical constant.) A change in one of these variables will
not affect the value of the other vanable. For each pair of positive numbers (r, &),
there is a definite value for the volume V. To emphasize that V depends on the
values of both r and k., we write

-

V(r,h) = nr’h

For r =2 and h = 3, we obtain V(2.3) = 127, whereas r = 3 and h = 2 give
V(3,2) =18%. Also,r =1 and h = 1/m give V(1, 1/m) = 1. Note in partcular
that V (2, 3) # V(3, 2).

In some abstract economic models, it may be enough to know that there is
some functional relationship between variables, without specifying the dependence
more closely. For instance, suppose a market sells three commodities whose prices
per unit are respectively p, g, and r. Then economists generally assume that the
demand for one of the commodities by an individual with income m is given by
a function f(p,q, r, m) of four vaniables, without specifying the precise form of
that function.

An extensive discussion of functions of several variables begins in Chap-
ter 15. This section introduces an even more general type of function. In fact,
general functions of the kind presented here are of fundamental importance in prac-
tically every area of pure and applied mathematics, including mathematics applied
to economics.

Example 3.16
The following examples indicate how very wide is the concept of a func-

ton.

(a) The function that assigns to each triangle in a plane the area of that
triangle (measured, say, in cm?).

(b) The function that determines the social security number, or other iden-
tification number, of each taxpayer.

(¢) The function that for each point P in a plane determines the point lying
3 units above P.

(d) Let A be the set of possible actions that a person can choose in a certain
situation. Suppose that every action a € A produces a certain result
(say, a certain profit ¢(a)). In this way, we have defined a function ¢
with domain A.
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Here 1s a general definition:

A function from A to B is a rule that assigns to each element of

the set A one and only one element of the set B. [3.18]

If we denote the funcuon by f, the set A is called the domain of f, and B is
called the target. The two sets A and B need not consist of numbers, but can be
sets of quite arbitrary elements.

The definition of a function requires three objects to be specified:

1. A domain A
2. Atarget B
3. A rule that assigns a unique element in B to each element in A.

Nevertheless, in many cases, we refrain from specifying the sets A and/or B ex-
plicitly when it obvious from the context what these sets are.

An important requirement in the definition of a function is that to each el-
ement in domain A, there corresponds a unique element in target B. While it
is meaningful to talk about the function that assigns the natural mother to ev-
ery child, the rule that assigns the aunt to any child does not, in general, de-
fine a function, because many children have several aunts. Explain why the
following rule, as opposed to the one in Example 3.16(c), does not define a
functon: “to a point P in a horizontal plane, assign a point that lies 3 units
from P.”

If f is a function with domain A and target B, we often say that f is
a function from A to B, and write f : A — B. The functional relation-
ship is often represented as in Fig. 3.13. Other words that are sometimes used
instead of “function” include transformation and map or mapping. The partic-
ular value f(x) is often called the image of ‘the element x by the function f.
The set of elements in B that are images of at lest one element in A is called

FIGURE 3.13 A function from A to B.
A B

f@x)
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the range of the function. Thus, the range is a subset of the target. If we de-
note the range of f by Ry, then Ry = {f(x) : x € A}. This is also written
as f(A). The range of the function in Example 3.16(a) is the set of all posi-
tive numbers. Explain why the range of the function in (c) must be the entire
plane.

The definition of a function requires that only one element in B be assigned
to each element in A. However, different elements in A might be mapped to the
same element in B. In Example 3.16(a), for instance, many different triangles have
the same area. If each element of B is the image of at most one element in A,
function f is called one-to-one. Otherwise, if one or more elements of B are the
images of more than one element in A, the function is many-to-one.

The social security.function in Example 3.16(b) is intended to be one-to-one.
because two different taxpayers should always have different numbers. (In very
rare instances, errors cause this function to be many-to-one. These always create a
great deal of confusion when they are noticed!) Can you explain why the function
defined in Example 3.16(c) is also one-to-one. whereas the function that assigns to
each child his or her mother is not?

Suppose f is a one-to-one function from a set A to a set B, and assume that
the range of f is all of B. Thus:

1. f maps each element of A into an element of B (so f is a function).

2. Two different elements of A are always mapped into different elements of B
(so f is one-to-one).

3. For each element v in B, there 1s an element « in A such that f(u) = v (so
the range of f is the whole of B).

We can then define a function g from B to A by the following obvious rule:
Assign to each element v of B the element u = g(v) of A that f maps to v—
that is, the u satisfying v = f(u). Because of rule 2, there can be only one
u in A such that v = f(u), so g is a function. Its domain is B and its target
and range are both equal to A. The function g is called the inverse function
of f. For instance, the inverse of the social security function mentioned earlier
is the function that, to each social security number, assigns the person carrying
that number. Section 7.6 provides more detail about inverse functions and their
properties.

Problems

1. Decide which of the following rules defines a function:
a. The rule that assigns to each person in a classroom his or her height.
b. The rule that assigns to a mother her youngest child.
¢. The rule that assigns the circumference of a rectangle to its area.
d. The rule that assigns the surface area of a spherical ball to its volume.
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e. The rule that assigns the pair of numbers (x+3, y) to the pair of numbers
(x, ¥).

2. Decide which of the functions defined in Problem 1 is one-to-one, and which
then have an inverse. Determine the inverse when it exists.

3. Each person has red blood cells that belong to one and only one of four blood
groups denoted A, B, AB, and O. Consider the function that assigns each
person in a team to his or her blood group. Can this function be one-to-one
if the team consists of at least five persons?

AR




Single-Variable
Differentiation

To think of it [differential calculus] merely as a more
advanced technique is to miss its real content. In it,
mathematics becomes a dynamic mode of thought,
and that is a major mental step in the ascent of man.
—J. Bronowski (1973)

An important topic in scientific disciplines including economics is the study of
how quickly quantities change over time. In order to compute the future position
of a planet, to predict the growth in population of a biological species, or to
estimate the future demand for a commodity, we need information about rates of
change.

The mathematical concept used to describe the rate of change of a function
is the derivative, which is the central concept in mathematical analysis. This chap-
ter defines the derivative of a function and presents some of the simpler rules for
calculating it. The next chapter develops some further rules allowing derivatives
of quite complicated functions to be computed.

Isaac Newton (1642-1727) and Gottfried Leibniz (1646-1716) discovered
most of these general rules independently of each other. This initiated the devel-
opment of differential and integral calculus.

4.1 Slopes of Curves

Even though in economics we are usually interested in the derivative as a rate of
change, we begin this chapter with a geometrical motivation for the concept.

105
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¥
f(a)+2I . L
f(a)iT-----J%ri/_\\‘ 3 =F@
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[

FIGURE 4.1 f'(a) ~ 1/2.

When we study the graph of a function, we would like to have a precise
measure of the steepness of a graph at a point. We know that for the line y = ax+b,
the number a denotes its slope. If a is large and positive, then the line rises
steeply from left to right; if a is large and negative, the line falls steeply. But
for an arbitrary function f, what is the steepness of its graph? A natural answer
is to define the steepness of a curve at a particular point as the slope of the
tangent to the curve at that point—that is, as the slope of the straight line that
just touches the curve at that point. For the curve in Fig. 4.1 the steepness at
point P is therefore 1/2, because the tangent passes through the pair of points
(a, f(a)) and (a +4, f(a) +2), for instance. In Fig. 4.1, point P has coordinates
(a, f (a)). The slope of the tangent to the graph at P is called the derivative of f

at point a and we denote this number by f'(a) (read as “f prime a”). In general.
we have

f'(a) = the slope of the tangent to the curve y = f(x) at the point (a, f(a@) [4.1]

Thus, in Fig. 4.1, we have f'(a) =[f(a) +2— f(@)})/(a+4—a)=2/4=1/2.

Example 4.1

Use definition [4.1] to determine f'(1), f'(4), and f'(7) for the function
whose graph is shown in Fig. 4.2.

Solution At P = (1,2), the tangent goes through (0, 1), and so has
slope 1. At Q = (4, 3) the tangent is horizontal, and so has slope 0. At
R = (7, 2%), the tangent goes through (8. 2). and so has slope —%. Therefore.
we obtain: f'(1) =1, f'(4) =0, and f'(7) = —-1/2.
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4.2 The Slope of the Tangent and the Derivative

The previous section gave a rather vague definition of the tangent to a curve at a
point, because we said that it is a straight line that just touches the curve at that
point. We now give a more formal definition of the same concept.

The geometrical idea behind the definition is easy to understand. Consider
a point P on a curve in the xy-plane (see Fig. 4.3). Take another point Q on
the curve. The entire straight line through P and Q is called a secant (from a
Latin word meaning “cutting”). If we keep P fixed, but let QO move along the
curve toward P, then the secant will rotate around P, as indicated in Fig. 4.4.
The limiting straight line PT toward which the secant tends is called the tangent
(line) to the curve at P. Suppose that P is a point on the graph of the function f.
We shall see how the preceding considerations enable us to find the slope of the
tangent at P. This is shown in Fig. 4.5.

Point P has the coordinates (a, f(a)). Point Q lies close to P and is also
on the graph of f. Suppose that the x-coordinate of Q is a + h, where A is a
small number # 0. Then the x-coordinate of Q is not a (because Q # P), but a

FIGURE 4.3 FIGURE 4.4
> T Y T

a b a
;
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Q=(a+h fla+h))

f
h) = f(a)

. é a%h
FIGURE 4.5

number close to a. Because Q lies on the graph of f, the y-coordinate of Q 1s
equal to f(a + h). Hence, the coordinates of the points are P = (a, f(a)) and Q
= (a+h, f(a+ h)). The slope mpg of the secant PQ is

h) —
——— fla+ Z f(a) [4.2]

In mathematics, this fraction is often called a Newton (or differential) quotient
of f. Note that when h = 0, the fraction in [4.2] becomes 0/0 and so is undefined.
But choosing 2 = 0 corresponds to letting O = P. When Q moves toward P (Q
tends to P) along the graph of f, the x-coordinate of Q. which is a + h, must tend
t0 a, and so h tends to 0. Simultaneously, the secant P Q tends to the tangent to
the graph at P. This suggests that we ought to define the slope of the tangent at P
as the number that mpp in [4.2] approaches as A tends to 0. In [4.1], we called
this value the slope f'(a). So we propose the following definition of f'(a):

,,~_ [thelimitas h| f(a+h)— fla)
f(a)_{tends toOof} h

In mathematics, it is common to use the abbreviated notation limy,_.o for “the limit

as h tends to zero” of an expression involving h. We therefore have the following
definition:

The derivative f'(a) of the function f at point a of its domain is given by
the formula

S 1 f@+h)- f(a)
f'(@) = lim - [4.3)
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As in [4.1], the number f'(a) gives the slope of the tangent to the curve y = f(x)
at the point (a, f(a)). The equation for a straight line passing through (x;, y;)

and having a slope b is given by y — y; = b(x — x;). Hence, we obtain:

The equation for the tangent to the graph of y = f(x) at the point (a. f(a))
1s

y— f@) = f'(a)(x —a)

[4.4]

So far the concept of a limit in the definition of f’(a) is not quite clear.
Section 6.7 gives a precise definition. Because it is relatively complicated, we rely

on intuition for the time being. Consider a simple example.

Example 4.2

Use [4.3] to compute f'(a) when f(x) = x>. Find in particular f'(1/2),
f'(0), and f'(—1). Give geometric interpretations, and find the equation for
the tangent at the point (1/2, 1/4).

Solution  For f(x) = x*, we have f(a+h) = (a+h)*> = a*>+2ah+h?,
and so f(a +h) — f(a) = (a* +2ah + h?) — a* = 2ah + h*. Hence, for all
h # 0, we obtain

fla+h)— fl@) 2ah+h> _hQa+h) _
h - h - h -

2a +h m

because we can cancel # whenever 7 % 0. But as 4 tends to 0. so 2a + &
obviously tends to 2a. Thus, we can write

fla+h)— f(a)
h

f'(@) = lim = lim(2a + k) = 2a 2]

This shows that when f(x) = x2, then f'(a) = 2a. For a = 1/2, we obtain
f'(1/2) =2-1/2 = 1. Similarly, f'(0) =2-0=0and f'(-1)=2-(-1)
= -2

In Fig. 4.6. we provide the geometric interpretation of [1]. In Fig. 4.7,
we have drawn the tangents to the curve y = x> corresponding to a = 1/2
and a = —1. Ata = 1/2, we have f(a) = (1/2)> = 1/4 and f'{1/2) = 1.
According to [4.4). the equation of the tangent is y — 1/4 = 1-{x — 1/2)
or y = x — 1/4. (Show that the other tangent drawn in Fig. 4.7 has the
equation y = —2x — 1.) Note that the formula f'(a) = 2a shows that
f'(a) < 0 when a < 0, and f’(a) > 0 when a > 0. Does this agree with
the graph? '
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If f is a relatively simple function, we can find f'(a) as follows:

Recipe for computing f'(a):

1. Add h to a (h # 0) and compute f(a + h).
2. Compute the corresponding change in the function value:

fla+h) - fla.
3. For h # 0, form the Newton quotient

fla+h)— f(a)
) [4.5]

4. Simplify the fraction in step 3 as much as possible. Wherever
possible, cancel 4 from both numerator and denominator.

5. Then f’(a) is the number that

fla+h) - fla)
h

approaches as h tends to 0. ¢

Let us apply this recipe to another example.

Example 4.3
Compute f'(a) when f(x) = x3.

Solution We follow the recipe in [4.5].

L fla+h)=(a+h) =a’+3a°h+3ak* + 1’
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2. f(a+h) - f(a) = (@° + 3a*h + 3ah* + %) — a3
= 3a’h + 3ah* + K
fla+h)=f@) 3a*h+3ah’+ 1
) h - h
5. As h tends to 0, so 3ak + h? will also tend to 0; hence, the entire
expression 3a> + 3ak + h* tends to 3a®. Therefore, f'(a) = 3a>.

34 = 3a® + 3ah + h*

We have thus shown that the graph of the function f(x) = x> at the point
x = a has a tangent with slope 3a>. Note that f'(a) = 3a> > 0 when a # 0,
and f’(0) = 0. The tangent points upwards to the right for all a # 0, and is
horizontal at the origin. You should draw the graph of f(x) = x> to confirm
this behavior.

It is easy to use the recipe in [4.5] on simple functions. However, the
recipe becomes difficult or even impossible if we try to use it on slightly more
complicated functions such as f(x) = +/3x2 + x + 1. The next chapter develops
rules for computing the derivative of quite complicated functions, without the need
to use [4.5]. Before presenting such rules, however, we must examine the concept
of a limit a little more carefully. This is done in Section 4.4.

On Notation

We showed in Example 4.2 that, if f(x) = x2, then for every a, we have
f'(@) = 2a. We frequently use x as the symbol for a quantity that can take
any value, so we write f'(x) = 2x. If we use this new notation for the function in
Example 4.3, we can briefly formulate our main results from the two last examples
as follows:

foy=x = fx)=2 (4.6]

f@)=x* = f(x) =3x? (4.7]

Equation [4.6] is a special case of the following rule, which you are asked to show
in Problem 6.

flx)= ax’+bx+c = f(x) =2ax+b (a, b. and ¢ are constants) [4.8]
Fora =1, b = ¢ = 0, this reduces to [4.6]. Here are some special cases of [4.8]:

f)=3x*+2u+5 = f(x)=3-2x+2=6x+2

fex)==16+ 3x — &x?

x? = fx)=—{x+3

[1S el

f)=@x—pl=x*-2px+p> = f(x)=2x—2p  (p constant)
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If we use y to denote the value of the function y = f(x), we often denote the
derivative by y'. We can then write y = x> = y’ = 3x°.

Several other forms of notation for the derivative are often used in mathe-
matics and its applications. One of them, originally due to Leibniz, is called the
differential notation. If y = f(x), we write

fil =dy/dx or 4f &)

=df(x)/dx or :—xf(x) in place of f'(x)

For instance, if y = x2, then

dy
dx

da ,
2x = —(x°) =2x
dx(x)

At this point, we will only think of the symbol dy/dx as meaning f'(x) and will
not consider it as dy divided by dx. Later chapters discuss this notation in greater
detail. In fact, d/dx really denotes an instruction to differentiate what follows
with respect to x. Differentiation with respect to a variable occurs so often in
mathematics that it has become standard to use w.r.t. as an abbreviation for “with
respect to.”

When we use letters other than f, x, and y, the notation for the derivative
changes accordingly. For example: P(1) = 1> = P'(t) =21; Y = K’ = YV =
3K% and A =r’=dA/dr =2r.

Problems

1. Let f(x) = 4x>. Show that f(5+ h) — f(5) = 40h + 4h>. Hence,

fFG+h)— 15

= 40 + 4h
h

Using this result, find f'(5). Compare the answer with [4.8].
2. Let f(x) =3x*>+2x — 1. Show that for h 5 0,

flx+h)— fx)
h

=6x +2+3h

Use this result to find f'(x). Find in particular f’'(0), f'(-2), and f'(3).
and the equation for the tangent to the graph at the point (0, —1).

3. Figure 4.8 shows the graph of a function f. Determine whether the following
derivatives are > 0, =0, or < 0: f'(a), f'(b), f'(c), and f'(d).
4. Show that

1 1
fW=-=f)=-=
X x=
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FIGURE 4.8

Hint: Show that [f(x + k) — f(x)]/h = —1/x(x + h). (See Problem 14,
Section 2.5.)

. Find the slope for the tangent to the graph of the following functions at the

specified points:

5
a.
C.
e.
6. a.

-~ b.

0

f(x) =3x+2 at 0,2) b. f(x)=x>—-1 at (1,0)

f(x) =%+2 at (3.3) d. f(x) =x>—2x at (0,0)
f(x)=x+% at (=1, —2) f. f(x)=x*at(1,1)

If f(x) = ax*+bx+c, show that [ f(x +h) — f(x)1/h = 2ax + b+ ah.

Use this to show that f/'(x) = 2ax + b.

For what value of x is f'(x) = 0? Explain this result in the light of [3.4]
in Section 3.1.

The demand function for a commodity with price P is given by the
formula D(P) =a — bP. Find dD(P)/d P.

The cost of producing x units of a commodity is given by the formula
C(x) = p + gx*. Find C'(x).

Show that (vx +& —/x)(v/x+h+/x)=h.

If f(x)=+/x,show that [f(x +h)— f(X)]/h=1/(v/x+h+/x).

Use the result in part (b) to show that for x > 0,

1

fO=vx= fx)=5

Vx
Show that the result could also be written as
d 1
Bt V- R Ve
dx 2

. If f(x) =ax® +bx?*+ cx +d, show that

[f(x + h) = F(x)]/h = 3ax*> + 2bx + ¢ + 3axh + ah® + bh

and hence that f'(x) = 3ax? + 2bx +c.
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b. Show that the result in part (a) generalizes the results in Example 4.3
and in Problem 6.

Harder Problems
10. a. If f(x) = x'7, show that

f+hm—f&x) _ 1
h T (x+h)2P + (x+h)1B - x1B 4 x25

by using the result in Problem 11(a), Section 3.14, with a = x + # and
b=x.
b. Use the result in part (a) to show that

d 1/3 _]. ~2/3
ZE ) =3%

4.3 Rates of Change and Their Economic
Significance

We have so far interpreted the derivative of a function as the slope of the tangent
to its graph at a particular point. In economics, other interpretations are more
important. Let us first see how the derivative in general can be interpreted as a
rate of change.

Suppose that a quantity y is related to a quantity x by y = f(x). If x has a
given value a, then the value of the function is given by f(a). Suppose that a is
changed to a + h. The new value of y is f(a + h), and the change in the value of
the function when x is changed from a to a + k is f(a + h) — f(a). The change
in y per unit change in x has a particular name, the average rate of change of f
over the interval from a to a + h. It is equal to

fla+h) - fa)
h

[4.9]

Note that this fraction is precisély the Newton quotient of f. Taking the limit as
h tends to O gives the derivative of f at a. Therefore:

The instantaneous rate of change of f at a is f'(a) [4.10]

This very important concept appears whenever we study quantities that change.
When time is the independent variable, we often use the “dot notation” for differ-
entiation with respect to time. For example, if x(z) = 1>, we write x(t) = 2t.
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Sometimes we are interested in studying the proportion f’(a)/f(a). We
introduce a name for this:

The proportional rate of change of f ata is f'(a)/f(a) [4.11]

In economics, proportional rates of change are seen very often. Sometimes they are
called relative rates of change. They are usually quoted in percentages—or when
time is the independent variable, as percentages per year, or per annum. Often we
will describe a variable as increasing at, say, 3% a year if there is a proportional
rate of change of 3/100 each year.

Example 4.4
Let N(z) be the number of individuals in a population (of humans, animals,
or plants) at time z. If ¢ increases to ¢ + h, then the change in population
is equal to N(z + h) — N(r) individuals. Hence, [N(t +~ h) — N(2)]/h is
the average rate of change. Taking the limit as & tends to 0 gives N(1) =
dN/dt for the rate of change of population at time t. (At the end of this
section, we will discuss the problem that arises when N (¢) takes only integer

values.)
Example 6 of Section 2.5 was based on the case when P denotes
the number (in millions) of inhabitants of Europe, which was given by the

formula

P=641+641 [1]

Here ¢ is the number of years, as computed from 1960. In this case, the rate
of change is the same for all z:

dP .
T 6.4 million per year

Economic Interpretations
Example 4.5
Consider a firm producing some commodity in a given period. Let
C(x) = cost of producing x units
R(x) = revenue from selling x units
7 (x) = R(x) — C(x) = profit from producing (and selling) x units
We call C’(x) the marginal cost (at x), R'(x) the marginal revenue, and

7’(x) the marginal profit. Economists often use the word marginal in this
way in order to signify a derivative.
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Other examples of the derivative in economics include the following.
The marginal propensity to consume is the derivative of the consumption
function with respect to income; similarly, the marginal product (or pro-
ductivity) of labor is the derivative of the production function with respect
to labor input.

According to the definition, marginal cost is equal to

C'(x) =,}i—%C(x+h})l— C(x)

(marginal cost) [4.12]

Usually, the firm will produce many units of x. Then h = 1 can be considered
a number close to 0, and we obtain the approximation

_Cx+1)-C)

C'(x) 1

=Clx+1)-Cx)

Marginal cost is then approximately equal to the incremental cost
C(x + 1) — C(x), that is, the additional cost of producing one more unit
of x. In elementary economics courses, marginal cost is often defined as
the difference C(x + 1) — C(x) because more appropriate concepts from
differential calculus cannot be used.

Example 4.6
Let K (z) be the capital stock in an economy at time r. The rate of change

K (t) of K(2) is called the rate of investment at time z. It is usually denoted
by I(1), so

K@) =1() [4.13]

Differentiability and Empirical Functions

The very definition of derivative assumes that arbitrary small increments in the
independent varnable are possible. In practical problems, however, it is usually
impossible to implement, or even measure, arbitrary small changes in the van-
able. For example, economic quantities that vary with time, such as the price of a
commodity or the national income of a country, are usually measured at intervals
of days, weeks, or years. Further, the cost functions of the type we discussed
in Example 4.5 are often properly defined only for integer values of x. In all
these cases, the variables only take discrete values. The graphs of such func-
tions, therefore, will only consist of discrete points. For functions of this type
in which time and numbers both change discretely, the concept of the deriva-
tive is not defined. To remedy this, the actual function is usually replaced by
a differentiable function that is a “good approximation” to the original function.
As an illustration, Fig. 4.9 graphs observations of the number of registered un-
employed in Norway for each month of the years 1928-1929. In Fig. 4.10
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FIGURE 4.9 Unemployment in Norway (1928-1929).
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FIGURE 4.10 A smooth curve approximating the points in Fig. 4.9.

we show the graph of a differentiable function that is an approximation to the
points plotted in Fig. 4.9. (The graph in Fig. 4.10 is drawn using a computer
program.)

Problems

1. Let C(x) = x> + 3x + 100 be the cost function of a firm. Show that the
average rate of change when x is changed from 100 to 100 + 4 is

C(100 + h) — C(100)
h

=203+h (h#0)

What is the marginal cost C'(100)? Use [4.8] to find C’(x) and in particular
C’(100).

2. If the cost function of a firm is C(x) = kx + I, give economic interpretations
of the parameters k and /.

3. If the total savings of a country is a function S(Y) of the national product Y,
then S'(Y) is called the marginal propensity to save (MPS). Find the MPS
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for the following functions:
a. S(Y)=a+bY b. S(Y) = 100+ 10Y + 2Y?

4. If the tax a family pays is a function of its income y given by T (y), then
dT (y)/dy is called the marginal tax rate. Characterize the following tax
function by determining its marginal rate:

T(y)=ty (¢ 1s a constant number € (0. 1))

5. Refer to the definitions given in Example 4.5. Compute the marginal revenue,
marginal cost, and marginal profit in the following two cases (where p, a, b,
ay, by, and c; are all positive constants), and in each case find an expression
for the value of x at which the marginal profit is equal to O:

a. R(x), Cx) =aix*+bix +¢;
b. R(x) = ax? — bx?, Cx)=ax+b;

4.4 A Dash of Limits

The previous section defined the derivative of a function based on the concept
of a limit. The same concept is important for other reasons as well, so now we
should take a closer look. Here we give a preliminary definition and formulate
some important rules for limits. In Chapter 6, we discuss the limit concept more
closely, as well as the related concept of continuity.

As an example, consider the formula

x2—16
4./x — 8

Note that if x = 4, then the fraction collapses to the absurd expression “0/0.” Thus,
the function F is not defined for x = 4, but one can still ask what happens to F(x)
when x is close to 4. Using a calculator (except when x = 4), we find the values
shown in Table 4.1.

F(x) =

TABLE 4.1 Values of F(x) = (x2 — 16)/(4/X — 8) when x is close to 4

F(x)

3.9 3.99 3.998 3.9998 4.0 4.0001 4.001 4.01 41
7.850 7.985 7.998 8.000 * 8.000 8.002 8.015 8.150

*Not defined.

It seems obvious from the table that as x gets closer and closer to 4, so the
fraction F(x) gets closer and closer to 8. It therefore seems reasonable to say that
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F(x) tends to 8 in the limit as x tends to 4. We write

x> —16 s o x> —16
r ——————

4./x — 8

In Fig. 4.11 we have drawn a portion of the graph of F. The function F is defined

for all x > 0, except at x = 4. Also lim,—4 F(x) = 8. (A small circle is used to
indicate that the corresponding point (4, 8) is not in the graph of F.)

Iim —- 8 as x—= 4

x—,44\/_—8=

A Preliminary Definition of the Limit Concept

Suppose, in general, that a function f is defined for all x near a, but not necessarily
at x = a. Then we say that f(x) has the number A as its limit as x tends to a, if
f(x) tends to A as x tends to (but is not equal to) a. We write

lim f(x) = A or fx)—=> A a x—a
X—a

It is possible, however, that the value of f(x) does not tend to any fixed number
as x tends to a. Then we say that lim,_, f(x) does not exist, or that f(x) does
not have a limit as x tends to a.

Example 4.7
Use a calculator to examine the following limits:

(@) lim,—3(3x —2)

vh+1-1
(b) limy—.o ————
h
. 1
(¢) Iim,—._»

(x +2)2
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Solution

(a) We obtain Table 4.2 when x is a number close to 3. As x — 3, it
seems that 3x — 2 tends to 7, so that lim,_.3 (3x —2) = 7. (If x is
precisely equal to 3, then 3x — 2 is equal to 7. But the definition of
lim,_3 (3x — 2) ignores the value of 3x — 2 at x = 3.)

TABLE 4.2 Values of 3x — 2 when x is close to 3

x 2.9 2.95 2.99 2.999 3.001 3.01 3.05 3.1
3x-2 6.7 6.85 6.97 6.997 7.003 7.03 7.15 7.3

(b) Some values of & close to O give the values in Table 4.3. This suggests

that
JAiFI-1
im X217 o5
h—0 h

TABLE 4.3 \Valves of (Vh+1—1)/h when h is close to 0

h -0.5  -0.2 -0.1 -0.01 0.0 001 0.1 02 05
vhel=1 0586 0528 0513 0501 " 0.499 0488 0477 0.449

*Not defined.

(¢) We choose x values close to —2 and obtain the values in Table 4.4.
As x gets closer and closer to —2, we see that the value of the fraction
becomes larger and larger. By extending the values in the table, it is
clear, for example, that for x = —2.0001 and x = —1.9999, the value
of the fraction is 100 million. Hence, we conclude that 1/(x +2)? does
not tend to any limit as x tends to —2. Because the fraction becomes
larger and larger as x tends to —2, we say that it tends to infinity, and
write lim,_. _» 1/(x +2)* = cc.

TABLE 4.4 Values of 1/(x + 2)2 when x is close to ~2

X -1.8 -1.9 -1.99 —-1.999 -2.0 -2.001 —-2.01 -2.1 =2.2
1 25 100 10,000 1,000,000 * 1,000,000 10,000 100 25
(x+2)2

*Not defined.

The limits found previously were all based on shaky numerical foundations.
For instance, in Example 4.7(b), can we really be certain that our guess is correct?
Could it be that if we chose ~ values even closer to O, the fraction would tend
to a limit other than 0.5, or maybe not have any limit at all? Further numerical
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computations will support our belief that the initial guess is correct, but we can
never make a table that has all the values of h close to 0, so numerical computation
alone can never establish with certainty what the limit is. This illustrates the need
to have a rigorous procedure for finding limits. First of all, however, a precise
mathematical definition of the limit concept is required. One such definition is
given in Section 6.7. Meanwhile, here is a preliminary definition.

Writing lim,_., f(x) = A means that we can make f(x) as close to A as

we want for all x sufficiently close to (but not equal to) a. [4.14])

We emphasize:

1. The number lim,_,, f(x) depends on the value of f(x) for x values close to
a, but not on how f behaves at the precise value of x = a. When finding
lim,..., f(x), we are simply not interested in the value f(a), or even in
whether f is actually defined at a.

2. When we compute lim,_., f(x), we must take into consideration x values
on both sides of a.-

The next example illustrates the limit concept geometrically.

Example 4.8
Figure 4.12 shows the graph of a particular function f, defined in the closed
interval [0, 9]. Determine lim,—, f(x) for a = 2, 3, 4. and 6. (The point at
the end of each arrow is not part of the graph, but is the limit of points on
the graph.)

Solution We see that lim,» f(x) =3. Note that f(2) = 2. Also
lim,,5 f(x) =1. Here f(3) = 1. The limit lim,_.4 f(x) does not exist.

FIGURE 4.12
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For x close to 4 and x < 4, f(x) tends to 1/2, and for x close to 4 and
x > 4, f(x) tends to 3. Thus, f(x) does not tend to one specific number
as x tends to 4. Finally, lim,_.¢ f (x) does not exist. As x tends to 6, f(x)
will decrease without limit. We write lim,_.¢ f(x) = —oc.

Rules for Limits

Of course, one cannot really determine limits by means of numerical computations.
Instead, we use some simple rules for finding limits whose validity can be shown
once we have a precise definition of the limit concept. These rules are very
straightforward and we have even used a few of them already in the previous

section. Let us briefly discuss some of them.

Suppose that f and g are defined as functions in the neighborhood of a (but

not necessarily at a). Then we have the following rules:

Rules for Limits

If lim f(x) = A and lim g(x) = B, then
iLlim,[f(x)+gx)]=A+B
il. limyo, [f(x)—g(x)]=A—-B
iii. lim,,[f(x)g(x)]=A-B
iv. im,,,[f(x)/g(x)] = A/B (provided B # 0)
v. lime_ o [f(x)]P/4 = AP/4 (if AP/9 is defined)

[4.15]

It is easy to give intuitive explanations for these rules. If lim,_., f(x) = A and
lim,—,., g(x) = B, then we know that, when x is close to a, then f(x) is close to
A and g(x) is close to B. So presumably the sum f(x) + g(x) is close to A + B,
the product f(x)g(x) is close to A - B, and so on.

The rules in [4.15] can be used repeatedly to obtain new extended rules
such as

lim [fi(x) + o) +--- + f(0)] = lim fi(x) + lim fo(x) +---

+ lim f,(x) [4.16)

lim [f1(x) - fo(x) -~ fn()] = lim fi(x) - lim fo(x) -~ im f, (x) [4.17]

In words, we can say that the limit of a sum is the sum of the limits, and the limit
of a product is equal to the product of the limits.
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Suppose the function f(x) is equal to the same constant value ¢ for every
x. Then

limec=c¢ (at every point a) [4.18]

X=—>a
It is also evident that if f(x) = x, then
lim f(x)=limx =a (at every point a) [4.19]
X—a X—+a
Combining these two simple limits with the general rules [4.15]-[4.17] allows easy
computation of the limits for certain combinations of functions.
Example 4.9

Compute the following limits:

(@) lim,— > (x*> + 5x)
) 2x37% — Jx
(b) lim,_.4 —xz——i

(c) Iim,_, Ax"
Solution Using the rules in [4.15]-[4.17], we get

(a) 1im7(x2+5x)= lim (x-x)+ lim (5-x)

X2 X

= ( lim x) (xl_i.n_lzx) + (xlin_125)( lim x)

X=———z X=——2i

= (=2)(-2)+5-(-2) = -6
2xs/2_\/)-c_2limx3/2—1im\/§ 2.7 T

x—4 x—4

lim = 14
(®) —4 x2_-15 lirrlxz—IS 4* - 15
X =
(©) lim Ax” = (lim A)(lim ") = A~ (limx)" = 4 -4

It was easy to find the limits in this example by using rules [4.15]—[4.19].
The example that started this section and Example 4.7(b) both present more diffi-
culties. They involve a fraction whose numerator and denominator both tend to O.
Rule [4.15](iv) cannot be applied directly in such cases. However, a simple obser-
vaton can still help us find the limit (provided that it exists). Because lim,_., f(x)
can only depend on the values of f when x is close to, but not equal to a, we
have the following:

If the functions f and g are equal for all x close to a (but not necessarily at
x = a), then lim,_., f(x) = lim,—,, g(x) whenever either limit exists.

[4.20]

Here are some examples of how this rule works.
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Example 4.10
Compute the following limits:

3x2+3x—18
x—2
VEi+1-1
h
x2-16

r g

(a) limx—>2

(b) lim,_o

(¢) limy_4

Solution

(a) We see that both numerator and denominator tend to O when x tends
to 2. Because the numerator 3x2 + 3x — 18 is equal to 0 for x = 2, it
has x — 2 as a factor. In fact, 3x>+3x — 18 = 3(x —2)(x + 3). Hence.

3x?+3x — 18 3(x —=2)(x +3)

Fx) = x—2 x—2

For x # 2, we can cancel x — 2 from both numerator and denominator
to obtain 3(x + 3). So the functions f(x) and g(x) = 3(x + 3) are
equal for all x # 2. According to [4.20], this implies that

3x2+3x—18
lim = 2% = im3(+3) =32 +3) =15

x—=2 x-2

(b) Again both numerator and denominator tend to 0 as & tends to 0. Here
we must use a little trick. We multiply both numerator and denominator
by v+ 141 to get

VEET-1 (Wh+1-1)(Wh+1+1)
R h(VR+1+1)
_h+1-1 1
Ch(WEFI+1)  VR+1+1

where the common factor # has been canceled. For all # # 0 (and
h > —1), the given function is equal to 1/(+~/h + 1 + 1), which tends
to 1/2 as h tends to 0. We conclude that the limit of our function 1s
equal to 1/2, which confirms the result in Example 4.7(b). _

(c) We must try to simplify the fraction because x = 4 gives 0/0. Again
we can use a trick to factorize the fraction as follows:

216 _GHc-9 _G+(FH2) (VE-2)
4/x-8 4(ai-2) Hvx-2)
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Here we have used the factorization x—4 = (/x + 2) (v/x — 2), which
is correct for x > 0. In the last fraction of [*], we can cancel ./x — 2
when /x — 2 # O—that is, when x # 4. Using [4.20] again gives

x3~16 1 1
im ———— = lim - 4 = - =
134\/._8 lim =(x + )X +2) 4(4+4)(JZ+2) 8
This confirms the claim we made in the introduction to this section. Sec-
tion 7.5 treats more systematically limits of fractions of the type studied in

Example 4.10.

Problems

1. Determine the following by using the rules for limits:

. 342x ;
a. lim (3 +2x%) b. lim c. lim (2x* + 5)°
x= X—==1 X — X==
G+ =y 1/z+2
d. lim (57 + 2 - -é-t3) . e lim G+ -y f. lim s
1—8 y—0 y -+ 1 T2 z
2. Consider the following limit:
. o x2+7x -8
lim ——
x—=1 X - 1

a. Examine the limit numerically by making a table of values of the fraction
when x is close to 1.
b. Find the limit by using [4.20].

3. For the function 2 whose graph is given in Fig. 4.13, examine lim_,, A(?)
fora=-1,0, 2, 3, and 4.
4. Compute the following limits:

. 2 .
a. }l_rg(x +3x - 5) . y1_1’n_13 m

FIGURE 4.13
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Cox¥=2x-1 X +3x7 -2
¢. lim 5—,,——' d. lim
x=0 x° —x*—1 x—0 X
. (x+hP—x’ . (x+h)P=x3
X . —_— (h
“ T Ty R0
5. Compute the following limits:
. 1/3-=2/3h Coxr-1 .4 321 —-96
MR MiTe “WVE=2 =3
_ Vh¥3-43 . -4 L 2-J%
d. lim e. lim —— f. lim
h=0 h —=2 124+ 10r + 16 x—=4 4 —x
6. If f(x) = x> + 2x, compute the following limits:
_ — f(1
a. Lim fx) = f(1) b. Lim fx)—f(1)
x=1 x—1 x=2 x -1
24+ h)— -
c. lim fFQ+h)—fQ2) d. lim f(x) — f(a)
h=0 h X—a X —a
h) — - —h
e. im 1@ FH =@ g lim L@t - Ff@—h)
h=0 h h=0 h
7. Compute the following limits numerically by using a calculator:
20 — 3P -1 :
. . - /h
a. hm— b. lim — ¢ hmd+h
Harder Problems

8. Compute the following limits. (Hint: For part (b), substitute /27 + h = u.)

. Xt —2x . 27T+ h -3
a. lim — b. lim ———
X2 X° - 8 h—=0 h
T—1
c lim] (n 1s a natural number)
x—=+] X -

4.5 Simple Rules for Differentiation

In Section 4.2, we defined the derivative of a function f by the formula

S+ - f@ "

fix)y= lim

If this limit exists, we say that f is differentiable at x. The process of finding the
derivative of a function is called differentiation. It is useful to think of this as an
operation that transforms one function f into a new function f’. The function f
is then defined for the values of x where the limit in [*] exists. If y = f(x), we
can use the symbols y’ and dy/dx as alternatives to f'(x).
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In the examples and problems in Section 4.2, we used formula [*] and the
recipe in [4.5] in order to find the derivatives of some simple functions. How-
ever, it is often difficult to apply the definition directly. The next chapter uses the
recipe in [4.5] systematically to devise rules that can be used to find the deriva-
tives of quite complicated functions. Here we only consider some very simple
rules.

to O:

If f is the constant function f(x) = A, then the derivative f'(x) is equal

[4.21]
fX)=A= f'(x)=0

The result is easy to see geometrically. The graph of f(x) = A is a straight
line paralle] to the x-axis. The tangent to the graph has slope O at each point

(see Fig. 4.14). You should now use the definition of f'(x) to get the same
answer.

Additive constants disappear with differentiation:
[4.22]
y=A+fx)= )y = f'(x
Multplicative constants are preserved by differentiation:
[4.23]
y=Af(x) =y =Af'(x)

FIGURE 4.14 The derivative of a constant is 0.
y

A

fxy=A




128 Chapter 4 / Single-Variable Differentiation

Yy P
' y=A+ fx)

y = f(x)

D

FIGURE 4.15 The graphs of the functions are paraliel, and the functions have the
same derivative at each point.

Rule [4.22] is illustrated in Fig. 4.15. The graph of A + f(x) is that of f(x)
shifted upwards by A units in the direction of the y-axis. The graphs of f(x) and
f(x)+ A are thus parallel, and the tangents to the two curves at each x value must
have the same slope. Again you should use the definition of f’(x) to give a formal
proof of this assertion.

We prove the rule in [4.23] by using the definition of a derivative. If g(x) =
Af(x), then g(x+h)—g(x) = Af(x+h)—Af(x) = A[f(x + h) — f(x)], and so

gt —g() _ . fth) = fx)
h h—0 h

= Af'(x)

gx)= I}l_rg
In Leibniz’s notation, the three results are as follows:

d d d d d
7A4=0 A+ f@l=——fx),  —lAf@)= A fx)

dx
Example 4.11

Suppose we know f’(x). Use rules [4.22] and {4.23] to find the derivatives
of

(@) 5+ f(x)

(b) f(x)—1/2

(c) 3f(x)
fx)

@ =75

Af(x)+ B

(e) c

Solution With a little mixed notation, we obtain the following:

(@ L[5+ F) = fx)
dx
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d d ,
(b) P [fx)=12) = —[(-1/2) + f()] = f'(x)
X dx
d
(c) x B3fx)]=3f"(x)
X

d f@®l_4d ] 1 _ L,
(@ I [— }—dx [ 5f(x)} = 5f(x)

5
d [AfC)+B)_d A o B]_4,
© 5 | = [Frw 8] =

Power Rule

Few rules of differentiation are more useful than the following:

} Power Rule
E [4.24]
f(x) =x° = f'(x) =ax®"! (ais an arbitrary constant)

For the examples of a = 2 and a = 3, this rule was confirmed in Section 4.2. The
method used for these two examples can be generalized, as the following proof
shows.

Proof of [4.24] when a is a natural number n7: We put f(x) = x" and
form the Newton quotient

fa+h) = f@x) _ (x+h)"—x"
h - h

[*]

Al Let us muldply out (x + A)" = (x + h)(x + h)---(x + h). The resulting
expression must contain the term x” that results from choosing x from each of
the n terms in parentheses. The expression will also contain terms of the type
x"~1h. There are n such terms obtained by choosing n — 1 of the x-only terms
together with one h. All remaining terms must contain at least two h’s. so

(x + )? = x" + nx""'h + (terms that contain 42 as a factor)
Hence,
(x + h)" —x" = nx""'h + (terms that contain 42 as a factor)

So, whenever h # 0, we have

(x+h)" —x"

- = nx""! + (terms that contain 4 as a factor)

Now let # tend to 0. Then each term that contains h as a factor also tends
to 0. and the sum of all these terms will tend to 0. Thus, the right-hand side
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tends to the expression nx"~! + 0 = nx""!. Because the fraction in [*] tends
to nx"~! as h tends to 0, [4.24] is true when a is a natural number, according
to the definition of f'(x).

Example 4.12
Compute the derivative of the following:

(@) y=x
(b) y =3x8
100
() y= 100
Solution .

(a) y= x5 = y’ = 5x5-l = 5x4

b)) y= = y=3- 8x8-1 = 2447
© y= ﬁ _ Lxloo —y = _l_looxloo—l — ¥
100 100 100

The previous proof covers only the case when a is a natural number. But the
result in [4.24] is also valid if @ is a negative integer, or even if a is a positive or
negative rational number. Actually [4.24] is also correct even if a is an irrational
number. All these cases will be considered later.

Example 4.13
Compute the following:

d o3
(@) — (x7%)

d -3
(b) :1-;(—5r )

d
(c) d—(Ap“ + B)
p

d A
@ z(f)
Solution

d
(a) 2_ (x—0.33) — —0.331_0'33—] — —0.331_]'33
X

® L5 = (=5)(=3)r—>" = 157~
dar

d
() —(Ap® + B) = Aap™”!
dp

d A d 1 A _A
D — [ =) = ZAx Py = A=l g1 - 23
(d) dx (ﬁ) dx( X ) ( 2>x 2x
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Problems

1. Compute the derivative of the following:

ay=>5 b. y =x* c. y=9x" d. y=n’
2. Suppose we know g’(x). Find an expression for the derivative of the follow-
Ing:
1 -5
a. 2g(x) +3 b. —gg(x) +8 c. g(x)3
3. Find the derivative of the following:
a. x® b. 3x'! c. x> d. —4x~’
x12 2 3 2
. — f. —— . — - h., —
“ 12 x2 & Jx o x/x
4. Compute the following:
d . d b d 1
. —(4nr’ b. — (Ay®*! ¢ — | ——
adr(yrr) dy() ) dA(AZ A)

5. Explain why
f/(a) = lim f(x) - f(a)
x—a  x-—a
- Use this equation to find f'(a) when f(x) = x2.

6. For each of the following functions, find a function F(x) that has f(x) as
its derivative. (Note that you are not asked to find f'(x).)

a. fx)=x> b fx)=2x+3 ¢ flx)=x* (a#-1)
Harder Problems

7. The following limits are all written in the form lim,_.o{ f(a + #) — f(a)l/k.
Use your knowledge of derivatives to find the limits.

. (5+h? -5 o s+1) -1
a. lim ———— b. lim ———
h=0 h s—0 Ky
 S5(x+Ah)?*+10-5x>-10
c. lim
h—0 h

4.6 Differentiation of Sums, Products,
and Quotients

If we know f’(x) and g’'(x), then what are the derivatives of f(x) + g(x),
f(x)—gkx), f(x)-gx), and f(x)/g(x)? You will probably guess the first two
correctly, but are less likely to be right about the last two (unless you have already
learned the answers). ‘
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Sums and Differences

Suppose that f and g are functions both defined on a set A of real numbers. The
function F defined by the formula F(x) = f(x) + g(x) is called the sum of f
and g, written as F = f + g. The function G defined by G(x) = f(x) — g(x) is
called the difference between f and g, written as G = f — g. The following rules
of differentiation are important.

Differentiation of Sums and Differences

If f and g are both differentiable at point x, then the sum F = f + g and
the difference G = f — g are also differentiable at x, with

F(x)=fx)+gx) = F'(x) = f'(x) +¢'(0) [4.25]

Cx)=f(x)—-gx) =G (x)=f'x)—g'x) (4.26]

In Leibniz’s notation:

d _d d
2 @+ 8] = —fx) + ——gx)

d d d
™ [f()~gx)] = Zf(x) - d-x-g(X)

Proof In [4.25], the Newton quotient of F is

Far+h—F&x) _[fG+m)+egx+m]—[f()+e(x)]
h h
_ S+~ f0)  gx+h) —gx)
h ' h

When i — 0, the last two fractions tend to f'(x) and g’(x). respec-
tively, and thus the sum of the fractions tends to f'(x) + g’(x). Hence,

Fx+h)— F(x)

Y = f(x)+ & )

F(x)= 21_1’12)

The proof of [4.26] is similar—only some of the signs change in the
obvious way.

Example 4.14
Compute

d 3 ¢ . x]OO q d 3 s xlOO
— [ 3x®+ — an — [ 3x°* — —
dx 100 dx 100
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Solution
d x190 d d [x'®
3t e ) = 3y — [ ) = 24x 99
dx(x v 100) x0T 5 (100) X

where we used {4.25] and results from Example 4.12. Similarly,

-c—l- <3x8 ~ ilﬁ) = 24x" — x*°

dx

Example 4.15
In Example 4.5, we defined n(x) = R(x) — C(x), and so [4.26] implies
that 7'(x) = R'(x) — C’(x). In particular, 7'(x).= 0 when R'(x) = C'(x).
In words: Margiral profit is O when marginal revenue is equal to marginal
cost.

Rule [4.25] can be extended to the sum of an arbitrary number of terms:

The derivative of a sum is the sum of the derivatives:

d _ d d
'd—x[fl(x)+"'+fn(x)] = d—;fl(x)'*'""*’;j;fn(x)

The rules previously developed can now be used to differentiate any polynomial.
Example 4.16
Find the derivative of a general nth-degree polynomial.

Solution

E(a,.x" +@uox™ Nt aax +ayx + ag)

=nax" '+ (0 = Dap_ x> + -+ 20:x + q

There is usually no reason to use so general a formula, because it is quite
easy to apply the earlier rules to each specific case.

Products

If f and g are defined in a set A, then the function F defined by the formula
F(x) = f(x)-g(x) 1s called the product of f and g, and we write F = f - g (or
F = fg). For example, if f(x) = x and g(x) = x?, then (f - g)(x) = x>. Here
fl(x) =1, g'(x) = 2x and (f - g)'(x) = 3x>. Hence, we see that the derivative of
(f - g)(x) is not equal to f'(x) - g'(x) = 2x. The correct rule for differentiating a
product is a little more complicated.
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The Derivative of a Product

~ If f and g are both differentiable at point x, then the function F = f - g is
also differentiable at x, and

F)=f(x)-gx) = F'(x) = f'(x) - g(x) + f(x) - §'(x)

(4.27]

Briefly formulated in words: The derivative of the product of two functions is equal

to the derivative of the first times the second, plus the first times the derivative of

the second. The formula, however, is much easier to understand than these words.
In Leibniz’s notation, the product rule is expressed as:

d d d
o [f(x)-g()] = Zr—f(x) -8(x) + f(x)- 778%™

Before demonstrating why [4.27] is valid, here are two examples:

Example 4.17
Find A’(x) when h(x) = (x> — x) - (5x* + x?).

Solution ~ We see that h(x) = f(x) - g(x) with f(x) = x> — x and
g(x) = 5x* + x*. Here f'(x) =3x>—1 and g'(x) = 20x3 + 2x. Thus.

R x)= f'(x)-gx)+ f(x)-gx)
=GBx?=1)-Gx* +x3) + (x> = x) - 20x + 2x)

Usually (but not always), we can simplify the answer by multiplying out to
obtain just one polynomial. Simple computation gives

B (x) = 35x® — 20x* — 3x?
Alternatively, we can begin by multiplying out the expression for 4 (x) to get
h(x) = (x> = x)5x* + x?) =5x7 —4x° = x°
Differentiating this polynomial gives the same expression for 4'(x) as before.

Example 4.18
We will illustrate the product rule for differentiation by considering the ex-
traction of oil from a well. Suppose that both the amount of oil extracted
per unit of time and the price per unit change with time 7. We define

x(t) = rate of extracton in barrels per day at time [1

p(tr) = price in dollars per barre] at time 7 (2]
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Then we obtain
R(r) = p(1)x(t) as the revenue in dollars per day [3]

and according to the product rule (recalling that we often use “dot notation™
for differentiation with respect to time),

R(t) = p(1)x(t) + p(1)x(1) (4]

The right-hand side of [4] can be interpreted as follows. Suppose that p(z)
and x(z) both increase over time, because of inflation and because the o1l com-
pany operating the well steadily expands the capacity of its extraction equip-
ment. Then R(z) increases for two reasons. First, R(z) increases because of
the price increase. This increase is proportional to the amount of extraction
x(t) and is equal to p(z)x(z). But R(z) also rises because extraction increases.
Its contribution to the rate of change of R(z) must be proportional to the price.
and is equal to p(z)x(z). Equation (4) merely expresses the simple fact that
R(z). the total rate of change of R(z), is the sum of these two parts.

Note too that the proportional rate of growth of revenue can be found
by dividing [4] by [3] to obtain

In words, the proportional rate of growth of revenue is the sum of the pro-
portional rates at which the price and quantity are changing.

We have now seen how to differentiate products of two functions. What

about products of more than two functions? For example, suppose that

y = f(x)g(x)h(x)

What is y'? We extend the same technique shown earlier and put y = [ fx) g(x)}
h(x). Then the product rule gives

Y =[f(x)g(x)) h(x) + [f (x)g(x)1 A'(x)
= [f/(0)gx) + f(x)g'(x)] h(x) + f(x)g(x)H (x)
= f'(x)g(x)h(x) + f(x)g (X)h(x) + f(x)g(x)h'(x)

If none of the three functions is equal to O, we can write the result in the following

way:

(fehY f g ¥
feh 7 g
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By analogy, it is easy to write down the corresponding résult for a product of n
functions.

Proof of [4.27] Suppose f and g are differentiable at x, so that the two
Newton quotients

fx+h)— f(x) and glx +h) — g(x)

h h (i

tend to the limits f'(x) and g’(x), respectively, as h tends to 0. We must
show that the Newton quotient of F also tends to a limit, which is given by
F(x)g(x) + f(x)g’(x). But the Newton quotient of F is

Flx+h)~=F(x)  f(x+hgx+h) — flx)gx)
h - h

(2]

To proceed further we must somehow transform the right-hand side (RHS) to
involve the Newton quotients of f and g. We use a trick: The numerator of the
RHS of (2) is unchanged if we both subtract and add the number f(x)g(x+h).
Hence, with suitable regrouping of the terms, we have

F(x+h)— F(x)

h
_ fx+hegx+h) ~ f(x)gx +h) + f(x)gx + k) ~ f(x)glx)
h
_ [f(x +h; ~ f(x)] e+ )+ £0O [g<x+hz -g<x>]

As h tends to 0. the two Newton quotients in the square brackets tend to f’(x)
and g’(x), respectively. Now we can write g(x + k) for & # 0 as

glx +h)—gx)
h

g(x+h)=[ ]h+g(x)

which tends to g'(x) - 0 + g(x) = g(x) as h tends to 0. It follows that the
Newton quotient of F in (3) tends to f’'(x)g(x) + f(x)g'(x) as h tends to 0.

Quotients

Let f and g be funcuons which are differentiable at x, and define F(x) =
f(x)/g(x). We naturally assume that g(x) # 0, so that F is defined at x. We call
F the quotient of f and g and write F = f/g. We would like to find a formula
for F'(x). Bearing in mind the complications in the formula for the derivative of
a product, one should be somewhat reluctant to make a quick guess as to how the
correct formula for F’(x) will turn out.

In fact, it is quite easy to find the formula for F’(x) if we suppose that F(x)
is differentiable. for F(x) = f(x)/g(x) implies that f(x) = F(x)g(x). Thus, the
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product rule gives
fix) = F'(x)-g(x) + Fx) - g'(x)

Solving for F’(x) in terms of the other functions yields

_ 0 -F0g _ ') = [f)/e(x)]e'tx)

F/
) 2(x) g(x)

Multiplying both numerator and denominator of the last fraction by g(x) gives

_ fx)gx) — fx)g'(x)
(0]

F'(x)

Formally, the theorem can be stated as follows.

The Derivative of a Quotient

If f and g are differentiable at x and g(x) % O, then F = f/g is differentiable
at x. and '

[4.28]

I® | py = X80 - f6) g

Fioy =18 h
g(x) [g)]”

In words: The derivarive of a quotient is equal to the derivarive of the numerator
times the denominator minus the numerator times the derivative of the denominator,
this difference then being divided by the square of the denominator. (To prove that
F is differentiable in x, under the earlier assumptions, we must study the Newton
quotient of F as we did for the product rule. See Problem 12.) In simpler notation,
we have

(i)’ _fe—-f¢
g g

Note: In the product rule formula, the two functions appear symmetrically, so that
1t is easy to remember. In the formula for the derivative of a quotient, the expres-
sions in the numerator must be in the right order. The following suggestion checks
whether you have the order right. Write down the formula you believe is correct.
Consider the case when g = 1. Then g’ = 0, and your formula ought to reduce to
f'. If you get — f’, then your signs are wrong.

Example 4.19
Compute F'(x) and F'(4) when F(x) = (3x — 3)/(x = 2).
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Solution =~ We apply [4.28] with f(x) = 3x — 5, g(x) = x — 2. Then
f'(x) =3 and g'(x) = 1. So we obtain, for x # 2:

_3-(x—-2)—(3x—5)-1

F) (x —2)°
_3x—6-3x+5_ 1
B (x —2)? T (x=-2)?

To find F'(4), we put x = 4 in the formula for F'(x) to get F'(4) =
—1/(4 —=2)* = —-1/4.

Example 4.20
Let C(Q) be the total cost of producing Q units of a commodity. (See
Example 3.3.) The quantity C(Q)/Q is called the average cost of producing
Q units. Find an expression for

d
(e
Solution
i [C@] 0C0)-C@ 1[. . C©
el — =2 lcioy - 222
dQ[ Q} 02 Q[(Q) Q}

Note that for positive output levels Q, the marginal cost C’'(Q) exceeds the
average cost C(Q)/Q if and only if the rate of change of the average cost as
output increases 1s positive. (In a similar way, if a basketball team recruits a
new player, the average height of the team increases if and only if the new
player’s height exceeds the old average height.)

The formula for the derivative of a quotient becomes easier to understand if
we consider proportional rates of change. (See [4.11].) By using [4.28], simple
computation shows that

fO _Fm_fm g®
) Fo  f0) gk

The proportional rate of change of a quotient is equal to the proportional rate of
change of the numerator minus the proportional rate of change of the denominator.

An economic application of rule [4.29] is as follows. Let W(z) be the nominal
wage rate and P(z) the price index at time 7. Then w(z) = W(¢)/P(t) is called
the real wage rate. According to [4.29],

F(ix)=

[4.29]

W) W@ PO
w@) W@ P
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The proportional rate of change of the real wage is equal to the difference between
the proportional rates of change of the nominal wage and the price index. Thus,
if nominal wages increase at the rate of 5% per year but prices rise by 6%, then
real wages fall by 1%. (Recall from Section 4.3 that these are proportional rates
' of change.)

VT g e A Suzaa o e

Problems

In Problems 14, differennate the functions defined by the various formulas.

1. a. x+1 b. x + x* c 3x° +2x*+5
d. 8x*+2./x e %x—%x2+5x3 TOf.1-3x7

1
? 2. a -7+ Li-Vx b (X -DEF-1) c.<x5+—)(x5+1)
X

3. a ;lz b. x'x* + DV e % d. ifi
S
:' b f?;f ReTy  ©GeD (W;)
| e I21 e ZEEEL el (E) e

5. If D(P) denotes the demand for a product when the price per unit is P, then
the revenue function R(P) is given by R(P) = P D(P). Find an expression

for R'(P).
6. For each of the following functions, determine the value(s) of x at which
f'x)=0.
a. f(x)=3x"-12x+13 b. f(x) = $(x* - 6x?)
X2 - x3
= d. =
W= F® =550

7. Find the equations for the tangents to the graphs of the following functions
at the specified points:

x -1
a. y=3—-x—x>atx=1 b. y= tx=1
y x—x x y x2+1ax
1 x*+1
c.y=|—+1 Z_Datx=2 dy= at x =0
Y (x2 >(x ) at x YE R ne+3 T

8. Differentiate the following functions of 1:

a. ::3 b. 1" (aJ? +b)

1
C. ——
at-+bt +c¢
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9. Compute the following:

TED) ) <2029

" dp \Cp*+ D T dy y8 dx \1+ f(x)

10. If f(x) = /x, then f(x)- f(x) = x. Use the product rule to find a formula
for f'(x). Compare this with the result in Problem 8 of Section 4.2.

11. Prove the power rule [4.24] for a = —n, where n is a natural number, by
using the relation f(x) = x™" = 1/x" and the quotient rule [4.28].

Harder Problems

12, Let F(x) = f(x)/g(x). Write out the Newton quotient of F, and show that
it tends to ‘the expression for F’(x) in [4.28]. Hint: The Newton quotient of
F is equal to

f&x+h) - f(x)
8(x) -

g()g( + h) h @)

gx+h)—gx)
h

Then use the same idea as in the proof of [4.27].

4.7 Second- and Higher-Order Derivatives

The derivative of a function f is often called the first derivative of f. If f’ is
also differentiable, then we can differentiate f’ in um. In fact, we call () the
second derivative of f. We write f” instead of (f’), and let f”(x) denote the
second derivative of f evaluated at the particular point x.

Example 4.21
Find f'(x) and f”(x) when f(x) = 2x> — 3x> + 2x.

Solution Using the rules for differentiating polynomials, we first differ-
entiate 2x°> — 3x> + 2x to get

Fl(x) =10x* —9x* +2
Then we differentiate 10x* — 9x% +2 to get
f(x) = 40x® — 18x

The different forms of notation for the second derivative are analogous to
those for the first derivative. For example, we write y” = f”(x) in order
to denote the second derivative of y = f(x). The Leibniz notation for the
second derivative is also used. In the notation dy/dx or df (x)/dx for the
first derivative, we interpreted the symbol d/dx as an operator indicating that
what follows is to be differentiated with respect to x. The second derivative
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is obtained by using the operator d/dx twice: f"(x) = (d/dx)(d/dx) f (x).
We usually think of this as f”(x) = (d/dx)> f (x), and so write it as follows:

d-f(f) = dzf(x)/afx2 or
dx-

N_dzy__ 2 2

d—.d Z
P y/dx

fN (x) —_
Pay special attention to where the superscripts 2 are placed.
Of course, the notation for the second derivative must change if the
variables have other names.

Example 4.22

(a) Find Y” when Y = AK*“ is a function of K (K > 0), with A and a as
constants.

(b) Find d*L/dt* when L =t/r+1,and t > 0.
Solution
(a) Differentiating Y = AK“ with respect to K gives
Y = AaK®™!
A second differentiation with respect to K yields
Y"’ = Aa(a — 1)K

(b) First, we use the quotient rule to find that

dL_d t _1-(t+1)—t-1__ 1
dt  dr\t+1/) @+ 1)2 TR +1

The quotient rule can be used again to yield

PL_0-(P+2+1D)-1-@2+2)  =2¢+D _ |

dr? (12 + 21 + 1)2 TES T+ )3

Later, both first and second derivatives will be given important geometric and
economic interpretations. Corresponding simple interpretations are not available
for derivatives of higher order, but they are used from time to time.

Higher-Order Derivatives

The derivative of y” = f”(x) is called the third derivative, and we use the
notation y” = f"(x) for this. It is notationally cumbersome to continue using
primes to indicate differentiation, so the fourth derivative is usually denoted by
y® = f@(x). (We must put the number 4 in parentheses so that it will not get
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confused with y*, the fourth power of y.) The same derivative can be expressed
as d*y/dx*. In general, let

y® = f®(x) or  d"y/dx" denote the nth derivative of f at x

The number 7 is called the order of the derivative. For example, f ®)(xo) denotes
the sixth derivative of f calculated at xo, found by differentiating six times.

Example 4.23
Compute all the derivatives up to and including order 4 of

fx)=3x""+6x>—-x>  (x#0)

Solution Repeated differentiation gives

fl(x) = —3x"2 +18x> — 2x
fr(x) =6x73 +36x —2
f7(x) =—18x"* +36
@) =72x7

In the same way that a function need not be differentiable at xq, a higher-order
derivative need not exist at xo. If f'(xq), f”(x0), ... f™(xo) all exist, then
we say that f is n times differentiable at x,. If f™(xo) is continuous, then
f 1s said to be n times continuously differentiable at xo—or more concisely,
a C™ function at xq.

Example 4.24
Differentiate f(x) = 3x''” four times.

Solution fl(x)=11x%°
f(x) = (88/3)x?
f"(x) = (440/9)x>"
FP(x) = (880/27)x~'7
Note that f'(0) = f”(0) = f”(0) = 0, but f®(0) does not exist. Hence, f
is three times differentiable everywhere, but it is not four times differentiable
at 0.

Problems

1. Find the second dernivative of the following:

x
a y=x —3x*+2 b. y =X C. y=
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. Find d%y/dx*> when y = x¢ + x4,

. Compute the following:

a. y' fory=3x>4+2x—1 b. Y” for ¥ =1 — 2x* + 6x°
c. d3z/dr? for z = 120r — (1/3)13 d. F) for f(z) = 100z~*

. Find g”(2) when g(r) = 13/t — 1).
. Find formulas for y” and y” when y = f(x)g(x).
. If n 1s a natural number, let n! (read as “n factorial”’) be defined as

n'=1-2-3..-(n=1)-n

For example, 5! = 1-2-3-4-5 = 120. Show (by using mathematical
induction) that ‘

y=x"= y® = n!

Harder Problems

7. Find a function that is five times differentiable. but not six times differentiable

at x = 0. (Hint: See Example 4.24.)
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More on Differentiation

Although this may seem a paradox, all science
is dominated by the idea of approximation.
—Bertrand Russell

This chapter presents some extensively used techniques of differentiation. It begins
with the generalized power rule and then proceeds to a discussion of the highly
useful chain rule. In many economic models, functions are defined implicitly
by one or more equations. In some simple but economically relevant cases, we
show how to compute derivatives of such functions. Next we consider differentials
and linear, quadratic, or higher-order approximations, all of which occur in many
applications of mathematics to economics. A discussion of the important economic
concept of elasticity ends the chapter.

5.1 The Generalized Powe_r Rule

It is often necessary to differentiate expressions of the form

y = [e®)]

where ¢ 1s a differentiable function, and a is a constant. For a = 1. the derivative
1s just g'(x). For a = 2, we can use the product rule as follows:

y=[a0] = g) - g(x) = y = g'(x) - g(x) + g(x) - g'(x) = 2g(x) - g'(x)
144
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For a = 3, we can combine the previous result with the product rule as follows:

2 2

v=[g@)] = g0)] g0 = ¥ = 28(0) - g W] - g0) + [2)]7 - ¢/ (x)
=30g0)]* - ' (x)

See if you can discern a pattern here. In general, we have the following rule (where
a 1s an arbitrary real number):

The Generalized Power Rule

a-1

y=[g@] =y =a[s)]" g [5.1]

Note this important formula. If we put g(x) = x, then g’(x) = 1 and [5.1] reduces
toy = x* = y = ax®"!, which is the power of Section 4.5. A generalization
of [5.1] 1s proved in Section 5.2. In the meantime, ambitious students may want
to try proving [5.1] by mathematical induction for the case when a is a natural
number. (See Problem 10.)

Example 5.1
Differenuate the functions:

@ y= > +x)¥

x—1\'""?
(b)y=(x+3>

(€) y=+/x2+1

Solution The key to applying the generalized power rule is to determine
how the given function can be expressed as 2 power. In the first problem, it
is rather obvious:

@ y=@+x)°= [g(x)]so where g(x) = x> + x2.
Differentiating this directly gives g'(x) = 3x? + 2x, and so formula
[5.1] yields '

¥ =50[g0)] ™" - g'(x) = 50 + )P (3x% + 20)

(b) Again it is obvious how to apply [5.1]:

x—1\'" 3
’E (x+3> = [g@)]"”

where g(x) = (x — 1)/(x + 3). In this case, the quotient rule implies
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that
_1-(x+3)—(x—1)-1_ 4
- (x + 3)2 T (x+3)2

g'(x)

Hence, [5.1] gives

am-t o 1 (x=1\TF 4
g8 = 3 (x+3> (x +3)?

y =

(x +3)"*Px -1

WiH W=

(c) Here we first notice that y = v/x> + 1 = (x2+1)'2. Soy = [g(x)] i
where g(x) = x> + 1. Hence,

4

x241

1 - 1,
y=5[e@]" g =56+ )7 2 =

The generalized power rule can also be formulated in Leibniz’s notation.

The Generalized Power Rule (Leibniz’s Notation)

When u = g(x) is a function of x, then

y=u' = 4y =au""du

— 5.2
dx dx [5-2]

Often we need to combine the generalized power rule with the other rules of
differentation shown earlier. Here is an example from economics.

Example 5.2
Suppose that the relationship between gross income Y and total income tax
T is for taxpayers with incomes between 80,000 and 120,000. The following
values for the constants in [x] were estimated, given by the equation

T =abY +¢)” +kY [x]
where a, b, ¢, p, and k are positive constants.

(a) Find an expression for the marginal tax rate. dT /dY .
(b) In an empirical study

a = 0.000338. b = 0.8l. c = 6467. p = 1.6l k =0.053
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Use these numbers to find the values of 7 and d7/dY when ¥ =

100,000.
Solution

@) Let z = (Y + ¢)? = u? with u = bY + ¢. Then [5.2] gives

& e pY + 07

Because T = az + kY, differentiation of [*] gives

daT dz
— =a—+k= b p=
77 adY+ apb(bY +¢)’~" +k

(b) We have

T = 0.000338(0.81 - 100,000 + 6467)"5' +-0.053 - 100,000 = 35,869.33

and

dT

—— =0.000338-0.81-1.61 - (0.81 - 100,000 + 6467)%% + 0.053 ~ 0.51

ay

Thus, the marginal tax rate on an income of 100,000 is approxi-

mately 51%.

Problems

1. Compute f’(x) when f(x) = (3x2 + 1) by (a) expanding the square and

then differentiating; (b) using [5.1]. Compare the answers.
2. Find the derivatives of the functions defined by the following:

a. 2x+1)° b. (1 —x)° ¢ (x*—2x +2)?
1)° , 2
a & “; ) e. Gx —4)~7 £ (2x>+3x —4)2

3. Find the derivatives of the functions defined by the following:

- 2+ 1\ "2
a. (1+x)'R b. Vi3 + 1 .. ("x )

x-1
d. (1 -xH3 e. x°J/1—x £ J1+x-41—x
4. Find the derivatives of the following functions of ¢ (where a, b, and n are
constants):
N at + b\
a. (a*+ 173 b. (at +b)" c. ( )
nt



148 Chapter 5 / More on Differentiation

5. If f is differentiable at x, find expressions for the derivatives of the following

functions:
a. x+ f(x) b [f@))’-x ¢ [f@]
d 2f0)+ [f@)]° e xf&x) £ V@)
% [F&)]° : 3, A
g. 1) h. 23 i. {f(x) + [f(x)] +x}

6. Let x = (Ap + B)" and p = ar* + bt + ¢. Find an expression for dx/dt.
7. Compute dy/dv when y = A(av? + b)9.

Harder Problems

8. Suppose that [5.1] has already been proved when a is a natural number. Prove
that [5.1] is then also valid when a = —n, where n is a natural number. (Hint:
Put y = [g(x)] ™" = 1/[g(x)]", and then use the quotient rule.)

9. Leta, b, m, and n be fixed numbers, where a < b, and m and n are positive.
Define the function f for all x by f(x) = (x —a)” - (x — b)". For the
equation f'(x) = 0, find a solution x¢ that lies between a and b.

10. Prove by induction that [5.1] holds when a is a natural number.
11. Prove that

d
7 O g1 = [mf'()g) + nf(x)g' )] [F I g™

Whatdoyougetif m=n=1,andif m=-n =17

5.2 Composite Functions and the Chain Rule

If y is a function of u, and u is a function of x, then y is a function of x. In this
case, we call y a composite function of x. (In the previous section, we considered
the special case where y was given by u?.) Suppose that x changes. This will
lead to a change in # and hence a change in y. A change in x, therefore, causes
a *“‘chain reaction.” If we know the rates of change du/dx and dy/du, then what
1s the rate of change dy/dx? It turns out that the relationship between these rates
of change is simply:

The Chain Rule

dy dy du

=2. = (5.3]
dx du dx

A slightly more detailed formulation of the rule says that if y is a differentiable
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function of u, and u is a differentiable function of x, then y is a differentiable
function of x, and [5.3] holds.

The chain rule is a further generalization of the generalized power rule from
the previous section. In the special case where y = u?, we have dy/du = qu®~!
and substituting this expression into [5.3] gives the formula in [5.2].

It is easy to remember the chain rule when using Leibniz’s notation. The
left-hand side of [5.3] is exactly what results if we “cancel” the du on the night
side. Of course, because dy/du and du/dx are not fractions (but merely symbols
for derivatves) and du is not a number, canceling is not defined.

When we interpret the derivatives involved in [5.3] as rates of change, the
chain rule becomes rather intuitive, as the next example from economics will
indicate.

Example 5.3
The demand x for a commodity depends on price p. Suppose that price p
is not constant, but depends on time 7. Then x is a composite function of r,
and according to the chain rule,

k)

& dp a )

Suppose, for instance, that the demand for butter decreases by 5000 pounds
if the price goes up by $1 per pound. So dx/dp = —5000. Suppose further
that the price per pound increases by $0.05 per week, so dp/d: = 0.05.
What is the decrease in demand in pounds per week?

Solution: Because the price per pound increases by $0.05 per week, and the
demand decreases by 5000 pounds for every dollar increase in the price, the
demand decreases by 5000 - 0.05 = 250 pounds per week. This means that
dx/dt = —250 (measured in pounds per week). Note how this argument
roughly confirms [#].

The chain rule is very powerful. Facility in applying it comes only from a
lot of practice.

Example 54

(a) Find dy/dx when y =u° and u = 1 — x°.
(b) Find dy/dx when

o 10
YT T ax+5y
Solution
(a) We can use [5.3] directly. Because dy/du = 5u* and du/dx = —3x?,
we have
dy dy du

=2 .2 = 54(=3x2) = —15x%u* = —15x2(1 — £3)*
dx du dx W(=3x7) ol =0
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(b) In this case, it is not immediately obvious how to apply the chain rule.
However. if we rewrite v as v = 10(x> + 4x + 5)~7. then

y=10u""

where u = x? + 4x + 5. Thus,

dy d
L 10=Tu " = —70u"®  and @ =2x+4
du dx

So using [5.3] yields

dy dy d )
22 T 0wt (2% + 4) = —140(x + 2)/(x2 + 4x + 5)8
dx du dx

Note 1: After a little training, the intermediate steps become unnecessary. For
example, to differentiate

= (1=x3)
y=(1-x")

u

we can think of y as y = u>, where u = 1 — x>. We can then differentiate both u°
and 1 — x? in our heads, and immediately write down y" = 5(1 — x3)*(=3x?).

Note 2: Of course, one could differentiate y = x°/5 using the quotient rule, rather
than writing y as y = (1/5)x° to get ¥ = (1/5)5x* = x*. But the latter method
1s much easier. In the same way, it is unnecessarily cumbersome to apply the
quotient rule to the function given in Example 5.4(b). The chain rule is much
more effective.

The next example uses the chain rule several times.

Example 5.5
Find x'(r) when x(1) = 5 (1 LSBT 1)

25
Solution  The initial step is easy. Let x(r) = 5u®, where
u=1++/1>+1, to obtain

du du
(1) =525 — = 125u* — 1
x(t)=5 u T u r [1]

The new feature in this example is that we cannot write down du /dt at once.
Finding du/dt requires using the chain rule a second time. Letu = 1+./v =
1+ ¢!, where v = 1> + 1. Then

e e A T o 2 3.2 2
dr 2v dr 2U 3t 2([ b 3 2]
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From [1] and [2], we get

2
X =125(1+VE 1) Lt + 172 322

Suppose, as in the last example, that x 1s a function of «, u is a function
of v, and v is in turn a function of z. Then x 1s a composite function of 7, and the
chain rule can be used twice to obtain

dx dx du dv

dt du dv dt

This is precisely the formula used in the last example. Again the notation is
suggestive because the left-hand side is exactly what results if we “cancel” both
du and dv on the right-hand side.

An Alternative Formulation of the Chain Rule

Although Leibniz’s notation makes it very easy to remember the chain rule, it
suffers from the defect of not specifying where each derivative is evaluated. We
remedy this by introducing names for the functions involved. So let y = f(u) and
u = g(x). Then y can be written in the form

y=f(g))

Note that when we compute f (g(x)), we first compute g(x), and then second, we
apply f to the result. We say that we have a composite function, with g(x) as
the the kernel, and f as the exterior function.

Most scientific calculators have several built-in functions. When we punch
a number xo and strike the key for the function f, we obtain f(xq). When we
compute a composite function given f and g, and try to obtain the value of
f (g(x)), we proceed in a similar manner: punch the number x,. then strike the g
key to get g(xp), and again strike the f key to get f (g(xo)). Suppose the machine

has the functions | 1/x |and | \/x | If we press the number 9, then strike the

button |1/x | followed by Jx |, we get 1/3 = 0.33.... The computation we
have performed can be illustrated as follows:

[ 1/x Jx

9 — 19 — 1/3

Using function notation, f(x) = +/x and g(x) = 1/x, so f(g(x)) = f(1/x) =
VI/x = 1//x. In particular, f{g(9)) = 1/4/9=1/3.
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The Chain Rule

If g is differentiable at xo and f is differentiable at up = g(xp), then F(x) =
f(g(x)) is differentiable at xo and

F'(x0) = f'(g(x0))& (x0) [5.4]

In words: 1o differentiate a composite function, first differentiate the exterior func-
tion and substitute in the value of the kernel, then multiply by the derivative of the
kernel. It is important to notice that the derivatives f’ and g’ appearing in formula
[5.4] are evaluated at different points; the derivative g’ is evaluated at xp, whereas
f’ is evaluated at g(xp).

Example 5.6
Find the derivative of F(x) = f(g(x)) at xo = =3 if f(u) = 1> and
gx)=2- x2.

Solution In this case, f'(u) = 3u® and g’'(x) = —2x. So [5.4] gives
F'(=3)= f'(g(=3))g'(=3)
Now g(=3) =2 —-(=3)> =2-9 = -7; g'(-3) = 6; and f'(g(-3)) =

FI(=T) = 3(=7)2 = 3-49 = 147. So F'(=3) = f'(g(=3))g'(~3)
147 - 6 = 882.

Note: The function that maps x to f(g(x)) is often denoted by f o g, and is
read as “f of g” or “f compounded with g.” Correspondingly, g o f denotes the
function that maps x to g(f(x)). Thus, we have

(fog)x) = f(gx)) and go ) = g(fx))

Usually, fog and go f are quite different functions. For instance, the functions used
in Example 5.6 give (fog)(x) = (2—x?)°, whereas (go f)(x) = 2—(x°)> = 2—x5;
the two resulting polynomials are not the same.

It 1s easy to confuse f o g with f - g, especially typographically. But
these two functions are defined in entirely different ways. When we evaluate
f og at x, we first compute g(x) and then evaluate f at g(x). On the other
hand, the product f - g of f and g is the function whose value at a partic-
ular number x is simply the product of f(x) and g(x), so (f - g)(x) =
f(x) - g(x).

Proof of the chain rule To find the derivative of F(x) = f(g(x)) at
X = Xp. we must examine the limit of the following Newton quotient as h
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tends to O:

_ Flo+h) —F(xg) _ f(glo+m) - f(g(x0))
- ; -

N

The change in x from xg t0 xo+#4 causes the value of g to change by the amount
k = g(xo+h) — g(xp). As h tends to 0, so k = {[g(x0 + h) ~ g(xo)]/h} - h
tends to g'(xg) - 0 = 0. Suppose that k & O whenever h 0 is small enough.
Because g(xo + h) = g(xg) + k. we can write the Newton quotient as

v = [le0) +8) — £ (sx0))

k
h

k
f(gtxo) + k) — f(g(x0)) g(xo+h) = g(xo)
k A

As h — 0, so k — 0, and the last two fractions tend to f’(g(xo)) and g’(xq).
respectively. This yields the desired formula.

We cannot divide by 0. so the argument fails if g(xo + h) = g(xg) for
arbitrary small values of h. because then k = 0. A more complicated proof
takes care of this case as well.

Problems

1.

Use the chain rule [5.3] to find dy/dx for the following:

a. y=5u* and u=1+x?

b. y=u—u° and u=1/x+1

Compute the following:

a. dY/d: when Y = —=3(V 4+ 1)° and V = 1.

b. dK/dt when K = AL® and L = bt + ¢ (A, a, b, and ¢ are positive
constants).

Find the derivatives of the following functions, where a, p, ¢, and b are
constants:

1 b
oy y=\/x+\/x+\/§ c¢. y=x%(px+q)

If Y is a function of K, and K is a function of 1, find the formula for the
derivative of Y with respect to r at ¢ = 1.

If Y = F(K) and K = h(t), find the formula for dY /d:.
Compute dx/dp for the demand function

x=b—-ap—-c (a, b, and c are positive constants)

where x is the number of units demanded, and p is the price per unit, with
p=cla.
If h(x) = f(x?), find a formula for A’(x).
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8. Let s(z) be the distance in kilometers traveled by a car in ¢ hours. Let B(s)
be the number of liters of fuel the car uses to go s kilometers.
a. Provide an interpretation of the function b(z) = B (s(¢)).
b. Find and interpret the formula for &'(z).

9. If a(z) and b(t) are positive-valued differentiable functions of ¢, and if A, «,
and B are constants, find expressions for x/x where:

2 @)
a x= [a(t)J b(@) b. x = 50
a at+p
e x=a{la)]"+ )]’} ) d. x = Ala@F pO)Y
10. Suppose that f(x) = 3x+7. Compute f (f(x)). Find x such that f(f(x)) =

100.

11. Express (ir at least one wav) the following functions as composites of simpler
functions, and find 2'(x) in each case:

a. h(x)=(1+x+x3)72 b. h(x) = 1/(x'® +28)
12. Suppose that C = 20g —4q (25 — 1x) ' where g is a constant and x < 50.
Find dC/dx.

13. Differentiate each of the following in two different ways:

20 b.y=(1—x)3=1—3>Jc+3x2—x3

14. If p(x) = (x —a)*q(x) and q is differentiable at x = a, show that p’(a) = 0.
15. If R =§% S =1+ BK?, and K = At” + B, find an expression for dR/d:.
16. If F(x) = f (x"g(x)), find a formula for F'(x).

ay=0ux% =x

5.3 Impilicit Differentiation

We know how to differentiate functions given explicitly by certain formulas. Now
we consider how to differentiate functions defined implicitly by an equation.

An Introductory Example

The following equation was studied in Example 2.7 of Section 2.3:

x/y=2 x>0, y>0) [*]

Note that y =4 when x = 1, that y = 1 when x = 2, that y = 1/4 when x = 4,
and y = 1/9 when x = 6. In general, for each positive number x, there is a unique
number y such that the pair (x, y) satisfies the equation. We say that equation [*]
defines y implicitly as a function of x. The graph of equation [*] shown in Fig. 5.1
is reproduced from Fig. 2.14.
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FIGURE5.1 X /J =2

It is natural to ask what is the slope of the tangent at an arbitrary point on the
graph. In other words, what is the derivative of y as function of x? The answer
can be found by implicit differentiation of equation [*]. Let f denote the function
defined by equation [x]. Substituting f(x) for y gives

xV/flx)=2 (for all x > 0)

The derivative of the left-hand side of this identity must be equal to the derivative
of the right-hand side, for all x > 0. Now use the product rule to differentate
x4/ f(x) =2 wur.t. x. The implication is that

d
1. f(x)+xE\/f(x)=O [3x]
But the chain rule yields
d 1 ,
o f(«lf)=2 ,_—_f(x)-f(X)

Inserting this into [**] and rearranging gives

X y -
sz(x)— Vf(x)

When x > 0, solving for f'(x) leads to

—2f(x)

X

fx)=

For x = 2. we get f(2) = 1, and hence f'(2) = —1, which agrees with Fig. 5.1.

Usually, we do not introduce a name for y as a function of x. Instead,
we differentiate directly, using the following reasoning. Differentiating [*] with
respect 1o x, while recalling that y is a differentiable function of x, gives

1
1 fF+x-——=y =0
v 2y
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Solving for y' gives
, 2y

7

yVo=—— [sxx]
x

For this particular example, there is another way to find the answer. Squaring
each side of equation [*] yields x>y = 4, and so y = 4/x> = 4x~2 for x > 0.
Differentiating w.r.t. x yields y = 4(—2)x~3 = —8/x3. Note that substituting
4/x? for y in [**x*] yields y’ = —8/x> again.

The method used to derive [***] can be summanzed as follows:

The Method of Implicit Differentiation

If two variables x and y are related by an equation, to find dy/dx:

1. Differentiate each side of the equation w.r.t. x, comnsidering y as a
function of x. (Usually, you will need the chain rule.)

2. Solve the resulting equation for dy/dx.

Further Examples

It is important for economists to master the technique of implicit differentiation,
so here are some further examples.

Example 5.7
Suppose that y is a differentiable function of x given by

x+y3=y5—x2+2y (1]

for all x in a given interval /. Find an expression for y’. The graph of
Equation [1] passes through (x, y) = (1, 1). Find y’ at this point.

Solution In this case, it is impossible to solve the equation explicitly
for y. It is still possible. however. to find an explicit expression for y'. We
suppose that an (unspecified) function of x is substituted for y. Then x + y?
and y° — x>+ 2y are both functions of x, and these expressions must be equal
for all x in J. This implies that their derivatives must be equal. According
to the chain rule, the derivative of y> with respect to x is 3y°y’ and the
derivative of y° is equal to 5y*y’. Thus,

1 +3y%y = 5y*y —2x + 2y

To find y, collect all terms containing '’ on the right-hand side and all others
on the left. The result is

1+ 2x = (5y* +2 = 3y%)y



Sec. 5.3 / Implicit Differentiation 157

Solving for y’ gives
2x + 1
TSyt =3y 42

4

y

Because we have no explicit expression for y as a function of x. we cannot

express V' explicitly as a function of x. At (x, y) = (1. 1), however, we get
!

y' = 3/4.

Example 5.8

Consider the following standard macroeconomic mode] for determining na-
tional income in a closed economy:

L Y=C+I
(2] C = f(¥)

Here [2] is the consumption function discussed in Example 2.18 of Sec-
tion 2.5, whereas [1] states that the national income Y goes either to consump-
tion C or to investment /. We suppose that f'(Y), the marginal propensity
to consume, is between 0 and 1.

(a) Suppose first that C = f(Y) = 95.05+0.712Y (see Example 2.18), and
use equations [1] and [2] to find Y in terms of /. Find the change AY
in Y if I is changed by A! units.

(b) Equations [1] and [2] define Y as a differentiable function of /. Find
an expression for dY /d 1.

Solution

(a) In this case, we find that ¥ = 95.05 + 0.712Y + I. Solving for Y
yields

Y =(95.05+I)/(1 —0.712) = 3.47 I 4 330.03 [3]

Suppose now that I changes by Al. The corresponding change AY in
Y satisfies

Y + AY = 3.47(] + AI)+ 330.03 [4]
Subtracting [3] from [4] gives
AY = 3.47 Al [5]

In particular, if / is changed by one unit (for example, $1 billion) so
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that Al = 1, then the corresponding change in the national product is
AY = 3.47 (billion).

(b) Inserting the expression for C from [2] into [1] gives
Y=fXY)+1I (6]

Suppose that this equation defines Y as a differentiable function of /.
Differentiating [6] with respect to /, and using the chain rule, we have

dy dy dy
— = f(Y)— 1 hadalll K TR =1
7=+ or  —[1-Fm)]
Solving for dY/dI yields
dy 1
—=— [7]
dl ~ 1— f1(Y)

For example, if f'(Y) = 1/2, then dY/dI = 2. Also f’(Y) = 0.712
gives dY/dI =~ 3.47. In general, we see that because f'(Y) lies
between 0 and 1, so 1 — f'(Y) also lies between O and 1. Hence,
1/ [1 - fi (Y )] is always larger than 1. In this model, therefore, a Sl
billion increase in investment will always lead to a more than $1 bil-
lion increase in the national product. The larger is f'(Y), the marginal
propensity to consume, the larger is dY /d I.

Example 5.9

In the linear supply and demand model of Example 2.19, Section 2.5, suppose
that a tax of ¢ per unit is imposed on consumers. Then

D=a—-b(P +1), S=a+BP (1]

Here a, b. «, and B are positive constants. The equilibrium price is deter-
mined by equating supply and demand, so that

a—-b(P+1)=a+pBP (2]

(a) Equation [2] implicitly defines the price P as a function of the unit tax
t. Compute d P /dt by implicit differentiation. What is its sign? Check
the result by first solving Equation (2] for P and then finding d P /dt
explicitly.

(b) Compute tax revenue T as a function of z. For what value of z does
the quadratic function 7 reach its maximum?

(c) Generalize the foregoing model by assuming that

D= f(P+1) and S=g(P)
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where f and g are differentiable functions with ' < O and g > 0.
The equilibrium condition

f(P+1)=g(P) [3]

defines P implicitly as a differentiable function of r. Find an expression
for d P/dt by imphcit differentiation.

Solution

(a) Differentiating [2] w.r.t. t yields —b(dP/dt + 1) = SdP/dr. Solving
for dP/dr gives

dP  -b
dt  b+8

We see that d P /dt is negative. Because P is the price received by the
producer, this price will go down if the tax rate ¢ increases. But P + ¢
is the price paid by the consumer. Because

dP - -b+b

—2 +1= = 0
dt b+ b+B  b+B

it follows that 0 < d(P +1)/dt < 1. Thus, the consumer price in-
creases, but by less than the increase in the tax.
If we solve [2] for P, we obtain

P_a—oz—bt_a—a b .
" b+B8  b+B b+§B

This equation shows that the equilibrium price is a linear function of
the tax per unit with slope —b/(b + B).

(b) The total 1ax revenue is T = St = (& + B P)t, where P is the equilib-
rium price. Thus,

B -bt a-«a _ —bpr*  (aB+ab)
T—[a+ﬁ<b+ﬂ+b+ﬁ>]t_b+ﬂ+ b+ 8

This quadratic function has its maximum at r = (ab + fa)/2b8.
(¢) Differentiating [3] w.r.t.  yields f'(P+t) (dP/dt + 1) = g'(P)dP/d:.
Solving for d P /dt gives

dpP _ f'(P+1)
dt ~ g(P)—f'(P+1)

Because f' < 0 and g’ > 0, we see that d P/d1 is negative in this case



160  Chapter 5 / More on Differentiation

as well. Moreover,

d 4P f(P+1)
AU Al T Ty
_ g'(P)
ZP)— f/(P+1)

which implies that 0 < d(P +t)/dt < 1 in this case also.

The Second Derivative of Functions Defined
Implicitly

The following examples suggest how to compute the second derivative of a function
that is defined implicitly by an equation.

Example 5.10
Compute y” when y is given implicitly as function of x by

x /3 =2 | [1]

Solution In the introductory example to this section, we found that y’ =
—2y/x by implicit differentiation. Using the quotient rule to differentiate this
equation implicitly w.r.t. x, while taking into account how y is a function
of x, we obtain

N 2y,x - 2) -1

%2
Inserting the expression —2y/x we already have for y’ gives

o AU=2y/x)x =2y 6y 2]
x2 T ox2

In this case, we can check the answer directly. From [1], we have y =
4/x%, which when inserted into [2] gives y” = 24/x*. On the other hand,
because y = 4/x*> = 4x~2, direct differentiation gives y' = —8x~> and
y" = 24x"* = 24/x*.

Example 5.11
Find d?Y /dI* when ¥ = f(Y) +I.
Solution ~ We found in Example 5.8 that dY/dl = 1/[1 — f'(Y)] =

2:1 - (Y )] ~' Differentiation with respect to / using the chain rule yields

h<

d o] =2 L) S g —24Y
T = 0= [ ] = = F] T




Sec. 5.3 / Implicit Differentiation 161

(We had to differentiate 1 — f'(¥?) with respect to /. The result is 0 —
f7(Y)@dY/dl).) Using the expression for dY /d1 cives

2

="M= rm]”

dI? '~
_ f// (Y)
1-rm)’
Problems
1. For the following equations, find dy/dx by implicit differentiation:

W

a. xy=1 b. x—y+3xy=2 c yY¥o=x°

Check by solving each equation w.r.t. y and then differentiating.
Suppose that y 1s a differentiable function of x that satisfies the equation

2x* 4+ 6xy +y* =18

Find an expression for y’ by implicit differentiation. The point (x. y) = (1, 2)
lies on the graph of the equation. Find y’ at this particular point.

. A curve in the ¥v-plane is given by

Wtuv—-v =0

Compute dv/du by implicit differentiation. Find the point (u, v) on the curve
where dv/du = 0 and u # 0.
For each of the following equations, answer the question: If y = f(x) is a

differenniable function that satifies the equation, what is y’'? (a is a positive
constant.),

a. x> +y' =ad’ b. Vx+./y=+a ¢ xf -yt =x%’

According to Wold, the demand Q for butter in Stockholm during the period
1925-1937 was related to the price P by the equation

Q-P?=38

Find dQ/d P by implicit differentiation. Check the answer by using a dif-

ferent method to compute the derivative.

Suppose that f and g are two functions defined in an open interval I.

a. If f(xo) = g(xo) for some x, € I, what can you conclude about f'(xp)
and g'(x)?

b. If f(x) = g(x) forall x € I, and if xo € I, what can you conclude about
f'(x0) and g'(x0)?
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7. A standard model for income determination in an open economy is

Y=C+I+X-M (1]
C=f@) [2]
M = g(Y) [3]

where 0 < f'(Y) < 1. Here X is an exogeneous constant that denotes
exports, whereas M denotes the volume of imports. The function g in (3]
is called an import function. By inserting {2] and [3] into [1], we obtain
an equation that defines Y as a function of exogeneous investment /. Find
a expression for dY /dI by implicit differentiation. What is the likely sign
of g’(Y)? Discuss the sign of dY /d 1.

8. If a = m/n, where m and n are integers, the power rule (4.24) gives
y=x"" = y' = (m/m)x "M

Verify this result (assuming that y is differentiable) by differentiating the
equation y" = x™ implicitly with respect to x.

9. If f and g are differentiable and g (f(x)) = x for all x, find an expression
for f'(x) in terms of the derivative of g.

5.4 Linear Approximations and Differentials

When a complicated function is difficult to work with, we sometimes try to find a
simpler function that in some sense approximates the original one. Linear functions
are very easy to manipulate. It is therefore natural first to try to find a “linear
approximation” to a given function.

Consider a function f(x) that is differentiable at x = a. The tangent to
the graph at (a, f(a)) has the equation y = f(a) + f'(a)(x — a) (see [4.4] of
Section 4.2). If we approximate the graph of f by its tangent line at x = a, as
shown in Fig. 5.2, the resulting approximation has a special name.

The linear approximation to f about a is

fx) = f(a)+ f'(a)(x —a) (x close to a) [5.5]

Note that if p(x) is the linear function f(a) + f'(a)(x — a) of x, then f and p
have both the same value and the same derivative at x = a.
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y=fx)

— . X

a

FIGURE 5.2 The approximation of a function by its tangent.

Example 5.12
Find the linear approximation to f(x) = ./x about a = 1.

Solution ~ We have f(x) = J/x =x'?, 50 f'(x) = 1x™*? and f'(1) =
1/3. Because f(1) = 1, using [5.5] yields

Jxx1+3x—1) (xcloseto])

For example, J1.03 =1+ %(1.03 -D=1+ %(0.03) = 1.01. The correct
value to 4 decimals is 1.0099. '

Example 5.13
In a paper by economists Samuelson and Swamy, the authors were concerned

with the behavior of the following function about ¢ = 0:

@) =(1+2+ 1)

Find the linear approximation to f(¢) about ¢ = 0.
Solution  Here f'(e) = 1 (1+ 3¢ +162)7"" .3 +¢) and s0 £/(0) = 2.
Because f(0) = 1, using [5.5] yields

(1+3e+ %82)1/2 ~1+3¢ (e close to0)

The Differential of a Function

Consider a differentiable function f(x), and let dx denote an arbitrary change in
the variable x. In this notation, “dx” is not a product of d and x. Rather, dx is a
single symbol representing the change in the value of x. The expression f'(x)dx
is called the differential of y = f(x). and it is denoted by dy (or df), so that

dy = f'(x)dx [5.6]

Note that dy is proportional to dx, with f’(x) as the factor of proportionality.
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y=fx)

>
>

xb xo +dx
FIGURE 5.3 A geometric representation of the differential.

Now if x changes by dx, then the corresponding change in y = f(x) is
Ay = f(x+dx) - f(x) [5.7]

By using the definitions of dy and Ay, replacing x by x + dx and a by x, the
approximation in [5.5] takes the form

Ay = dy = f'(x)dx

The differential dy is not the actual increment in y as x is changed to x +dx,
but rather the change in y that would occur if y continued to change at the fixed
rate f'(x) as x changes to x + dx. Figure 5.3 illustrates the difference between
Ay and dy. Consider, first, the movement from P to Q along the curve y = f(x):
as x changes by dx, the actual change in the vertical height of the point is Ay.
Suppose instead that we are only allowed to move along the tangent to the graph
at P. Thus, as we move from P to R along the tangent, the change in height that
cormresponds to dx is dy. Note that, as in Fig. 5.3, the approximation Ay =~ dy
is usually better if dx is smaller in absolute value, because the length of line
segment RQ representing the difference between Ay and dy tends to O as dx
tends to 0.

Rules for Differentials

The notation (d/dx)( ) calls for the expression in parentheses to be differentiated
with respect to x. In the same way, we let 4( ) denote the differential of whatever
is inside the parentheses.

Example 5.14
Compute the following:

(a) d(Ax® + B) (A. B, and a are constants)
(b) d(f(K)) (f a differentiable function of K)
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Solution

(a) Putting f(x) = Ax® + B, we get f'(x) = Aax“"!, so d(Ax® + B) =
Aax®~1dx.

(b) d (f(K)) = f(K)dK.

All the usual rules for differentiation can be expressed in terms of differen-
tials. If f and g are two differentiable functions of x. then the following holds.

Rules for Differentials

d(af +bg) =adf +bdg  (a and b are constants)
d(fg) =gdf + fdg

d (i) = M(g £ 0)
g g

[5.8]

Here is a proof of the second of these formulas:

d(fg) =(fg) dx=(f'g+ fghdx =gf' dx+ fg'dx = gdf + fdg

You should now prove the other rules in the same way.

Suppose that y = f(x) and x = g(¢) is a function of 7. Then y = A1) =
f(g(t)) is a function of . The differential of y = h(r) is dy = h'(t) dt. According
to the chain rule, 2'(t) = f'(g(1)) g'(t), so that dy = f'(g(r))g’(r) dr. Because
x = g(t), the differental of x is equal to dx = g'(¢) dt, hence

dy = f'(x)dx

This shows that if y = f(x), then the differential of y is equal to dy = f'(x)dx,
whether x depends on another variables or not.
Economists often use differentials in their models. A typical example follows.

Example 5.15
Consider again the model in Example 5.8 of Sec. 5.3:

MY=C+I [21C=7f)

Find the differential dY expressed in terms of 4/. If in addition to [1] and [2]
it is assumed that employment N = g(Y) is a function of Y, find also the
differential dN expressed in terms of 4.

Solution Differentiating [1] and [2], we obtain

[3]1dY =dC +dlI [4] dC = f'(Y)dY



166 Chapter 5 / More on Differentiation
Substituting dC from [4] into [3] and solving for 4Y yields

1

= —dl
A=T"mm

(5]

which corresponds exactly to [7] in Example 5.8. From N = g(Y). we get
dN =g'(Y)dY, so

g')

R - A 6
- 7 fo]

dN

Provided that g’(Y) > 0 and f’(Y), the marginal propensity to consume, is
between 0 and 1, we see from [6] that if investment increases, then employ-
ment increases.

Problems

1. Provethat /1 + x & 1+1x, for x close to 0, and illustrate this approximation
by drawing the graphs of y = 1+ 1x and y = +/1 + x in the same coordinate
system.

2. Use [5.5] to find the linear approximation to f(x) = (5x+3)~2 about xg = 0.

3. Find the linear approximation to the following functions about xo = O:

a fO=0+0" b f@O=>1+x" o fB=0-0%

4. Find the linear approximation to F(K) = AK® about Ko = 1.

5. Prove that (1 + x)™ = 1 + mx, for x close to 0, and use this approximation
to find approximations to the following numbers:

) 1\ 1A 1\ !/
a.f_’1.1=<1+m) b. 8 =2(1+ )

32
c. V9=v8+1 d. (1.02)%
- 1/3
~ D
e. V37 =36+1 f. (26.95)!7° = (27 - ﬁ)
6. Compute Ay = f(x +dx5 — f(x) and the differential dy = f’(x) dx for the

following:
a. f(x) = x>+ 2x — 3 when (i) x = 2, dx = 1/10, and (i) x = 2,

dx = 1/100.
b. f(x) = 1/x when (i) x = 3, dx = —1/10, and (ii) x = 3, dx =

—1/100.

¢. f(x) = /X when (i) x = 4, dx = 1/20, and (ii) x =4, dx = 1/100.

7. The radius of a ball increases from 2 to 2.03. Estimate the increase in volume
of the ball by using a linear approximation. Compare with the actual increase
in volume. (Hint: See Appendix D.)
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Harder Problems
8. Find the linear approximation to the function
g(u) = Al + p)2/1+6) (A, a, and b are positive constants)

about the the point u = 0.

5.5 Polynomial Approximations

The previous section discussed approximations of functions of one variable by
linear functions. In particular, Example 5.12 established the approximation

Jx=1l+3x-1) (x close to 1) (1]

In this case, at x = 1, the functions y = ./x and y = 1 + %(x — 1) have the same
value, 1, and the same derivative, 1/3.

If approximation by linear functions is insufficiently accurate, it is natural to
try quadratic approximations, or approximations by polynomials of higher order.

Quadratic Approximations
We begin by showing how a twice differentiable function y = f(x) can be ap-
proximated near x = a by a quadratic polynomial

fx) %p(x)=A-+-B(x—a)-+—C(x——a)2

There are three coefficients, A, B, and C, to be determined. So we are free
to impose three conditions on the polynomial. We will assume that f(x) and
p(x) = A+ B(x —a) + C(x — a)* have the same value, the same derivative, and
the same second derivative at x = a. In symbols, we require that f(a) = p(a),

f'(@) = p'(a), and f"(a) = p”(a). Now
p'(x) = B+2C(x — a). p'(x) =2C

So, after inserting x = a into our expressions for p(x), p’(x), and p”(x), it follows
that A = p(a), B = p'(a), and C = %p”(a). Hence:

The quadratic approximation to f(x) about x =g 1

f = f@+ f@x—a)+3f"@x~a)?  (x close to a) [5.9]
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For a = 0, in particular, we obtain the following:

f&) = fO) + f'O)x +3f'(0)x*  (x close to 0) [5.10]

Example 5.16
Find the quadratic approximation to f(x) = Jx about g = 1.

Solution  Here f'(x) = 3x%? and f”(x) = }(—=$)x~/. It follows that
f'(1) = 5 and f”(1) = —3. Because f(1) =1, using [5.9] yields

SAxl+la-1)—tx-1 (xclosetol)

For example, v/1.03 ~ 1+1-0.03 - 5(0.03)* = 1+0.01 —0.0001 = 1.0099,
which 1s correct to 4 decimals.

Example 5.17
Find the quadratic approximation to f(x) = (5x + 3)~2 about x = 0.

Solution  Here f'(x) = —10(5x + 3)73 and f”(x) = 150(5x + 3)~%,
so that £(0) = 1/9, f'(0) = —10/27, and f”(0) = 50/27. Hence, [5.10]

gives

1 1_10 %5, o]
Gr+32 9 2177727

&

Example 5.18
Find the quadratic approximation to y = y(x) about x = O when y is defined
implicitly as a function of x near (x, y) = (0, 1) by
3 —
v 4+1l=y [1]
Solution Implicit differentiation of [1] with respect to x yields

¥+ 3xyly =y 2]

Substituting x = 0 and y = 1 into [2] gives y’ = 1. Differentiating [2] with
respect to x now yields

357y + (By* + 6xyy")y’ + 3xy2y" = y”

Substituting x =0, y = 1, and y’ = 1, we obtain y” = 6. Hence, according
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to [5.10].
y(x) = y(0) + ¥ (0)x + 3y"(0)x* = 1 + x + 3x*

Higher-Order Approximations

So far, we have considered linear and quadratic approximations. We can find better
approximations near one point by using polynomials of a higher degree. Suppose
we want to approximate a function f(x) over an interval centered at x = a with
an nth-degree polynomial of the form

p(x) =Ag+ A (x—a)+ Ar(x —a)* + As(x —a) + -+ A,(x—a)" (1]

Because p(x) has n+1 coefficients, we can impose the following n + 1 conditions
on this polynomial:

f@=p@, f@=p@. ... [fP@=p"0@ [
These conditions require that p(x) and its first n derivatives agree with the value of
f(x) and its first n derivatives at x = a. Let us see what these conditions become
when n = 3. In this case,
p(x) = Ao+ A1(x — a) + Ax(x —a)* + A3(x — a)’
and we find that

p'(x) = A; +2As(x — a) +3A3(x — a)*
p"(x) =2A>+2-3A3(x —a)
p(x) =2-3A;

Thus, when x = a, we have!
p(a) = A, p'(a) =11 Ay, p"(a) =2! As. p"(a) = 3! As
This implies the following approximation:
) f@+ = F @ = a) + 5 @6 — 0 + 5, f@)x ~ o)
The general case follows the same pattern. When p(x) is given by [1], yields

IFor the definition of n!. see Problem 6 of Section 4.7.
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successive differentiation of p(x)
p'(x) = A; +24x(x —a) + 343(x —a)* + - - -+ nA,(x —a)""!
p'(x) =2A4s+3-243(x —a) +--- +n(n — DA, (x —a)"?
p"(x)=3-2A35+4 -+ nn—1)(n —2)A(x —a)">

[3]
pPx)=4-3-244+---+n(n—1n—-2)(n-3)A,(x —a)"*
Py =nn—(n-=2)---2-14,
Substituting x = a into [3] gives
pl@=1'4,, p'(a)=2'4s, ..., p™(a) =n'A, [4]

This leads to the following approximation to f(x) by an nth degree polyno-
mial.

Approximation to f(x) about z = a:

f(x)%f(a)'f‘T(X—a)-i-

F® @ [5.11]

f'(a) f"(a) x — )’

2
e

The polynomial on the right-hand side of [5.11] is called the nth-order Taylor
polynomial for f about x = a.

The function f and its nth-order Taylor polynomial have such a high degree
of contact at x = a that it is reasonable to expect the approximation in [5.11] to
be good over some (possibly small) interval centered about x = a. Section 7.4
analyses the error that resuits from using such polynomial approximations. In the
case when f is itself a polynomial whose degree does not exceed n, the formula
becomes exact, without any approximation error at any point.

Example 5.19 ‘
Find the third-order Taylor approximation of f(x) = +/1+ x abouta =0.

Solution = We write f(x) = +/1 +x = (1 +x)!'/2. Then we have f'(x) =
1/2)A + x)7'2, f(x) = (1/2)(=1/2)(1 + x)77, and f"(x) = (1/2)
(—=1/2)(=3/2)(1 + x)~372. Putting x = 0 gives f(0) = 1, f'(0) = 1/2,
f'(0) = (1/2)(=1/2) = —1/4, and finally f"'(0) = (1/2)(=1/2)(=3/2) =
3/8. Hence, by [5.11] for the case n = 3, we have

11 1 1 13 1
f(X)%l+l—!5x+5(——)x2+—.—x3=1+—x——x2+—x°
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Problems

1. Find quadratic approximations to the following functions about the given
points:
a. f(x)=(10+x)° a=0 b. F(K) = AK*, K;=1
2
¢ fO=(1++1A)" 0=0 dH®=0-0", a=0
2. In connection with a study of attitudes to risk, the following approximation
to a consumer’s utlity function is encountered. Explain how to derive this
approximation.

Uy+M—-s)=Uy) +U ()M —s5)+ 30" ()M —5)?

3. Find the quadratic approximation about x = 0, y = | for y when y is defined
implicitly as a function of x by the equation 1 + x>y 4+ x = y!/2.

4. Let the function x(z) be given by the conditions x(0) = 1 and

(1) = 1x(1) +2[x ()’

Determine the second order Taylor polynomial for x(z) about ¢+ = 0.

w

. Establish the approximation

(o) =g 2 ()

6. The function 4 is defined for all x > O by

xP — x4

h(x) =
) xP + x4

(p>q>0)

Find the first-order Taylor polynomial about x =1 for A(x).

5.6 Elasticities

Why do economists so often use elasticities instead of derivatives? Suppose we
study how demand for a certain commodity reacts to price changes. We can ask
by how many units the quantity demanded will change when the price increases
by $1. In this way, we obtain a concrete number, a certain number of units.
There are, however, several unsatisfactory aspects of this way of measuring the
sensitivity of demand to price changes. For instance, a $1 price increase per pound
of coffee may be considerable, whereas a $1 increase in the price of a car is
insignificant.

This problem arises because the sensitivity of demand to price changes is
being measured in the same arbitrary units as those used to measure both quantity
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demanded and price. The difficulties are eliminated if we use relative changes
instead. We ask by what percentage the quantity demanded changes when the
price increases by 1%. The number we obtain in this way will be independent of
the units in which both quantities and prices are measured. It is called the price
elasticity of demand, measured at a given price.

In 1960, the price elasticity of butter in a certain country was calculated to
be approximately —1. This means that an increase of 1% in the price would lead
to a decrease of 1% in the quantity of butter demanded, if all the other factors that
influence the demand for butter remained constant. In the same year, the demand
elasticity for potatoes was calculated to be —0.2. What does this mean? Why do
you think the absolute value of this elasticity is so much less than that for butter?

Assume now that the demand for a commodity can be described by the
function ‘

x = D(p) [1]

When the price changes from p to p-+ Ap, the quantity demanded, x, also changes.
The absolute change in x is Ax = D(p + Ap) — D(p), and the relative (or
proportional) change is

Ax _ D(p + Ap) — D(p)
x D(p)

The ratio between the relative change in the quantity demanded and the
relative change in the price is

Ax yb8p _pbx _ p D(p+4p)~D(p) ]
X D xAp  D(p) Ap

When Ap = p/100 so that p increases by 1%, then [2] becomes (Ax/x) - 100,
which is the percentage change in the quantity demanded. We call the proportion in
[2] the average elasticity of x in the interval [p, p+ Ap]. Observe that the number
defined in [2] depends both on the price change Ap and on the price p, but is unit-
free. Thus, it makes no difference whether quantities are measured in tons, kilo-
grams, or pounds, or whether the prices are measured in dollars. pounds, or crowns.

We would like to define the elasticity of D at p so that it does not depend
on the size of the increase in p. We can do this if D is a differennable function
of p. For then it is natural to define the elasticity of D in p as the limit of the ratio
in [2] as Ap tends to 0. Because the Newton quotient [D(p + Ap) — D(p)] /Ap
tends to D’(p) as Ap tends to 0, we obtain

p dD(p)
D(p) dp

Usually, we get a good approximation to the elasticity by letting Ap/p = 1/100 =
1% and computing p Ax/x Ap.

the elasticity of D(p) with respect to p is
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Example 5.20
Assume that the quantity demanded for a particular commodity is given by
the formula

D(p) = 8000p~"~

Compute the elasticity of D(p) and find the percentage change in quantity
demanded when the price increases by 1% from p = 4.

Solution We find that

dD(p)

= 8000 - (-1.5)p~*~ = —12,000p~%°
dp

so that the elasticity of D(p) with respect to p is

D .\
p_ dD(p) _ p - (~12.000)p~23
D(p) dp 8000 - p~!3
_ 12,000 p - p~23 15
~ 8000 p-1ts T

The elasticity 1s a constant equal to —1.5, so that an increase in the price of
1% causes quantity demanded to decrease by about 1.5%.

In this case we, can compute the decrease in demand exactly. When
the price is 4, the quantity demanded is D(4) = 8000 -4~'> = 1000. If the
price p = 4 is increased by 1%, the new price will be 4 + 4/100 = 4.04, so
that the change in demand is

D(4.04) — D(4) = 8000 - 4.04™'° — 1000 ~ —14.81

The percentage change in demand from D(4) = 1000 is approximately
—(14.81/1000) - 100 = —1.481.

The General Definition of Elasticity
Suppose function f is differentiable at x. If f(x) 5 0, we define the following:

The elasticity of f with respect to x is

X 4
El, f(x) = mf (x) [5.12]

Other notation used instead of El, f(x) for the elasticity when y = f(x) includes
El;y and ¢,,.
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Example 5.21
Find the elasticity of f(x) = ax® (a and b are constants, and a # 0).

Solution  In this case, f'(x) = abx®~'. Hence,
El, (ax®) = —abx*~' = b
axb

Example 5.22
Let D(p) denote the demand function for a product. By selling D(p) units

at price p, the producer earns revenue R(p) given by

R(p) = pD(p)
By the product rule,

R'(p) = D(p) + pD'(p) = D(p) [1 + —"—D'(p)]
D(p)

so that
R'(p) = D(p)[1 +EL,D(p)]
and

_pR(p) _R(p)
A T TS

=1+EL,D(p)

Observe that if El,D(p) = —1, then R'(p) = 0. When the price elasticity of
the demand at a point is equal to —1, a small price change will have (almost)
no influence on the revenue. More generally, the marginal revenue generated
by a price change is positive if the price elasticity of demand is greater than
—1, and negative if the elasticity is less than —1. And the elasticity of
revenue w.r.t. price is exactly one greater than the price elasticity of demand.

There are some rules for elasticities of sums. products. quotients. and com-

posite functions that are occasionally useful. You are encouraged to derive these
rules in Problem 7.

Problems

1. Find the elasticities of the functions given by the following formulas:

< A
a. 3x7° b. —100x'® C. VX d.
VX xJ/x
2. A study of transport economics uses the relation T = 0.4K %, where K is
expenditure on building roads, and 7 is a measure of traffic volume. Find
the elasticity of 7 w.r.t. K. An increase in expenditure of 1% corresponds

(A constant)

— — A ——— ——

——— e e e ——

- —— e —y

-
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in this model to an increase in the volume of traffic of approximately how
many percent?

3. A study of Norway’s State Railways reveals that, for rides up to 60 km, the
price elasticity of the volume of traffic is approximately —0.4.
a. According to this study, what 1s the consequence of a 10% increase in
fares?
b. The corresponding elasticity for journeys over 300 km is calculated to
be approximately —0.9. Can you think of a reason why this elasticity is
larger in absolute value than the previous one ?

4. Use the definition [5.12] to find El, f (x) for the following:

a. fx)=A (A constant) b. f(x)=x+1 ¢ f(x)=(—-x)P
S. Prove that El, f(x)? = p El, f(x) (p constant).
6. Compute El; Af (x) and El, [A + f (x)} (A constant).

Harder Problems

7. Prove that if f and g are differentiable functions of x and A is a constant,
then the following rules hold (where we write, for instance, El, f instead of
El, f (x))-

a. ELA=0
b. Elx(fg) = Ele + Elxg
c El (f/g) = El}é l—fElxg -
+gklg
d. EL(f +g) = —
F+sg
f Ele -8 Elxg

e. EL(f—-g) =

—&
f. El, f(g(x)) = El, f(u) El,u (where u = g(x))
8. Use the rules in Problem 7 to calculate the following:

a. El.3x3 b. EL.(x + x3) ¢. EL(x*+D°
-1
d. El,El,5x2 e. EL(1 +x?) LE (2
x>+ 1

9. Assume that f is a differentiable function with f(x) # 0. Find expressions
for the elasticity of the following:

a. %3 f(x) b. (f(0))" e x+Vf&x) d 1/f()
10. Find the elasticity of y with respect to x for the following:

a. y¥=x" b Z=@+1)°y~1" (aandb are constants)
X
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We could, of course, dismiss the rigorous proof as
being superfluous: if a theorem is geometrically
obvious why prove it? This was exactly the attitude
taken in the eighteenth century. The result, in the
nineteenth century, was chaos and confusion: for
intuition, unsupported by logic, habitually assumes
that everything is much nicer behaved than it really is.
—1. Stewart (1975)

This chapter is concerned with limits, continuity, and series—key ideas in math-
ematics, and also very important in the application of mathematics to economic
problems. The preliminary discussion of limits in Section 4.4 was necessarily very
sketchy. In this chapter, we take a closer look at this concept and extend it in
several directions.

Without limits, the real number system would be seriously incomplete. We
would essentially be confined to those numbers that can be calculated precisely
in a finite number of steps—for example, integers and rational numbers. In or-
der to assert that the equation x> — 2 = 0 has a positive solution x = V2. and
(perhaps more important) to be able to give arbitrarily accurate approximations
to /2, we really need to be able to define +/2 as a limit. This is implicitly
what we do when we write ~/2 ~ 1.41421.... We have in mind an infinite
sequence of decimal expansions, starting with 1, 1.4, 1.41. 1.414. .... which
get closer and closer to the limit +/2. In this way, /2 is effectively regarded
as a limit of a sequence of rational numbers; the same is true for all irrational

numbers. Thus, limits arise in the study of infinite series, another topic in this
chapter.
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Recall too that the dernivative of a function, measuring its rate of change.
was defined using limits. In fact, in Section 4.2 we defined the derivative of
f ata as f'(a) = limp—olf(a + h) — f(a)]/h. There is in addition a close
connection between the limit concept and the idea of conrinuiry, which will also
be discussed. An optional section giving a precise definition of limits ends this
chapter.

6.1 Limits

Section 4.4 gave a preliminary discussion of limits. We now supplement this with
some additional concepts and results, still keeping the discussion at an intuitive
level. The reason for this gradual approach is that it is important and quite easy
to acquire a working knowledge of limits. Experience suggests, however, that
the precise definition is rather difficult to understand, as are proofs based on this
definition.

Limits That Do Not Exist: One-Sided Limits

Suppose f is defined for all x close to a, but not necessarily at a. According to
[4.14] of Section 4.4, the function f(x) has the number A as its limit as x tends
to a, provided that the number f(x) can be made as close to A as one pleases for
all x sufficienty close to (but not equal to) a. Then we write

lim f(x) = A or fx)=>A as x—a

In this case, we say that the limit exists. The graphs of Figs. 6.1 and 6.2 show two
cases where f(x) does not tend to any limit as x tends to a.

FIGURE 6.1 lim f(x) = oc.

X—a

v ¥
" )
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7 2 —
FIGURE 6.2 1im #(x) does not exist.

X—a

Figure 6.1 shows the graph of a function such as f(x) = 1/|x — a] or
f(x) = 1/(x — a)?, which increases without bound as x tends to a (either from
the right or from the left). We write f(x) — o0 as x — a, or lim,,, f(x) = o0.
Because f(x) does not tend to a definite (finite) number as x tends to a, we say that
the limit does not exist. (In a sense, there is an infinite limit, but we follow standard
mathematical practice in insisting that limits be finirze numbers.) The straight line
x = a is called a vertical asymptote for the graph of f.

The function whose graph is shown in Fig. 6.2 also fails to have a limit as
x tends to a. However, it seems from the figure that if x tends to a from below,
then f(x) tends to the number B. We say, therefore, that the limit of f(x) as x
tends 1o a from below is B, and we write

lim f(x)=B or fx)=- B as x—a

Analogously, also referring to Fig. 6.2, we say that the limir of f(x) as x tends to

a from above is A, and we write

lim f(x)=A or f(x)y—> A as x—a*

x~at

We call these one-sided limits, the first from below and the second from above.
They can also be called left limits and right limits, respectively.

Necessary and sufficient conditions for the (ordinary) limit to exist are that
the two one-sided limits of f at a exist and are equal:

lim f(x)=A < lim f@)=A4 and lim fx)=4 [6.1]

X—>a~ x—=>ra~

It should now also be clear what is meant by

lim f(x) =00 (or —o¢) and 1im+ f(x) =00 (or —o0)

xX—=ra~

In these cases, despite the notation, we say that the limits do not exist.
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1] |
N | | | y=fx)
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o
2 3 4 5 \6 / 7 8 9
FIGURE 6.3
Example 6.1
Figure 6.3 reproduces Fig. 4.12 of Section 4.4, and shows the graph of a
function f defined on [0,9]. Using the figure, verify (roughly) that the
following limits are correct:
lim f(x) =1/2, lim f(x) =3, lim f(x)=3.5
x—=4- x—4+ x—9-
Example 6.2

Explain the following limits:

.1 .1
lim - = —cx, lim — = o0.
x=0- X x—0* x
y 1 I —1
im = 00, im = —00
=2 N2 —x x=2 \fx =2

Solution If x is negative and close to 0, then 1/x is a large negative
number. For example, 1/(—0.001) = —1000. In fact, 1/x decreases without
bound as x tends to zero from below, and it is reasonable to say that 1/x
tends to minus infinity as x tends to O from below.

The second limit is very similar, except that 1/x is large and positive
when x is positive and close to 0.

If x 1s slightly smaller than 2, then 2 — x 1s positive, sO /2 —x
is close to 0, and 1/4/2 — x is a large positive number. For example,
1/4/2-19999 = 1/4/0.0001 = 100. As x tends to 27, so 1/+/2—x
tends to <.

The fourth limit i1s similar, because when x 1s slightly larger than 2,
then +/x — 2 is positive and close to 0, so —1/+/x — 2 is a large negative
number.
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Limits at Infinity

We can also use the language of limits to describe the behavior of a function as its
argument becomes infinitely large through positive or negative values. Let f be
defined for arbitrarily large positive numbers x. We say that f(x) has the limit A
as x tends to infiniry if f(x) can be made arbitrary close to A for all x sufficiently
large. We write

lirr;of(x)zA or fx)— A as x—> o

In the same way,

lir_rioof(x)=B or  f(x)—= B as x— —00

indicates that f(x) can be made arbitrary close to B for all x sufficient-
ly large and negative. The two limits are illustrated in Fig. 6.4. The hori-
zontal line y = A is a (horizontal) asymptote for the graph of f as x tends
to oo, whereas y = B is a (horizontal) asymptote for the graph as x tends

to —00.
Example 6.3
Examine the behavior of the following functions, both as x — oo and as
X = —00:
3x?4+x—-1
a =—
@ f0) ==
1—-x°
O e =

FIGURE 6.4 y = A and y = B are horizontal asymptotes.
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Solution

(a) A rough argument is as follows: If x is a large negative or a large pos-
itive number, then the term 3x> “dominates” in the numerator, whereas
x? dominates in the denominator. Thus, if |x| is a large number, f(x)
behaves like the fraction 3x?/x? = 3. We conclude that f(x) tends to
3 as |x]| tends to o<.
More formally we argue as follows. First, divide each term in
the numerator and the denominator by the highest power of x, which
is x2, to obtain

3 +x =1 3+ 1/x)=(1/x?)
x2+1 14 (1/x2)

fx)=

If x is large in absolute value, then both 1/x and 1/x2 will be close
to 0. Thus, f(x) is arbitrarily close to 3 if |x| is sufficiently large,
and

lim f(x)= lim_ f(x)=3

(b) A first rough argument is that if |x| is a large number, then g(x) behaves
like the fraction —x°/x* = —x. Therefore, g(x) - —o00 as x — oc,
whereas g(x) = o¢ as x = —00. Alternatively,

1—x N (1/x*) —x
x*4+x+1 " 14 (1/x3) +1/x*

glx) =

You should now finish the argument yourself along the lines given in
part (a).

Warnings

We have extended the original definition of a limit in several different direc-
tions. For these extended limit concepts, the previous limit rules set out in Sec-
tion 4.4 still apply. For example, all the results in [4.15] on sums, products,
and ratios of limits as x — a are valid if we consider only left limits with
x — a~, or only right limits with x — a™. Also, if we replace x — a by
x — 00 or x — —o¢ in [4.15], then again the corresponding limit properties are
valid.

When f(x) and g(x) both tend to oo as x tends to a (possibly with x — a
replaced by x — a~ or x — a™), we must be much more careful. Because f(x)
and g(x) each can be made arbitrarily large if x is sufficiently close to a, both
f(x)+ g(x) and f(x) - g(x) also can be made arbitrarily large. But, in general,
we cannot say what are the limits of f(x) — g(x) and f(x)/g(x). The limits of
these expressions will depend on how “fast” f(x) and g(x), respectively, tend to
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o¢ as x tends to a. Briefly formulated:

lim,_, [f(x)+ e<x>}
lim, ., [f(x) g(x)}
lim,_., [f(x) - g(x)] =1
lim, ., [f(x)/g(x)] =?

The two question marks mean that we cannot determine the limits of f(x) — g(x)
and f(x)/g(x) without having more information about f and g. We do not even

know if these limits exist or not. The following example illustrates some of the
possibilities.

Iim f(x) =0 and limg(x) =00 =>
X—>Q X—a

Example 64
Let f(x) = 1/x? and g(x) = 1/x*. As x — 0, then f(x) — oo and
g(x) - oo. Determine the limits as x — 0 of the following:

(@) fx)—gx)
(b) g(x) — f(x)
(©) f(x)/g(x)
@) g(x)/fx)

Solution
@  f@—g) =l a0 as x—0
(b) g(x) — f(x)=—— > 00 as x—0
(c) fx)/g(x)=x>—>0 as x—0
(d) gx)/ fx)=1/x>*>00 as x—0

These examples serve to illustrate that infinite limits require extreme care.
Let us consider some other tricky examples.

Suppose we study the product f(x)-g(x) of two functions, where g(x) tends
to 0 as x tends to a. Will f(x)-g(x) also tend to 0 as x tends to a? Not necessarily.
If f(x) tends to a limit A, then by rule [4.15](iii) of Sec. 4.4, f(x) - g(x) tends
t0o A -0 = 0. On the other hand, if f(x) tends to o0, then it is easy to construct
examples in which the product f(x) - g(x) does not tend to O at all. (You should
try to construct some examples of your own before turning to Problem 4.)

The rules for limits in [4.15] are fundamental. However, one must be careful
not to read more into them than what they actually say. If f(x) tends to the
number A and g(x) tends to the number B as x tends to a, then by [4.15](a) we
see that f(x) + g(x) tends to A + B as x tends to a. But the sum f(x) + g(x)
might very well tend to a limit even though f(x) and g(x) do not tend to a limit.
The same goes for the fraction f(x)/g(x).
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Example 6.5

Let f(x) =3+ 1/x and g(x) = 5 — 1/x. Examine the limits as x — 0 of
(@) f(x) +g(x) and (b) f(x)/g(x).

Solution We find that

(a) fx)+gx)=8—>8 as x—0

f(x)_3x+l_)_ _
(b) 2 - 5x =1 1 as x—0

But in this case neither f(x) nor g(x) tends to a limit as x tends to 0. In
fact, f(x) — oo and g(x) = —oo0 as x — 0™,

whereas f(x) - —o¢ and
gx) > ocas x — 0.

Problems

1. Evaluate the following limits:

X+ +
a. lim (x? + 3x — 4) b. lim ¢ lim 2
x=0~ =0~ X =0~ X
-1
d lim —= e. lim —— £ lim
x—0* ﬁ x=3*X —) x—3" X —
2. Evaluate the following limits:
-3 : 2+3 : - b)?
a. lim x, b. lim a c. lim ax - 5)
x—20 x* 4+ 1 x——c<c V x—1

x— (@ — x)(b — x)
3. A function f defined for x > b has a graph indicated by Fig. 6.5.

a. Determine likely values of the following limits: (i) lim,,- f(x),
(i) Hme_o- f(x), Qi) limeg- f(x), (V) lim,_ o f(x).
b. Only one of the following limits is defined. Which one?

lm f(x). 1irr5f(x), lim f(x)

FIGURE 6.5

y
a
i
|
|
1

I
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4. Let fi(x) =x, folx) =x, f5(x) = x%, and falx)=1/x. Fori =1, 2, 3, 4,
determine lim,_, o, f;(x). Then examine the limits of the following functions
as x — oo:

a. filx)+ folx) b. fi(x) — fa(x) c. filx) — fi(x)
d. ix)/fa(x) e. fi(x)/f3(x) f. filx)- falx)
g fix) - fa(x) h. f3(x) - fa(x)

. The nonvertical line y = ax + b is said to be an asymptote as x — oo (or
x = —0) to the curve y = f(x) if

f(x)—(ax+b) >0 as x — 00 (orx = —00)

This conditon means that the vertical distance between point (x, f(x)) on
the curve and point (x,ax + b) on the line tends to 0 as x — +oc. (See
Figure 6.6.)

If f(x) = P(x)/Q(x) is a rational function where the degree of the
polynomial P(x) is one greater than that of the polynomial Q(x), then
f(x) will have an asymptote that can be found by performing the long di-
vision P(x) <+ O(x) and ignoring the remainder. Use this method to find
asymptotes for the graph of each of the functions defined by the following
formulas:

x2 2x3 -3x24+3x -6 3x2 + 2x 5x* =3x2 +1
a. b. = c. —— d
x+1 x2+1 x—1 x3 -1

. Consider the following cost function defined for x > 0 by

x(x+b)+
xX+c

Cx)=A d

Here A, b, ¢, and d are positive constants. Find the asymptotes.

FIGURE 6.6

¥
A

y=f(x)\ .

< Cy=ax+b
\\
\

v f(x) = (ax + b)

—T —> X
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6.2 Continuity

The word continuous 1s rather common 1n everyday language. We use it, in
particular, to characterize changes that are gradual rather than sudden. This usage
is closely related to the idea of a continuous function. Roughly speaking, a function
is continuous 1if small changes in the independent variable produce small changes
in the function values. Geometrically, a function is continuous if its graph is
connected—that is, it has no breaks. An example is indicated in Fig. 6.7.

It is often said that a function 1s continuous if its graph can be drawn without
lifting one’s pencil off the paper. On the other hand, if the graph makes one or
more jumps, we say that f 1s discontinuous. Thus, the function whose graph is
shown in Fig. 6.8 is discontinuous at x = a, but continuous at all other points of
the interval that constitutes its domain.

Why are we interested in distnguishing between continuous and discontinu-
ous functions? One important reason is that we must usually work with numerical
approximations. For instance, if a function f is given by some formula and we wish
to compute f(~/2), we usually take it for granted that we can compute f(1.4142)

FIGURE 6.7 A continuous function.

fx

¢

/ "’ "

FIGURE 6.8 A discontinuous function.
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and obtain a good approximation to f(+/2). In fact, this implicitly assumes that f
is continuous. Then, because 1.4142 is close to /2, the value f(1.4142) must be
close to f (\/5).

In applications of mathematics to natural sciences and economics, a function
will often represent the change in some phenomenon over time. The contnuity
of the function will then reflect the continuity of the phenomenon, in the sense of
a gradual development without sudden changes. We might, for example, think of
a person’s body temperature as a function of time. Here we may assume that it
changes continuously and that it does not jump from one value to another without
passing through the intermediate values. On the other hand, if we consider the price
of a barrel of oil in a certain market, this function of time will be discontinuous.
One reason is that the price (measured in dollars or some other currency) must
always be a rational number. A second, more interesting, reason for occasional
large jumps in the price is the sudden arrival of news or a rumor that significantly
affects either the demand or supply function.

The concept of continuity just discussed must obviously be made more precise
before we can operate with it as a mathematical concept. We must search.for a
definition of continuity not solely based on intuitive geometric ideas.

Continuous Functions

We suggested earlier that a function is continuous if its graph is a “connected”
curve. In particular, we say that f is continuous at a point a if the graph of f
has no break at a. How do we define this precisely? It is evident that we must
consider the value of f at points x close to a. If the graph of f has no break at a,
then f(x) cannot differ much from f(a) when x is close to a. Stated differently.

if x is close to a, then f(x) must be close to f(a). This motivates the following
definition:

Suppose f is defined on a domain that includes an open interval around a.
Then f is continuous at x = a provided that f(x) tends to f(a) in the limit
as x tends to a:

f is continuous at x = a if lim f(x) = f(a) (6.2]

Hence, we see that in order for f to be continuous at x = g, the following three
conditions must all be fulfilled:

1. the function f must be defined at x = a
2. the limit of f(x) as x tends to ¢ must exist
3. this limit must be exactly equal to f(a)
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FIGURE 6.9 f has two points of discontinuity. x = a is an irremovable discontinuity
and x = b is a removable discontinuity.

Unless all three of these conditions are satisfied, we say that f is discontinuous
at a. Figure 6.9 indicates two important types of discontinuity that can occur. At
x = a, the function is discontinuous because f(x) clearly has no limit as x tends
to a. Hence, condition 2 is not satisfied. This is an “irremovable” discontinuity.
On the other hand, the limit of f(x) as x tends to b exists and is equal to A.
But because A 3 f(b). condition 3 is not satisfied, so f is discontinuous at
b. This is a “removable” discontinuity that would disappear if f(b) were rede-
fined as A.

Example 6.6
Let f(x) = 3x—2. In Example 4.7(a) of Sec. 4.4, we argued that f(x) tends
to 7 as x tends to 3. Because f(3) = 7, this means that f 1s continuous
at a = 3. Actually, this function is continuous at all points a, because
F(x) =3x — 2 always tends to 3a — 2 = f(a) as x tends to a.

Properties of Continuous Functions

Many of the central results of mathematical analysis are true only for continuous
functions. It is therefore important to be able to decide whether or not a given
function is continuous. The rules for limits given in Section 4.4 make it is easy
to prove continuity of many types of functions. Note that because of [4.18] and
[4.19],

f(x)=c¢ and f(x)= x are continuous everywhere [6.3]

This is as 1t should be, because the graphs of these functions are straight lines.
Now, using definition [6.2] and the limit rules in [4.15], we have the fol-
lowing:
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Results on Continuous Functions

If f and g are continuous at a, then

(@) f + g and f — g are continuous at a [6.4]
(b) f - g is continuous at a
(¢) f/g 1s continuous at a if g(a) # 0

@ [fx)] P4 is continuous at a if [f(@)] P3 is defined

The proofs of these properties are straightforward if we use the limit laws from
Section 4.4. For instance, to prove (b), if both f and g are continuous at a,
then lim,_., f(x) = f(a) and lim,_, g(x) = g(a). According to [4.15]@ii),
therefore, lim,_., f(x)g(x) = f(a)g(a), which means that f - g i1s continuous
at a.

By combining [6.3] and [6.4], it follows that, say, h(x) = x +8 and k(x) =
3x3 + x + 8 are continuous. In general, because a polynomial p(x) = a,x" +
@n,_1x"~' 4+ ... 4ap is a sum of continuous functions, it is continuous everywhere.
Moreover, a rational function

R(x) = i(x_) (P(x) and Q(x) are polynomials)
) poy

1s continuous at all x where Q(x) # 0.

Consider a composite function f(g(x)) where f and g are assumed to
be continuous. If x is close to a, then by the continuity of g at a, g(x) 1s
close to g(a): In turn, f(g(x)) becomes close to f(g(a)) because f is con-
tinuous at g(a), and thus f(g(x)) is continuous at a. A more formal proof

of this result requires the ¢8-definition of limits (see Section 6.7). For future
reference:

Composites of continuous functions are continuous:

If g is continuous at x = 4, and f is continuous at g(a), then f(g(x)) is [6.5]
continuous at x = a.

By using the results just discussed, a mere glance at the formula defining a
function will usually suffice to determine the points at which it is continuous.
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In general:

Any function that can be constructed from continuous functions by combin-
ing one or more operations of addition, subtraction, multiplication, division
(except by zero, of course), and composition is continuous at all points where
it is defined.

[6.6]

Example 6.7

Determine at which values of x the functions given by the following formulas
are continuous:

x*+3x2 -1
(@) &= a2y
(b) g) =+ 23+ 1/x0)* +1//x+1
Solution

(a) This is a rational function that is continuous at all x, except where

the denominator (x — 1)(x + 2) = 0. Hence, f is continuous at all x
different from 1 and —2.

(b) This function is defined when x # 0 and x + 1 > 0, or when x # 0
and x > —1. Hence, g is continuous in the domain (—1, 0) U (0, o0).

Knowing where a function is continuous simplifies the computation of many limits.
For instance, using the rules for limits, Example 4.9(a) showed the result that
lim,_ _» (x> + 5x) = —6. Because f(x) = x2 + 5x is a continuous function of x,
we know that lim,_. _» (x*>+5x) is simply f(—=2) = (=2)>+5(=2) =4-10 = —6.
Thus, we find the limit by just evaluating f(x) = x> + 5x at x = —2.

Functions that are defined “piecewise” by different formulas applying to
different intervals are frequently discontinuous at the junction points. For example,
the amount of postage you pay for a letter is a discontinuous function of the weight.
(As long as we use preprinted stamps, it would be extremely inconvenient to have
the “postage function” be even approximately continuous.) On the other hand, the
tax you pay as a function of your net income is (essentially) a continuous function
(although many people seem to believe that it is not). An actual tax function for
the U.S. 1s shown in Fig. 6.13 at the end of Sec. 6.3.

Example 6.8
For what values of a 1s the following function continuous everywhere?

_ Jax®*+4x -1, fx<l1
f(x)—{—x+3, ifx>1
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Solution The function is obviously continuous at all x # |. Forx =1,
the function is given by the upper formula, so f(1) = a + 3. If x is slightly

larger than 1, then f(x) = —x + 3 isclose to 2, and f(x) = 2asx — 1™.
In order to have f continuous at x = 1, we must have f(l) =a+3 = 2,
which requires a = —1. Thus, for @ = —1 the function is continuous at all

x, including at x = 1. If @ # —1, the function is discontinuous at x = 1,
but continuous at all other points. (Draw the graph of f for a =1 and for
a=-1)

One-Sided Continuity

Section 6.1 introduced one-sided limits. These allow us to define one-sided con-
tinuity. Suppose f is defined on a domain including the half-open interval (c, a].
If f(x) tends to f(a) as x tends to a~, we say that f is left-continuous at a.
Similarly, if f is defined on a domain including [a,d), we say that f is right-
continuous at ¢ if f(x) tends to f(a) as x tends to a™. For example, the function
f indicated earlier in Fig. 6.8 is right-continuous at a. Although f tends to a limit
as x tends to a from the left, f is not left-continuous at a, because the limit is
different from f(a).

Making use of [6.1] in Section 6.1, we readily see that a function f is
continuous at a if and only if f is both left- and right-continuous at a.

If a function f is defined on a closed, bounded interval {a, b], we usually
say that f is continuous in [a, b] if it is continuous at each point of (a.b), and
is 1n addition right-continuous at a and left-continuous at 5. It should be obvious
how to define continuity on half-open intervals. The continuity of a function at
all points of an interval, including any endpoints it contains, is often a minimum
requirement we impose when speaking about “well-behaved” functions.

Problems

1. Which of the following functions are likely to be continuous functions of
time?
a. The price in the Ziirich gold market of an ounce of gold.
b. The height of a growing child.
c. The height of an aeroplane above the ground.
d. The distance traveled by a car.

2. Consider the functions defined by the six graphs shown in Fig. 6.10.

a. Are any of these functions continuous at a?

b. For which of the functions will f(x) tend to a limit as x tends to a?

¢. Determine the limits of f(x) as x — a~ and x — a™ in each case.

d. Which of the functions are left-continuous at a, and which of them are
night-continuous at a?

e. What seems to be the limit of f(x) as x — oo¢ in graphs (v) and (vi) of
the figure?
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3.

n

2
(iv) (v) (V1)
FIGURE 6.10

Let f and g be defined for all x by

_x*-1., forx <0 _ ) 3x =2 forx <2
T = {—12, forx>0 2 g(x)_{—x+6. for x > 2

Draw a graph of each function. Is f continuous at x = 0? Is g continuous
at x = 2?

Determine the values of x at which each of the following functions is con-
tinuous:

]
a. f(x)=x>+4x b f(x)=1—i7 O
X x¥—-3x2+1 x+1\"?
i . ——— - ¥
x4+ 1 x*+2x =2 x—1
Jx +1/x 1 1 - 3
 —_— h. — i — +x’ AN
g x24+2x+2 |xH-le - ﬁ,x(x+ )

. For what value of a is the following function continuous for all x?

ax — 1, forx <1
f(x)—{3x2+1, for x > 1

Draw the graph of y as a function of x if y depends on x as indicated in
Fig. 6.11—that is, y is the height of the aeroplane above the point on the
ground vertically below. Is y a continuous function of x? Suppose d{x) is
the distance from the aeroplane to the nearest point on the ground. Is d a
continuous function of x?
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FIGURE 6.11

7. Functions f and g are discontinuous at x = a. Are f+g and f-g necessarily
discontinuous at a? If not, supply examples.

8. Let f be defined by f(x) = x> —2forx < 0, and f(x) = =3x>+ 15
for x > 2. Can you define f(x) as a linear function on [0, 2] so that f is
continuous for all x?

6.3 Continuity and Differentiability

Consider the function f graphed in Fig. 6.12. At point (a, f(a)). the graph does
not have (a unique) tangent. Thus f has no derivative at x = g, but f is continuous
at x = a. So a function can be continuous at a point without being differentiable
at that point. (For a standard example, see Problem 2.) On the other hand, it is
easy to see that differentiability implies continuity:

If f is differentiable at x = 4, then f is continuous at x = a. [6.7]

FIGURE 6.12 f is continuous, but not differentiable at x = a.
Y
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Proof Function f is continuous at x = a provided that f(a + h) — f(a)
tends 1o 0 as A — 0. Now, for h # 0,

fla+h) = fla)
h

fla+h)—fla)= h []

If f is differentiable at x = a, the Newton quotient [ fla+h)—f (a)] /h
tends to the number f'(a) as h — 0. So the right-hand side of [*] tends to
f'(@)-0=0as h — 0. Thus, f is continuous at x = a.

Suppose that f is some function whose Newton quotient [ fla+h)—f (a)} /h
tends to a limit as h tends to O through positive values. Then the limit is called
the right derivative of f at a, and we use the notation

fla+h)— f(a)

Tp N . 1:
fa )—hl_lg)l+ p [6.8]
The left derivative of f at a is defined similarly:
h) —
f@) = lim fla+ z @) [6.9]

if the one-sided limit exists.

If f is continuous at g, and if f'(a*) = & and f'(a™) = B with @ # 8, then
we say that the graph of f has a corner (or kink) at (a, f(a)). Then f is not
differentiable at a. Thus, the function in Fig. 6.12 has a comer at (a, f(a)). If f
is continuous at a and o = f, then the corner gets smoothed out and f is seen to
be differentiable at a.

Example 6.9 (U.S. Federal Income Taxes (1991) for single persons)
This income tax function was discussed in Example 2.10 of Section 2.4.
Figure 6.13 reproduces Fig. 2.21.! If z(x) denotes the tax paid at income x,

FIGURE 6.13 U.S. Federal income taxes (1991) (for single persons).
Tax ($1000)

20
15
10
5

T ’ Income

10 20 30 40 50 60 70 ($1000)

1Of course. Fig. 6.13 is an idealization. The true income tax function is defined only for integral
numbers of dollars—or. more precisely. it is a discontinuous “step function” which jumps up slightly
whenever income rises by another dollar.
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its graph has comers at x = 20,250 and at x = 49,300. We see, for in-
stance, that t'(20,2507) = 0.15 because on the last dollar you earn be-
fore reaching $20,250, you pay 15 cents. Also #'(20,2507) = 0.28 because
on the first dollar you earn above $20,250, you pay 28 cents in tax. Be-
cause 1'(20,2507) % 1'(20,250™), the tax function ¢ is not differentiable at
x = 20,250. Check that ¢'(49,300%) = 0.31.

Problems

1. Graph the function f defined by f(x) = 0 for x < 0, and f(x) = x for
x > 0. Compute f'(0%) and f'(07).

2. Function f-is defined for all x by f(x) = |x|. Compute f'(0%) and f'(07).
Is f continuous and/or differentiable at x = 0? (The graph is shown in
Fig. 9.31 of Section 9.6.)

3. The graph of a continuous function f is said to have a cusp at a if f'(x) —
oo as x tends to a from one side, whereas f'(x) = —oo as x tends to a
from the other side. Show that f(x) = |/x| has a cusp at x = 0, and draw
its graph.

4. Give an algebraic definition of the tax function z(x) in Example 6.9. (The
function is called piecewise linear, since it is linear on each of the different
income intervals.) Compute 7(22,000) and (50, 000).

6.4 Infinite Sequences

Consider the function f defined for n = 1,2, 3, ... by the formula f(n) = 1/n.
Then f(1) =1, f(2) =1/2, f(3) = 1/3, and so on. The list of numbers

1 1 1 1
1, > e Ty vesy Ty - b3
2 3 4 n [*]
is called an infinite sequence. Its first zerm is 1, and its general (nth) term is
1/n. In general, any function whose domain is the entire set of positive integers is
called an infinite sequence. Similarly s, = 100-1.08""!(n = 1, 2, ...) determines
an infinite sequence whose first terms are

100, 100-1.08, 100-1.08%, 100-1.08%, ... [%]
If s is an infinite sequence, its terms s(1), s(2).5(3), ....s(n), ... are usually de-
noted by using subscripts: si, $2, $3, ..., Sp, -... We use the notation {s,}52,, or

simply {s,}, for an arbitrary infinite sequence.
Consider the previous sequence [*]. If we choose n large enough. the terms
can be made as small as we like. We say that the sequence converges to 0. In
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general, we introduce the following definition:
A sequence {s,} is said to converge to a number s if s, is arbitrarily close to
s for all n sufficiently large. We write

Iim s, =s or S, —~>S as n—o X
n—o0

A sequence that does not converge to any real number is said to diverge. For
example, the sequence in [*x] earlier diverges because 100 - 1.08"~! tends to oo
as n tends to o<.

The definition of convergence for a sequence is a special case of the previous
definiton that f(x) — A as x — 00. All the ordinary limit rules in Section 4.4
apply to limits of sequences.

Example 6.10
Write down the first five terms of the following sequences:

n—]1
(a) {(—l) —-}
n
10
n+1
© {n2+2}

Then decide whether or not each converges.

Solution

1 1 1 1 1
B D o e O S PSnU
(a) {( ) n} >3 "1 3

1 n
(b) {3+ (E) }: 3.1, 3.01, 3.001, 3.0001, 3.00001, ...

© nP+1] 2 9 28 65 126
n4+2f7 376 11718 277 77

The sequence in (a) converges to O, because 1/n tends to O as » tends
to oc. The sequence in (b) converges to 3, because (1/10)" tends to O
as n tends to oc. The sequence in (c) is divergent. To see this note
that

P+l n+l/m?
T n2+2 0 1+42/m2

Sn

Clearly, s, = o0 as n — 00, so {s,} diverges.
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Example 6.11
For n > 3 let A, be the area of a regular n-polygon inscribed in a circle with
radius 1. For n = 3, Aj is the area of a triangle; for n = 4, A4 is the area of
a square; for n = 5, As is the area of a pentagon; and so on (see Fig. 6.14).

Ay ” ;

FIGURE 6.14

The larger n is, the larger is A,, but each A, is less than 7, the area of a circle
with radius 1. It seems intuitively evident that we can make the difference be-
tween A, and 7 as small we wish if only n becomes sufficiently large, so that

A, > as n— o0
In this example, A} and A, have no meaning, so the sequence starts with As.

The sequence {A,} in the previous example converges to the irrational number
m = 3.14159265.... Another sequence that converges to 7 starts this way: s; =
3.1, 55 = 3.14, 55 = 3.141, 54 = 3.1415, etc. Each new number is obtained by
including an additonal digit in the decimal expansion for 7. For this sequence,
Sp = T asn — oo.

Consider an arbitrary irrational number r. Just as for 7, the decimal expan-
sion of r will define one particular sequence r, of rational numbers that converges
to r. Actually, each irrational number is the limit of infinitely many different
sequences of rational numbers.

Example 6.12
It is often difficult to determine whether or not a sequence is convergent. For
example, consider the sequence whose general term is s, = (1 + 1/n)". Do
you think that this converges? The values of s, for some values of n are
given by

no1 2 3 5 10 100 10,000 100,000
(1+1) 2 225 237 243 259 270 27181  2.7182

This table seems to suggest that s, tends to a number close to 2.718. One
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can prove that {s,} does converge by relying on the general property. Any
increasing sequence of real numbers that has an upper bound is convergent.
The limit of {s,} is an irrational number denoted by e, which is one of the
most important constants in mathematcs. See Section 8.1.

Problems
1. Let
3—n n*42n—1
n = and = =1,2
= A o )
Find the following limits:
a. lim «, b. lim 8, c. lim Ga, + 48,)
n=00 n=—co n—c0
d lim a,f, e. lim «a,/B, f. im /B, —a,
n=»oQ n—0o0 n—o0
2. Examine the convergence of the sequences whose general terms are as fol-
lows:
2 n®—1 3n
a s, =5—-— b. s, = C Sp = ———
n n V2nT =1

6.5 Series

This section primarily studies finite and infinite geometric series. These have many
applications in economics such as in calculations concerning compound interest.
Some other applications are studied more closely in the next section.

Finite Geometric Series
Let us begin with an example.

Example 6.13
This year a firm has a revenue of $100 million that it expects to increase by
16% per year throughout the next decade. How large is its expected revenue
in the tenth year, and what is the total revenue expected over the whole
period?

Solution The second year’s expected revenue is 100(1 + 16/100) =
100 - 1.16 (in millions), and in the third year, it is 100 - (1.16)?. In the tenth
year, the expected revenue is 100-(1.16)°. The total revenue expected during
the decade is thus

100 + 100-1.16 + 100 - (1.16)> + --- + 100 - (1.16)° [%]

With a calculator, we find that the sum is approximately $2,132 million.
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We found the sum in [*] by adding 10 numbers on the calculator. Especially
in cases where there are many terms to add, this method is troublesome. There is
an easier method to find such sums, as will be explained now.

Consider n numbers «, ak. ak>. . ... ak"~'. Each term is obtained by multi-
plying the previous one by a constant k. We wish to find the sum

Sn=a+ak+ak2+-..+ak"-3+akn—l []]
of these numbers. We call this sum a (finite) geometric series with quotient &.

The sum [*] occurs in the special case when @ = 100, k = 1.16, and n = 10.
To find the sum s, of the series, first multiply both sides of [1] by k to obtain

ks, = ak + ak* +ak’ +--- + ak"™ + ak” [2]
Subtracting [2] from [1] yields
Sp — ks, = a — ak” [3]
because all the other terms, (ak + ak* + - - -+ ak"™ ") — (@k + ak* + - - - + ak*™ "),
cancel.
If k = 1, then all terms in [1] are equal to a, and the sum is equal to s, = an.

For k # 1, because s, — ks, = (1 — k)s,. [3] implies that

a—ak”

= 4
= [4)

In conclusion:

Summation Formula for a Finite Geometric Series

L=k [6.10]

a+ak+ak2+---+ak"“=al_k (k#£1)

Example 6.14
For the sum [*] in Example 6.13 we have a = 100. k = 1.16, and n = 10.
Hence, [6.10] yields

1 —(1.16)'°

100+ 100-1.16 + - - + 100 - (1.16)° = 100 AT

It takes fewer operations on the calculator than in Example 6.13 to show that
the sum is about 2,132.
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Infinite Geometric Series

Consider the infinite sequence of numbers

Each term in the sequence is formed by halving its predecessor, so that the nth term
is 1/2"=!'. The sum of the first » terms is a finite geometric series with quotient
k = 1/2 and the first term a = 1. Hence, [6.10] gives

1 1= ]

-1 - 112 27-1 ]

11
L4545+t

We ask now what is meant by the “infinite sum”

[%]

Because all the terms are positive, and there are infinitely many terms, you might
be inclined to think that the sum must be infinitely large. However, if we look at
formula [x], we see that the sum of the n first terms is equal to 2 — 1/2"~', and
this number is never larger than 2, irrespective of our choice of n. As n increases,
1/27=} comes closer and closer to 0, and the sum in [*] tends to 2 in the limit.
This makes it natural to define the infinite sum in [*x*] as the number 2.

An Illustration: At a birthday party, there are two identical cakes. The person
having the birthday takes all of one cake. From the second cake, the first guest is
given one-half, the second guest is given one-quarter. and so on. Each successive
guest is given half what is left. The sum in [*] shows how much has been taken
after n— 1 guests have received their allocation. (The person having the birthday is
not regarded as a guest.) Thus, we see that infinitely many guests can be invited to
this party. (However, even if each cake were worth as much as $100, the thirteenth
guest would get only slightly more than 1 cent’s worth of cake.)

In general, we ask what meaning can be given to the “infinite sum”™
a+ak+ak’+--+ak" 4+ [6.11)

We use the same idea as in [*x], and consider the sum s, of the n first terms in
[6.11]. According to [6.10],

1 —k"
1-k

Sh=a

(k# 1)

What happens to this expression as n tends to infinity? The answer evidently
depends on k". because only this term depends on n. In fact. ¥” tends to O if
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—1 < k < 1, whereas k" does not tend to any limit if k > 1 or k < —1. (If you
are not yet convinced that this claim is true, study the cases k = =2, k = ~1,
k= -1/2, k =1/2, and k = 2.) Hence, it follows that if |k| < 1, then the sum s,
of the n first terms in [6.11] will tend to the limit a/(1 — k) as n tends to infinity.
We let this limit be the definition of the sum in [6.11], and we say that the infinite
series [6.11] converges in this case. To summarize:

Summation Formula for an Infinite Geometric Series:

a+ak+ak2+---+ak"'l+---=l—i—z (f k| < 1) [6.12]

Using summation notation as in Sec. B1 of Appendix B, [6.12] becomes:

o
Y akt = 1 4 - k<D 6.13]
n=1 -

If |k| > 1, we say that the infinite series [6.11] diverges. A divergent series has no
(finite) sum. Divergence is obvious if (k| > 1. When k = 1, then s, = na, which
tends to +o0 if a > Q orto —o¢ if a < 0. When k = ~1, then s, 1s @ when n is
odd, but 0 when a is even; again there is no limit as n — 0.

Geometric series appear in many economic applications. Let us look at a
somewhat contrnived example.

Example 6.15
A rough estimate of the total oil and gas reserves in the Norwegian continentai
shelf at the beginning of 1981 was 12 billion (12 - 10°) tons. Production that
year was approximately 50 million (50 - 10%) tons.

(a) When will the reserves be exhausted if production is kept at the same
level?

(b) Suppose that production is reduced each year by 1% per year beginning
in 1982. How long will the reserves last in this case?

Solution

(a) The number of years the reserves will last is given by

12-10°
5-107

The reserves will be exhausted around the year 2220.

=2.4-10° = 240
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(b) In 1981, production was a = 5-107. In 1982, it becomes a —a/100 =
a-0.99. In 1983, it becomes a - 0.99%. and so on. If this continues
forever, the total amount extracted will be

a+a-099+a-099°+ - +a-(0.99"" +...

This is a geometric series with quotient k¥ = 0.99. According to [6.12],
the sum is
a

= 1"o099 — \00e

s

Because a = 5- 107, we get s = 5 - 10°, which is less than 12 - 10°.
The extraction, therefore, may be continued indefinitely, and there will
never be less than 7 billion tons left.

General Series (Optional)

The determination of Z 1/n occupied Leibniz all his life
but the solution never came within his grasp.
—H. H. Goldstine (1977)

We briefly consider general infinite series that are not necessarily geometric,
ai+ax+a3+---+ap+--- [6.14]

What does it mean to say that this infinite series converges? By analogy with the definition
for geometric series, we form the “partial” sum s, of the n first terms:

Shn=al+a+---+a, [6.15]

In particular, s; = aj. s2 = a; + a3, $3 = a1 + a3 + a3. and so on. As n increases, these
partial sums include more and more terms of the series. Hence, if s, tends toward a limit
s as n tends to oc. it is reasonable to consider s as the sum of all the terms in the series.
Then we say that the infinite series is convergent with sum s. If 5, does not tend to a finite
limit as » tends to infinity, we say that the senies is divergent. The series then has no sum.
(As with limits of functions, if s, — £00 as n — oc, this is not regarded as a limit.)

For geometric series, it was easy to determine when there is convergence because
we found a simple expression for s,. Usually. it will not be possible to find such a simple
formula for the sum of the n first terms in a series, and the problem of determining whether
a given series converges or diverges can be very difficult. No general method exists that
will reveal whether or not any given series is convergent. However. there are a number of
standard tests, so called convergence and divergence criteria. that will give the answer in
many cases. These criteria are seldom used directly in economics.

Let us make a general observation: If the series [6.14] converges. then the nth term
must tend to O as n tends to infinity. The argument is simple: If the series is convergent,
then s, in [6.15] will tend to a limit s as n tends to infinity. Now a, = s, — Sp—1,
and by the definition of convergence. s,_; will also tend 10 s as n tends to infinity. It
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follows that @, = s, — s,—; must tend to s — s = 0 as n tends to infinity. Expressed
briefly, :

aj+ay+---+a,+--- converges —> lim a, =0 [6.16]

n—-oc

The condition in [6.16] is necessary for convergence, but not sufficient. That is, a series
may satisfy the condition lim,—, o an = 0 and yet diverge. This is shown by the following
standard example (which gave Leibniz infinite trouble!).

Example 6.16
The senies

l+3+3+3+-+

3

4+ [6.17)

is called the harmonic series. The nth term is 1/n, which tends to 0. But
the series is still divergent. To see this, we group the terms together in the
following way:

143+ G+ +0G++3)+ G+ +5)+(F++5)+ [¥

a3l

Between the first pair of parentheses there are two terms, one greater than 1/4
and the other equal to 1/4, so their sum is greater than 2/4 = 1/2. Between
the second pair of parentheses there are four terms, three greater than 1/8 and
the last equal to 1/8, so their sum is greater than 4/8 = 1/2. Between the
third pair of parentheses there are eight terms, seven greater than 1/16 and
the last equal to 1/16, so their sum is greater than 8/16 = 1/2. Between the
fourth pair of parentheses there are sixteen terms, fifteen greater than 1/32
and the last equal to 1/32, so their sum is greater than 16/32 = 1/2. This
pattern repeats itself infinitely often. Between the nth pair of parentheses
there will be 2" terms, of which 2" — 1 are greater than 2™"~! whereas the
last is equal to 2™"~!, so their sum is greater than 2" - 27"~! = 1/2. We
conclude that the series in [*] must diverge because its sum is larger than
that of an infinite number of 1/2’s.

An illustration: If you plan a birthday party with infinitely many guests where the
person having the birthday takes 1 cake. the best friend is given half a cake, the
next person a third, and so on, then you must bake infinitely many cakes!

One can prove in general (see Problem 11 in Section 11.3) that

oo
1

E _p 1S convergent DY p > 1 [618]
n

n=1
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Problems

1.

Find the sum s, of the finite geometric senes

I+t
3 3 3n-1

What limit does s, tend to as n tends to infinity? Evaluate

=1
Z} 3n—1

Determine whether the following series are geometric, and find the sums of
those geometric series that do converge:

a. 8+1+1/8+1/64+--- b. 2+6—18+54—.-.
c. 2P 414271B 4 272R 4. d 1-12+1/3—-1/4+-..

Examine the convergence of the following geometric series and find the sums
when they exist:

1 1 1
a —+—S+5+ b. x+/x+1+1/J/x+-
p p P
= 1 1
2n
d 1+ +
“ z_:x T+x axx2 "

Find the sum

-k

Zb(l+—) (p>0)

. Total world consumption of iron in 1971 was approximately 794 million tons.

If consumption increases by 5% each year and the world’s total resources of
iron are 249 billion tons, how long will these resources last?

Show that the following series diverge:

oC n oo oC l
a. ; — b. 2(101/100)" c. 2 Y
Examine the convergence or divergence of the following series:
a. ;‘(100/101)" b. > T c. Zl T

1+n [=9] 1 n oC .
Z e. 1 (-5\) f, ;(«/3)1

= n=
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8. Let

_i S SIS S S 1
"L kGk+D 1.2 2.3 3.4 n(n + 1)

By using the identity
1 1 1

kk+1)  k k+1

prove that s, = n/(n + 1), and then find the sum of the infinite series

ad 1

Zk(k-}-l)

k=1

6.6 Present Discounted Values and Investment

The sum of $1000 in your hand today is worth more than $1000 received at some
future date. One important reason is that you can invest the $1000.% If the interest
rate is 11% per year, then after 6 years, the original $1000 will have grown to an
amount 1000(1 + 11/100)% = 1000 - (1.1)® =~ $1870. (See Section A.1 of Ap-
pendix A.) So if the amount $1870 is due for payment 6 years from now and the
interest rate is 11% per year, then the present value of this amount is $1000. Be-
cause $1000 is less than $1870, we often speak of $1000 as the present discounted
value (or PDV) of $1870. The ratio $1000/$1870 is called the discount factor.
The interest rate, 11% per year in this case, is often called the discount rate as well.

Suppose three payments are to be made, with the amount $1000 being paid
after 1 year, $1500 after 2 years, and $2000 after 3 years. How much must be
deposited in an account today in order to have enough savings to cover these three
payments, given that the interest rate is 11% per year? We call this total amount
the present value of the three payments.

In order to have $1000 after 1 year, the amount x; we must deposit today is
given by

_ 1000 1000
T 14117100 1.11

11 :
Xy - <1 -+ Tb—d> = 1000, that is, X

In order to have $1500 after 2 years, we must deposit an amount x» today, where

xp- {14+ i\- = 1500. that is, Xy = 1500 S = 15007
100 ) (1+11/100)- (1.11)°

2If prices are expected to increase, another reason for preferring $1000 today is inflation. because
S1000 to be paid at some future date will buy less then than $1000 does today.
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Finally, to have $2000 after 3 years, we must deposit an amount x5 today. where

B 2000 2000
T (1411710003 © (1.11)3

11 \°
X3 - <1 + 1—06> = 2000, that is, X3

So the total present value of the three payments, which is the total amount A that
must be deposited today in order to cover all three payments, is given by

1000+ 1500 + 2000
.11 (1.11)*  (1.11)3

The total is approximately 900.90 + 1217.43 + 1462.38 = 3580.71.

Suppose now that i successive payments ay, .. .. a, are to be made, with g,
being paid after 1 year, g, after 2 years, and so on. How much must be deposited
into an account today in order to have enough savings to cover all these future
payments, given that the interest rate is p% per year? In other words, what is
the present value of all these payments? Let r = p/100 represent the interes:
factor.

In order to have a; after 1 year, we must deposit a; /(1 +r) today, to have a,
after 2 years we must deposit a>/(1 + r)? today, and so on. The total amount A,
that must be deposited today in order to cover all n payments is therefore

A= B O [6.19]
T l4r (1412 (1+r)y '
In other words:
The present value of the ~ installments a,, aa, . . ., a,, where the first amount
a; has to be paid after 1 year and the remaining amounts at intervals of 1
year, and with the interest rate p% per year, is given by
n a;
A, = - where r = p/100 6.20
; = p/ [6.20]
Often, the annual payments are equal, so that @, = @ = --- = a, = a. Then

[6.19] is a finite geometric series with n terms. The first term is a/(1 +r) and the
quotient is 1/(1 +r). According to formula (6.10] with k = (1 +r)~!, the sum is

n

a 1——(1—+—r)"’__a{1 I }

Tl+ri—(0+n U O+

(where the second equality holds because the denominator of the middie expression
reduces to r). Hence, we have the following:
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The present value of » installments of $a each, where the first amount has
to be paid 1 year from now and the remaining amounts at intervals of 1 year,
with the interest rate at p% per year, is given by

a a a 1 _

where r = p/100.

Example 6.17

What is the present value of 10 annual deposits of $1000 if the first payment
occurs after 1 year and the interest rate is 14% per year?

Solution Using [6.21] with a = 1000, n = 10, and r = 14/100 = 0.14
yields
1000 1
Ap= — |1 — ————| = 5216.12
004 [ (1.14)'0}
Example 6.18
A house loan valued at $50, 000 today is to be repaid in equal annual amounts

over 15 years, the first repayment starting 1 year from now. The interest rate
1s 8%. What are the annual amounts?

Solution We can use [6.21] again. This time A5 = 50.000, r = 0.08,
and n = 15. Hence, we obtain the following equation for determining the
annual amount a:

a 1
50,000 = 1 - —
' 0.08 [ (1.08)13}

We find 50.000 = a - 8.55948, so that a ~ 5841.

If n tends to infinity in [6.21] and if r > O, then (1 +r)” will tend to infinity.
and thus A, will tend t0 A = a/r:

T 2 _+...=2 ¢s0 [6.22]
— fe e — r > Ll
1+r  (+r) r

Thus, @ = rA. This corresponds to the case where an investment of $A pays Sa
per year in perpetuity when the interest rate is r.
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Investment Projects

Consider n numbers ag, aj. . ... a,~, that represent the returns in successive years
to an investment project. Negative numbers represent losses, positive numbers
represent profits, and we think of g; as associated with year i, whereas qp is
associated with the present period. In most investment projects, ag is a big negative
number, because a large expense precedes any returns. If we consider an interest
rate of p% per year and let r = p/100, then the net present value of the profits
accruing from the project is given by

a as an_

A=ay+ oy
T+ T 042 A+

Several different criteria are used to compare alternative investment projects.
One 1s simply this: Choose the project whose profit stream has the largest net
present value A. The interest rate to use could be an accepted rate for capital
investments. This rule 1s the natural extension to many periods of static profit
maximization, with the discount factors (1 +r)~!, (1 4+ r)~2, ... attached to fu-
ture profits like the prices of future money (which is less valuable than present
money).

A different criterion is based on the internal rate of return, defined as an
interest rate that makes the present value of all payments equal to 0. For the
investment project yielding returns ag, ay, - .., a,-, the internal rate of remrn is
thus a number r such that

I R vl
l+r (A+r)2 (1 4+r)-!

ap =0 [6.23]

If two investment projects both have a unique internal rate of return, then a criterion
for choosing between them is to prefer the project that has the higher internal rate
of return. Note that [6.23] is a polynomuial equation of degree n» — 1 in the discount
factor (1+7)~". In general, this equation does not have a unique positive solution r.
Nevertheless, Problem 7 asks you to show that there exists a unique positive internal
rate of return in an important special case.

Problems

1. What is the present value of 15 annual deposits of $3500 each when the first
deposit is 1 year from now and the interest rate is 12% per year?

2. An author is to be paid a royalty for a book. Two alternative offers are made:
(a) The author can be paid $21,000 immediately,
(b) There can be five equal annual payments of $4600, the first being paid
at once.
Which of these offers will be more valuable if the interest rate is 6% per
annum?
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3. A is obliged to pay B the amount $1000 yearly for 5 years, the first payment

in 1 year’s time. B sells this claim to C for $4340 in cash. Find an equation
that determines the rate of return p that C obtains from this investment. Can
you prove that it is a little less than 5%?

. A construction firm wants to buy a building site and has the choice between

three different payment schedules:

(a) Pay $67,000 in cash.

(b) Pay $12,000 per year for 8 years, where the first installment is to be paid
at once.

(c) Pay $22,000 in cash and thereafter $7000 per year for 12 years, where
the first installment is to be paid after 1 year.

Determine which schedule is least expensive if the interest rate is 11.5% and

the firm has at least $67,000 available to spend in cash. What happens if the

firm can only afford $22,000 as an immediate payment? Or if the interest

rate 1s 12.5%?

. Suppose that in [6.23] we have ag < Oand a; =afori=1,2,....Ifnis
very large, find an approximate expression for the internal rate of return.

. The present discounted value of a payment D growing at a constant rate g
when the discount rate is r is given by

D +D(1+g) D(1 + g)?
1+7r (147r)? (1+r)3

where r and g are positive. What is the condition for convergence? Show
that if the series converges with sum Py, then Py = D/(r — g).

. Consider an investment project with an initial loss, so that @y < 0, and
thereafter no losses. Suppose too that the sum of the later profits is larger
than the initial loss. Prove that there exists a unique positive internal rate of
return. (Hint: Define f(r) as the expression on the left side of [6.23]. Then
study f(r) and f’(r) on the interval (0, c0).)

6.7 A Rigorous Approach to Limits (Optional)

Our preliminary definition of the limit concept [4.14] of in Section 4.4 was this:

limy—,, f(x) = A means that f(x) in as close to A as we want, for all x suffi-

ciently close (but not equal) to a

The closeness or, more generally, the distance between two numbers can be measured by
the absolute value of the difference between them. Let us briefly consider some examples

of the use of absolute values before proceeding further.

[1]
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Example 6.19
Use both absolute values and double inequalities to answer the following questions:

(a) Which numbers x have a distance from 5 that is less than 0.1?
(b) Which numbers x have a distance from a that is less than §?

Solution

(a) The distance between x and 5 is |x — 5|, so the requirement is that [x — 5| < 0.1.
Using [1.4] in Section 1.4, we have alternatively —0.1 < x —5 < 0.1. Adding
5 to each side gives 4.9 < x < 5.1. (The result is obvious: The numbers x
that differ from 5 by less than 0.1 are those lying between 4.9 and 5.1.)

(b) Here [x —a| < § or =8 < x —a < §. Adding a to each side yields a — § <
x <a+ 8. Wecan also write x € (a — 8.a + §).

Absolute values can be used to reformulate [1] as follows:

limy—g f(x) = A means that | f(x) — A| is as small (2]
as we want for all x # a with |x — a| sufficiently small.

Note that the condition x # a is equivalent to 0 < |x — a].
The German mathematician Heine was the first to realize (in 1872) that this formu-
lation could be made precise with the following &6 definition:

We say that f(x) tends to A in the limit as x tends to a, and write lim,_,, f(x) = A,
provided that for each number ¢ > O there exists a number é > 0 such that (6.24]

[f(x)— Al <e¢ whenever O<|x—al<d

Definition [6.24] is illustrated in Fig. 6.15. Note that the tolerance for the deviation in f(x),
which is ¢, is marked off along the y-axis, and the corresponding deviation in x, which

FIGURE 6.15 For every ¢, there is a 8, so limy_, f(x) = A.
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is 8, is marked off along the x-axis. Geometrically, f(x)A as x — a means that the graph
must not only intersect box PQRS, but also “come out of” its vertical sides. Note how
8 > 0 must be chosen so that if x % a and x € (@ —§.a + §), then f(x) belongs to the
interval (A—¢, A+¢). If £ > 0 is chosen smaller, then § usually has to be chosen smaller as
well. Our choice of § must therefore, in general, depend on the choice of €. This interplay
berween € and § is the whole point of the definition: However small we choose ¢ > 0. it
must be possible to find a § > 0 so small that whenever x is closer to a than § (and x # a),
then f(x) is closer to A than «.

It must be regarded as a part of one’s general mathematical education ro have seen
this €8 definition of a limit. However. if you have difficulties with this definition and with
arguments based on it, you are in very good company indeed. Hundreds of thousands of
mathematics students all over the world struggle with this definition every year. Furthermore,
many of the world’s best mathematicians in the nineteenth century were unable to solve some
important problems for want of a precise definition of limits, so the concept did not come
easily to them either.

Example 6.20
Use [6.24] to show that

lim (3x ~2) =1 [

Solution In this case, f(x) =3x —2,a =3, and A = 7. Hence,

|lf(x)= Al =|C@x -2)=7|
= |3x = 9| =3|x — 3| [2]

Let € > O be given. We see from [2] that | f(x) — A| = 3|x — 3| < & provided that
O<|x—3]<e¢/3. So|f(x) —A| <eif |x — 3| <4, where § = ¢/3. According to
definition [6.24], we conclude that [1] is correct.

Note that the value of § in definition [6.24] is not unique. Having found one value
of &, any smaller value of § will work as well. In Example 6.20, we chose § = ¢/3: we
could also have chosen any é < /3, but not § = ¢/2.

The proof in Example 6.20 is about as easy as a limit proof can get. Usually, a little
more ingenuity is required. Let us consider a more typical example.

Example 6.21
Show by using the &8 definition that if @ > 0, then

lim VX = /a2 [1]

X—>aq

Solution Here f(x) = +/x and A = ./a. Givenany ¢ > 0. we must finda § > 0
such that

|f(x)—A|=|«/;—\/Z|<s whenever O<|x—al<$ [2]
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It seems a good idea to try to express |«/x — +/a| in terms of |x — a|. We use a
common algebraic trick:

(VZ-va)(Vx++a)| x4

IVx—+al|= NP = 5T

(3]

Because /x + +/a > +/a whatever the value of x > 0, we obtain from [3] that

el
|«/;—~/E|—ﬁ+ﬁ_ﬁ|x

al
Thus, we see that if |x — a| is small, then |/x — ./a| is small as well. More
precisely:

I«/E—ﬁlsﬁwx—alq

provided that 0 < |x —a| < § = & /a.

So far we have concentrated on cases in which the limit exists. What does it mean
to say that f(x) does not tend to the number A as x tends to a? Negating statement [6.24],
we have (compare Problem 9(d) in Section 1.5):

f(x) does not tend to A as a limit as x tends to a if we can find an ¢ > 0
such that. for all § > 0, there exists a number x satisfying 0 < |x —a| <§ and [6.25]
|[fx)—Al = e

Definition [6.25] is illustrat~d in Fig. 6.16. If we choose ¢ as in the figure, we see that if
x is slightly larger than a, then the distance | f(x) — A| 1is larger than ¢. For every § > 0.
there exists a number x satisfying 0 < [x —a| < § and |f(x) — A| > ¢. This shows that
f(x) does not tend to A as a limit as x tends to a.

FIGURE 6.16
y

r

A+e
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Extensions of the Limit Concept

In Section 6.1 we extended the limit concept heuristically in several different ways. All these
definitions can be made precise in the same way as [6.24]. We include only the following
definition:

limy—. f(x) = A means that for each ¢ > 0, there exists

.
a number N such that |f(x) — A| < forall x > N [6.26]

Illustrate this definition in connection with Fig. 6.4 of Section 6.1.

The following “geometrically obvious” theorem is quite useful:

The Squeezing Rule for Limits

Suppose that f(x) < g(x) < h(x) for all x in an interval around a, but not necessarily [(6.27]
at a. If there exists a number M such that lim,_,., f(x) = limy—., h(x) = M. then
limy—q g(x) =M.

The theorem is illustrated in Fig. 6.17. Because g(x) is “squeezed” between two functions
that both tend to M as x — a, g(x) must also tend to M as x — a. One can prove this
theorem by using definition [6.24], but we skip the proof. Ambitious readers may want to
try it for themselves.

FIGURE 6.17

An ¢6 Definition of Continuity

In [6.2] of Section 6.2 we defined continuity in terms of the limit concept. The precise
definiuon [6.24). leads to the following 5 definition of continuity:

f is continuous at x = g if for every ¢ > 0. thereisa§ > O suchthat | f(x)~ f(a)| < (6.28]
& whenever |x —a| < §. -
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Note that 0 < |x — a| is unnecessary because if |x —a| = 0, then x = a. and so |f(x) —
fla)| =0.

Problems

1. Use [6.24] to show that lim,—._| (5x +2) = —3.

2. Prove that for |x| < 1, one has |(x + l)3 — 1| < 7|x|. Use this and the definition of
limits to show that lim, .o (x + 1)3 =1lLIs f(xx)=x+ 1)> continuous at x = 0?

3. Let f(x) =2~ -{;xz and h(x) =2+ x2. Suppose that the only thing we know about
the function g is that f(x) < g(x) < h(x) for all x. What is lim,_.g g(x)?

4. Show by using the definition of limits that:

. 4x%*-100
a. : lim —— =40
x—=5 x -5
2 2
. X= =T
b. lim = =27

x—=-x X+
Hinz: Try to simplify the fractions.
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Exponential
and Logarithmic
Functions

Then you ought to have invested my money
with the bankers, and at my coming I should
have received what was mine with interest.
—Marthew 25:27

Exponential functions of the form a* were briefly considered in Sections 3.5. They
were shown to be well suited to describing certain economic phenomena such as
growth and compound interest. This chapter shows how such functions can be
differentiated. And it introduces logarithms, which are inverses of exponential
functions. Logarithms also feature in an alternative definition of elasticity.

8.1 The Natural Exponential Function

Recall that an exponential function with base a is
fxy=a"

where a is the factor by which f(x) changes when x increases by 1. Each base
a gives a different exponential function. In mathematics, one particular value of
a gives an exponential function that is far more important than the others. One
might guess that a = 2 or a = 10 would be this special base. Strangely enough.
it turns out that an irrational number a little larger than 2.7 is the most important
base for an exponential function.

In order to explain why, we must study the derivative of f(x) = a*. Earlier
rules of differentiation cannot help here. So we rely on the definition of the

247
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derivative and consider the Newton quotient of f(x) = a*, which is

fx+h) - fx) o —a
h  h

[+]

If this fracton tends to a limit as A tends to 0, then f(x) = a* is differentiable
and f'(x) is precisely equal to this limit.
Substituting x = 0 in [*] and letting 2 — O yields in particular

h

h

i @
= ,lrl_r,ré [8.1]
(provided the limit exists).

The fraction in [*] can be simplified if we use the rule a*** = a* - a*. Then
we have a**t" — g* = a*(a” ~ 1), so that

f(x+h)—f(x) _.ax_ah_l
h - h

When taking the limit of this last expression as & tends to 0, the term a* is a
constant, whereas according to [8.1], the fraction (a” ~ 1)/ tends to f'(0). Hence,

f)=a = fx)=a7f 0 (8.2]

We have thus shown that if f(x) = a* has a derivative at 0 (in the sense that the
limit in [8.1] exists), then f is differentiable for every x, and f'(x) = a* f'(0).
Note: Observe that f’(0) is a function of a. For each a > 0, the number f'(0) is
defined as the limit of (a” —1)/h as h tends to 0. One can prove that this limit exists
for every a > 0. Later we shall see that f'(0) = In a, the natural logarithm of a.
Geometrically, f’'(0) may be interpreted as the slope of the tangent to the
graph of y = a* at (0, 1). In Figs. 8.1 and 8.2 we have measured these slopes for

FIGURE 8.1
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p—
o1

FIGURE 8.2

2% and 3*, and they are respectively = 0.7 and = 1.1. (Accordingly, [8.2] implies
that f(x) =2* = f/(x)=0.7-2%, and f(x) =3 = f'(x)=1.1-3%)

It is reasonable to assume that, as a increases from 2 to 3, so f'(0) in-
creases from = 0.7 to = 1.1 without skipping any intermediate values. For some
value a between 2 and 3, we ought then to have f'(0) = 1 in particular. This
value of a is a fundamental constant in mathematical analysis. It is an irrational
number so distinguishasd that it is usually denoted by the single letter e, and is
given by

e =2.718281828459045...

Because a = e is precisely the choice of a that gives f'(0) = 1 in [8.2], we obtain

f=¢ — fE=¢ [8.3]

The natural exponential function f(x) = &%, therefore has the remarkable prop-
erty that its derivative is equal 10 the function itself. This is the main reason why
the function appears so often in mathematics and applications. Observe also that
f"(x) = ¢*. Because ¢ > 0 for all x, both f'(x) and f”(x) are positive. Hence,
both f and f’ are strictly increasing. This confirms the shape of the graph in
Fig. 8.3.

Powers with e as their base are difficult to compute by hand—even e¢' = e.
A scientific calculator with an function key can do this immediately, however.
For instance, one finds that €% =~ 1.6487, =7 = 0.0432.

By combining [8.3] with other rules of differentiation, we can differentiate
complicated expressions involving the exponential function ¢*. Before looking at
some special examples, let us consider general functions of the form y = ¢8®). To
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FIGURE 8.3 The natural exponential function.

differentiate these we apply the chain rule dy/dx = dy/du - du/dx with y = e*
and u = g(x). Thus, y' = e“u’ = e8®g’(x), and so

y=e® =y =ef®g(x) [8.4]

Example 8.1
Differentiate the following:

@ y=e* () y=ée/x () y=e=+x
Solution
(a) Use [84] with g(x) = 3x. Then gf(x) =3 so y = e3x = )./ = e3> .3

= 3¢3*.
(b) Using the quotient rule yields
e , e“x—e‘-l_e“(x—-l)

= — = =
=% Y x2 x?

(c) Here y = Ve +x = Ju, with u = ¢¥ + x, and so ' = 2¢* + 1,
where we used the chain rule. Using the chain rule again yields

] 2e¥ +1
= ezx+x= u:‘/z—-ulz-——
y=V Nu =y NG N

Example 8.2
Find the derivative of

fx) = x%e*

Where is f(x) increasing? (Its graph is drawn in Fig. 9.23 of Sec. 9.5.)
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Solution Differentiating using the product rule yields

fl(x) =2x&" + x%e* = xe* (2 +x)

We see that f'(x) = 0 for x = 0 and for x = —2. The accompanying sign
diagram tells us that f is increasing in the intervals (—oo, —2] and [0, o0)
(but decreasing in [—2, 0]).

Note 1: A common error when differentiating exponential functions is to believe
that the derivative of ¢ is “xe*~!”. This is due to confusing the exponential
function with a power function.

Note 2: Sometimes the notation exp(u) is used in place of e“. If u is a complicated
expression like x3 + x./x — I/x, it is easier (typographically) to read and write
exp(x® + x4/x — 1/x) instead of e~ TEVETx

A Survey of the Properties of e
The natural exponential function
fx)=¢ (e =2.71828..))
is differentiable and strictly increasing for all real numbers x. In fact, [8.5]
fy=e¢ = flx)= fx) =€
The following properties hold for all exponents-s and t:

(a) el = es+r (b) eS/eI = 5! (C) (eS)I — esr

Problems

1. Differentiate the following functions, using the chain rule:

a. y= e~ b. y= 26"3 C. y= e d y= 5e2.xz—3x+l
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2. Find the following:

d d oy
a. — (e) b. — (e +e™'7)

d 1 d 3 1/3
C. E (e’-{-e") d. d—z<€ —1)

3. Consider the function f defined for all x by f(x) = xe*.
a. Compute f'(x) and f”(x). Find the intervals on which f is increasing.
b. Draw the graph of f.

4. In an economic model, the number of families with income < x is given by
p(x) =a+k(l —e ) (a, k. and ¢ are positive constants)

Determine p’(x) and p”(x), and then draw the graph of p.
5. Let f(x) = (x> — 2x — 3)¢*. Draw the graph of f for —4 < x < 3.

Harder Problems

6. The expressions -l_-(e" —e ") and %(e" + e™*) occur so often that they have
been given the special symbols

e —e* e +e*
inhx = ————, hx = ———
sinh x > cosh x 5

indicating the hyperbolic sine and hyperbolic cosine respectively. Draw the

graphs of the two functions, and show that the following formulas hold for
all x:

a. cosh(x + y) = cosh x cosh y + sinh x sinh y ]
b. cosh2x = (coshx)? + (sinhx)? |
sinh(x + y) = sinh x cosh y + cosh x sinh y

sinh 2x = 2sinh x cosh x

(coshx)? — (sinhx)? =1

sinh®*x = 3(cosh2x — 1)

a%(sinhx) = coshx

£ (coshx) = sinhx

7. Show by induction that the nth derivative of xe* is (x + n)e*. i
8. Let f(x) = a*. Show that 3

o ome A0

fE+x)= f)fx) (for all x and z7) [%]

Assume that f is differentiable. Differentiate [*] with respect to z (holding x

fixed), and then put z = 0. Explain why this gives an alternative justification
for [8.2].
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8.2 The Natural Logarithmic Function

In Secton 3.5, the doubling time of an exponential function f(r) = a’, witha > 1,
was defined as the ume it takes for f(r) to become twice as large. In order to find
the doubling time *, we must solve the equation a’ = 2 for r*. In economics, we
often need to solve similar problems:

1. At the present rate of inflation, how long will it take the price level to tiple?

2. If the national debt of the U.S. continues to grow at the present proportional
rate, how long will it take to reach $10 trillion?

3. If $1000 is invested in a savings account bearing interest at the rate of 8%
per annum, how long does it take for the account to reach $10,000?

All these questions involve solving equations of the form a* = & for x. For
instance, problem 3 is to find which x solves the equation 1000(1.08)* = 10,000,
or (1.08)* = 10.

We begin with equations in which the base of the exponentals 1s e. Here are
some examples:

& =4 [1]
5¢73% =16 [2]
Aae™ =k (3]

In all these equations, the unknown occurs as an exponent. We therefore introduce
the following useful definition. If e = a, we call u the natural logarithm of a.

and we write ¥ = Ilna. Hence, we have the following definition of the symbol
Ina:

ehe =g (a is any positive number) (8.6]

Thus, Ina is the power of e you need to get a.

Because e“ is a strictly increasing function of u, it follows that In a is uniquely
determined by the definition [8.6]. You should memorize this definition. It is the
foundation for everything in this section, and for a good part of what comes later.
In the following, we practice applying this definition.

Example 8.3
Find the following:

@ Inl (b) Ine (c) In(l/e) (d) In4d (e) In(—6)
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Solution

(@) In1 = 0, because ¢ = 1 and so 0 is the power of e that you need to

get 1.

(b) Ine = 1, because ¢! = ¢ and so 1 is the power of e that you need to
get e.

(¢) In(1/e) =1Ine~' = —1, because —1 is the power of e that you need to
get 1/e.

(d) In4 is the power of e you need to get 4. Because we have ¢! ~ 2.7
and 2 = ¢' - ¢! & 7.3, the number In4 must lie between 1 and 2.

By experimenting with the | ¢* | key on a scientific calculator, you
should able to find 2 good approximation to In4 by trial and error.
However, it is easier to press 4 and the key. Then you find that !

In4 ~ 1.386. Thus, e'3% ~ 4.

(e) In(—6) would be the power of e you need to get —6. Because e* is
positive for all x, it is obvious that In(—6) must be undefined.

Box [8.7] collects some useful rules for natural logarithms. All are simple
implications of the rules for powers.

Useful Rules for In

In(xy)=Inx +Iny (x and y are positive) (@)

(The logarithm of a product is equal to the sum of the logarithms of
each of the factors.)

x
In—=inx —Iny (x and y are positive) (b)
Vv

v

8.7
(The logarithm of a quotient is equal to the difference between the [8.7]

logarithms of its numerator and denominator.)

Inx” = plnx  (x is positive) (c)

(The logarithm of a power 1is equ;ﬂ to the exponent multiplied by the
logarithm of the base.)

Inl =0, lne = 1. x = e™* and Ine* = x (d)

To show (a), observe first that the definition of In(xy) implies that ¢'"*¥) =
xy. Furthermore, x = ¢"* and y = ¢/™*, so

eln(x_\') =xy= elnxelny = elnx+lny [*]
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where we have used property [8.5](2). In general, e = eV implies u = v, s0 we
conclude from [*] that In(xy) = Inx +1ny. The proofs of (b) and (c) are based on
properties [8.5](b) and (c), respectively, and are left to the reader. Finally, [8.7](d)
displays some important properties for convenient reference.

Warning: There are no simple rules for the logarithms of sums and differences. It
is tempting to replace In(x +y) by Inx +1n y, for instance, but this is quite wrong.
In fact, Inx +Iny is equal to In(xy), not to In(x + y).

There are no simple formulas for In(x + y) and In(x — y)

Here are some examples that apply the previous rules.

Example 8.4
Express each of (a) In4, (b) In \3/2—D and (c) In(1/16) in terms of In2.
Solution

(@) In4=1n(2-2) =In2+12=2In2. (Orln4 =1n2% =2In2)
(b) We have ¥/25 = 25/3. Therefore, In v25 = In257 = (5/3) In2.

(¢) In(1/16) =In1—In16 =0—In2* = —4In2. (Orin(1/16) =In2~* =
—41n2)

Example 8.5
Solve the following equations for x:

(@) 5¢~* =16 (b) Aqe™** =k
(¢) (1.08)* =10 (d) & +e*=2

Solution

(a) Take In of each side of the equation to obtain In(5¢*) = Inl6.
The product rule gives In(5¢=>*) = In5 + Ine~3*. Here Ine™> =
—3xIne = —3x, because Ine = 1. Hence. In5 — 3x = In16, which
gives

X

1(n5—-1n16) = ;In <

(b) We argue as in (a) and obtain In(Aae™%*) = Ink, or In(Aa)+Ine ™ =
Ink, so In(Ae) — ax = Ink. Finally, therefore,

1 1 A
x =~ [In(Aa) — Ink] = — In 2%
o o k

(c) Again we take the In of each side of the equation and obtain xIn1.08 =
In10. So the solution is x = In 10/1n 1.08, which is &= 29.9. Thus, it
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takes just short of 30 years for $1 to increase to $10 when the interest i
rate is 8%.

(d) It 1s very tempting to begin with In(e” + ¢™*) = In2, but this leads
nowhere, because In(e¢* + ¢~*) cannot be further evaluated. Instead,
we argue like this: Putting u = € gives ¢™ = 1/¢* = 1/u, so the
equation is w + 1/u = 2, or u®> + 1 = 2u. Solving this quadratic
equation for u yields u = 1 as the only solution. Hence, ¢* = 1, and
so x = 0. (Check this solution. Consider also the graph of coshx in
Problem 6 of Section 8.1.)

The Function g(x) =Inx

For each posit.ive'number x, the number Inx is defined by &* = x. We call the
function

E
;

gx) =Inx (x > 0) [8.8]

the natural logarithmic function. This definition is illustrated in Fig. 8.4. Think
of x as a point moving upwards on the vertical axis from the origin. As x increases
from values less than 1 to values greater than 1, so g(x) increases from negative
to positive values. In fact, because f(u) = € is strictly increasing with range
(0, o0), it follows from Theorem 7.9 of Secton 7.6 that f has an inverse function
g that 1s also strictly increasing with domain (0, c0). Because f has the domain
(=00, c0), we know that g has the range (—o0, o0). Thus, the exponential function
f(x) = ¢ and the natural logarithm function g(x) = In x are inverses of each other.
In particular, we have (see (7.20)):

Ine =x for all x

Iny

e =y forall y >0

FIGURE 8.4 lllustration of the definition of g(x) = In x.

v
A

flu) =e¢"
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g(x)y=Inx

N}
w
I

FIGURE 8.5 The graph of the natural logarithmic function g(x) = In x.

In Fig. 8.5 we have drawn the graph of g(x) = Inx. The shape of this
graph ought to be remembered. According to Example 8.3, we have g(l/e) = —1,
g(1) =0, and g(e) = 1. Observe that this corresponds well with the graph.

Differentiation of Logarithmic Functions

If we assume that g(x) = Inx has a derivative for all x > 0, then this derivative
can be easily found. Differentiate implicitly the equation

ef® = x [x]
with respect to x, using the result in [8.4]. This gives
eg(x)gl(x) =1

Because e8%) = x, so xg'(x) = 1. Hence:

gx)=lhx = gkx)= [8.9]

1
x

Thus, the derivative of In x at point x is simply the number 1 /x. For x > 0. we have
g'(x) > 0, so that g(x) is strictly increasing. Note moreover that g”(x) = —1/x?,
which is less than O for all x > 0, so that g'(x) is strictly decreasing. This confirms
the shape of the graph in Fig. 8.5. In fact, the growth of Inx 1s quite slow. For
example, In x first attains the value 10 when x > 22,026, because In x = 10 gives
x = ¢e'%%22,026.5.

Note: We derived [8.9] assuming that g(x) = Inx was differentiable. In fact. by
Theorem 7.9 in Section 7.6, the logarithmic function g is differentiable. Because
the derivative of f(x) = €* is €*, applying (7.24) to yo = €™ tells us that g'(yg) =
1/e* = 1/vy. This is the same as [8.9], except that the symbol yg has replaced x.
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Often, we need to consider composite functions involving natural logarithms.
Because Inu 1s defined only when # > 0, a composite function of the form y =
Inh(x) will only be defined for values of x satisfying h(x) > 0.

Combining the rule for differentiating Inx with the chain rule allows us to
differentiate many different types of function. Suppose. for instance, that y =
In h(x), where h(x) is differentiable and positive. By the chain rule, y = Inu with
u = h(x) implies that y' = (1/u)u’ = [1/h(x)]h’(x), so:

_HX)
T h(x)

y=Ihh(x) = [8.10]

Example 8.6
Find the domains of the following functions and compute their derivatives:

@ y=In(1-x) (b) y=1In@4—x?
(© y=I[x-1)/x+1]-3x

Solution

(@) In(1—x) 1s defined if 1 —x > O, that is, if x < 1. To find the derivative,
we use [8.10] with h(x) = 1 — x. Then h'(x) = —1, so by [8.10],

(b) In(4 — x?) is defined if 4 — x2 > 0, that is, if (2—x)(2+x) > 0. This
1s true if —2 < x < 2. Formula [8.10] yields

, —2x
y T 4—x2

(¢) We require that (x — 1)/(x + 1) > 0. A sign diagram shows this to
be satisfied if x < —1 orx > 1. We have y = Inu — %x, where
u=(x—1)/(x +1). Using [8.10], we find that

f,()_u’ 1
x T u 4
where
u,_l-(x+l)—l-(x—1)_ 2

(x + 1)? T (x+1)?

[N

|
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Thus,

2(x + 1) 1 9-x* (B-x)3+x)

S = T G- 1T -3 G -Da+D

Note: If we apply the quotient rule [8.7](b) for In to the formula in (c) of Exam-
ple 8.6, we obtain

fx) =l -1 -Inx+1) - jx [*]

By differentiating this expression, it is easier to derive a correct formula for
f’(x). But note that the.expression in [*] is only defined when x > 1, whereas
the formula in (c) is also defined for x < —1. The point is that the formula
In(p/q) = Inp — Ing is correct only when p and g are both positive, where-
as In(p/q) also is meaningful when p and g are both negative. Then In(p/q) =
In(—p) — In(—g).

Logarithmic Differentiation

When differentiating an expression containing products, quotients, roots, powers,
and combinations of these, it is often an advantage to use logarithmic differenti-
ation. The method is illustrated by the following example:

Example 8.7
Find the denivative of

xP(ax + b)?

YA T =

Solution  First, take the natural logarithm of each side to obtain
Iny=InA+ plnx +qgln(ax +b) — rIn(cx + d)
Differentiation with respect to x yields

7

1 1
a-—r c
ax+b cx+d

1
X

“ |

=P
Multiplying by y, which is given by [1], yields

X ax+b—cx+d

o aXex b (p a4 cr)
Y (cx +d)’
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A Survey of the Properties of In
The natural logarithmic function

gx)=Inx
is differentiable and strictly increasing for all x > 0. In fact,
gx)=1/x
The following properties hold for all x > 0, y > O: ;
(@) In(xy) =lnx+1Iny () In(x/y) =lnx —-Iny (¢) Inx” = plnx “'
Moreover, Ine* = x for a]l real x, and
Inx - —o00 as x = 07, Inx »> o0 asx — o0 E
Problems F
1. Express the following in terms of In 3:
a. In9 b. In+/3 c. Inv/32 d. 11181—1

2. Solve the following equations for x:
a. 3*=8 b. Inx =3 c. In(x*—4x+5) =0
x In(x + 3)
— =0 f. In -5)=0
x2+1 Wx=3
3. Solve the following equations for x:

d. In[x(x =2)] =0

a. 34*2=8 b 3lx+2lhx*=6 ¢ 4 -4 =373 |
4. Solve the following equations for 1: *
1 2 '

a x = eat+b b. e—ar =12 C. e_;- -

/ 27 8

5. Prove the following equalities (with appropriate restrictions on the variables):
a. Inx — 2 = In(x/e?)
b. Inx —Iny+Inz=In(xz/y)
¢. 3+2Ilnx =In(ex?)

@t im) Cpean=m S
—=inx — — — — In(x = In
2 2 x x+1 .
e. —pilnp;—plnpy— -+ — p,lnp, = > piln(l/p;)
=1

6. True or false: (a) 7€ < ¢ and (b) e > I/7?

7. Decide whether the following formulas are always correct or sometimes
wrong (all variables are positive):

a. InA)*=4lnA b.InB=2InvVB ¢ InA'"—InA*=3InA?




10.

11.

12.

13.

14.

15.
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Decide whether the following formulas are always correct or sometimes
wrong (all variables are positive):

A+ B A+ B

a. In =InA+InB—-InC b. In

=In(A+B)—InC

A B
c. ln-g+lnz=0 d. pln(ln A) = In(In A”)

e. pln(ln A) = In(ln A)” f ln—A--lnA(B'C)'l
- P - "InB+InC

Determine the domains of the functions given by the following:
3x -1

a. y=In(x+1) b. y=In

¢c. y=In|x]|

1
~ In(lnx) — 1
Find the denivatives of the functions defined by the following:

a. In(x + 1) b. Inx + 1 c. xlnx d =
Inx

d. y=In(x*>-1) e. y =In(lnx) f.y

Find the derivatives of the functions defined by the following:

a. In(Inx) b. In+v/(1 — x2) c. €flnx

d. ¢ Inx? e. In(e* + 1) f. In(x? +3x — 1)

Find the equation of the tangent line for the following:

a. y = Inx at the point with the x-coordinate: (i) 1; (ii) 3; and (iii) e.
b. y = xé&* at the point with the x-coordinate: (1) 0; (ii) 1; and (iii) —2.

Use logarithmic differentiation to find the derivatives of the following:

173
a Flx)= (x+1>

x—1
e f(x)=+/x =2+ DE*+6)
If f(x)=e*—1—x,then f(0)=0and f'(x) =e*—1>0forall x> 0.
Hence, f(x) is strictly increasing and f(x) > Oforallx > 0,s0¢* > 1+x
for all x > 0. Prove the following inequalities using the same method.
a e >1+x+x*2forx>0
b. 3x <In(l1+x) <xfor0<x <1

c.ln(i_*—t) >2tforO<zt <1

b. f(x) =x7

-1
Consider the function f defined for all x by

f)y=e""-x

a. Show that f(x) > 0 for all x. (Hinz: Study the sign of f'(x). Draw the

graph.)
b. Show that the equation ¢! — x = 1 has precisely two solutions.
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16.

17.

18.

19.

20.

21.

22,

c. Define the function g by the formula

T In(e' = x)
For which x is g defined? Examine g(x) as x — o¢ and x — —oc.
d. Draw the graph of g.

Simplify the following expressions:

a. exp [In(x)] — In [exp(x)] b. In [x* exp(—x)]

c. exp [ln(xz) —2In y}

The extreme-value distribution in statistics is given by

F(x) = exp [— exp(—x)]

a. Wrnte F(x) in standard form.
b. Compute f(x) = F'(x), and write the result in two ways.
c. Functon f is called the densiry function associated with F. Com-
pute f'(x).
The elasticity of y = f(x) with respect to x 1s defined in Section 5.6 as

X
El,y=-y
y

Use this definition to find the elasticities of the following:
a. y=¢ b. y=Inx . y=a

Compute the elasticities of the following functions (where a and § are con-
stants, § # 0):

ay=e¢* b y=x%* ¢ y=xhx+1) dy=G?+D"""
Differentiate the following functions using logarithmic differentiation:
a. x¥* b. (\/;)x c. x*)

Show by logarithmic differentiation that if u and v are differentiable functions
of x, and if u > 0, then

A, vu’
y=u =y =u" (vlnu+—>
u

In an article on production theory, the function

Ne¢ K<

v/a
Ne + b K‘T,,) (a, b, v. N. and K are positive constants)

F(a):a(

was studied. Find an expression for F'(¢).

L
4




Sec. 8.3 / Generalizations 263

23. Find the inverse of y = sinhx = %((3‘r —e™ ™). (See Problem 6 in Section 8.1.)
(Hinr: You will have to solve a quadratic equation for u = ¢*.)

8.3 Generalizations

Every positive number a can be written in the form a = ¢, so using the general
property (e")° = ", we have the formula

ax — (e]na)x = ex]na

In problems where function a* occurs, we can just as easily work with the special
exponential function €%, where b is a constant equal to Ina. In particular, we can
differentiate a* by differentiating e*'"®. Letting g(x) = xIna and applying the
chain rule [8.4], we obtain the following:

y=a" =y =a“lna (8.11]

If a = 10, for example, then y = 10* = y’ = 10*In10. Whereas if a = ¢, we
obtain y = ¢* = )y = e*, because Ine = 1.

Note: Comparing [8.11] with [8.2] in Section 8.1, we see that f'(0) = Ina. From
the definition of f’(0) in [8.1], it follows that (a* — 1)/A — Ina as h — 0.
Replacing a by x. we have
h
-1
lim al
h—0

=Inx (x>0

Let us take a closer look at this limit. For any 4 > 0, define the function g, by’

xh—1
h

gn(x) =

for all x > 0. Then

lim g (x) = lim =Inx

In fact, In x is bounded above by each of the functions g, (x) (h > 0). To see this,
consider for each & > O the function F,(x) = gy(x) —Inx = (x" — 1)/h — Inx

'Function g5, and its limit as 4 approaches 0 are related to the well known Box-Cox transformation
in statistics.
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»

FIGURE 8.6 y=(x" —1)/h (h=+0.25+0.1)and y = Inx.

defined for x > 0. Then F,(1) =0 and

hxh-1 1 x"—l{<o, f0<x <1

FE=——=o="—""3.0  ifx>1

Thus, F,(x) decreases from positive values to 0 when 0 < x < 1, but increases
from O to positive values when x > 1. It follows that F,(x) > O for all x > O,
except at x = 1, and so

— 1 s (forall x >0, x # 1)

gn(x) =

Figure 8.6 illustrates how g, (xi tends to Inx as A tends to 0.

Logarithms with Bases Other Than e

Recall that we defined Inx as the exponent to which we must raise the base e in
order to obtain x. From time to time, it is useful to have logarithms based on num-
bers other than e. For many years, untul the use of mechanical and then electronic
calculators became widespread, tables of logarithms to the base 10 were frequently
used to simplify complicated calculations involving multiplication, division, square
roots, and so on.

e
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Suppose that a is a fixed positive number (usually chosen > 1). If a* = x,
then we call « the logarithm of x to base a and wnte u = log, x. The symbol
log, x is then defined for every positive number x by the following:

a'%%* = x (8.12]

For instance, log, 32 = 5, because 2° = 32, whereas log,y(1/100) = —2, because
10~2 = 1/100. By taking the In of each side of [8.12], we obtain

log, x-lna =Inx

so that

1
log, x = —Inx [8.13]
Ina

This reveals that the logarithm of x in the system with base a is proportional to
Inx, with a proportionality factor 1/Ina. It follows immediately that log, obeys
the same rules as In (compare [8.7] of Section 8.2):

Rules for log,
log,(xy) =log, x +log, y (2)
log, = =log, x — log, y ) (8.14]
y
log, x? = plog, x (©)
log,1 =0 and log,a =1 ()]

For example, 8.14(a) follows from the corresponding rule [8.7](a) for In:

1 1
log, (xy) = ™ In(xy) = 1;z(lnx +Iny)

1
m—alnx+1;a—lny=logax+logay

From [8.13] and [8.9], we obtain

1 1
y=log,x = y'=m—x— [8.15]
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A Characterization of the Number e h

In Section 8.2, we showed by implicit differentiation that if g(x) = Inx is differ-
entiable, then g'(x) = 1/x. More specifically, g’(1) = 1. If we use the definition ‘
of g’(1) and [8.7](c), together with the fact that In1 = 0, we obtain :

, . In(l1+h)—1Inl o1 ' ] 1/h
l—g(l)_;l,l_l.% P —Elmzln(lﬁ'h)—}’l—{%lﬂ(l-{—h)

-0

Because In(1 + 4)!/# tends to 1 as & tends to 0, it follows that (1 + »)!/* itself
must tend to e, and soO

e =’lli_1)ré(1 + )k [8.16]

TABLE 8.1 Values of (1 + h)!/P

h 1 1/2 110 1/1000 1/100000 1/1000000
(1+ nVh 2.00 2.25 2.5937... 2.7169... 2.71825. .. 2.718281828...

Table 8.1 has been computed using a scientific calculator. The results seem
to confirm that the decimal expansicn we gave for e is correct. From the table,
we can see that a closer and closer approximation to e is obtained by choosing
h smaller and smaller. If we let A = 1/n, where the natural number n becomes
larger and larger, we obtain the following:

e= nlingo(l + 1/n)" (8.17]

Another Important Limit

If a 1s an arbitrary number greater than 1, then a* — o0 as x — oo. For example,
(1.0001)* — ¢ as x — oo. Furthermore, if p is an arbitrary positive number,
then x? — oo as x — oo. If we compare (1.0001)* and x'® it is clear that
the former increases quite slowly at first, whereas the latter increases very quickly.
Nevertheless, (1.0001)* eventually “overcomes” x1000 1n general, we claim the
following:

. x ]
lim — =0 (@ > 1, p is a fixed number) [8.18]
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For example x?/e* and x19/(1.1)* will both tend to 0 as x tends to co. The result
[8.18] is actually quite remarkable. It can be expressed briefly by saying that, for
an arbitrary base greater than 1, the exponential function increases faster than any
power of x. Even more succinctly: “Exponentials drown powers.”

To prove [8.18], it suffices to prove that In(x?/a*) - —o0 as x — oc, for
then x?/a* — 0 as x — oc (see Fig. 8.5). In fact,

P 1
1n£— =plnx—xlha=x (p—n—x—lna>
a* x

Because a > 1, we have Ina > 0. If we could show that

1
DX L0 & x— oo 8.19]
X

then we would be able to infer that p(lnx/x) — lna — —Ina, and so the proof
would be complete. But [8.19] is an easy consequence of 1’Hépital’s rule for the
“£o00/ £ 00" case. In fact,

ln [ ?”
o0

=00 X

The General Power Function
In Section 4.5 we claimed that, for all real numbers a,

f) =x"= f'(x) = ax*""! (]

Actually, however, we did not even define x¢ for irrational values of a. Now we
can give such a definition for all x > 0. Because x = ¢'**, we can define

x% = (elnx)a - ealnx
Using the chain rule, we obtain
d d ) a a
__(xa) = _(ealnx) = ealnx 2= x99 = gxo!
dx dx x x

In this way, the differentiation rule [%] is proved also when a is an imrational
number.

Taylor’s Formula for eX

If f(x) = ¢, then all the denvatives of f are equal to ¢*, and so the kth deriva-
tive of f at x = 0 is 1—thatis, f®(©) = 1 for k = 1, 2, ..., n. Therefore,
Taylor’s theorem [7.10] in Section 7.4 says that, for some number ¢ berween 0
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and x, one has

n xn+]

2
X X~ X
P BT A S : 8.20
¢ BT T Py Y [8.20]

One can show that for every fixed number x, the remainder in [8.20] approaches 0 ]
as n approaches infinity. So [8.20] allows one to compute the value of ¢* for any
x to an arbitrary degree of accuracy. However, if |x| is large, we must be prepared 0
to use a large number of terms in order to obtain a good approximation, because
the remainder in this case approaches O very slowly as n approaches infinity—
indeed, the early terms will grow bigger quite fast before eventually starting to
decline.

Let us see what estimate of ¢%! = ¥e emerges when n = 3. Putting x = 0.1
and n = 3 in [8.20] yields

111 D
0.1 _ - ¢
=1+ 200 000 23 ¢ [+]

for some c in the interval (0, 0.1). Because ¢ < 0.1, so e¢ < €%! < 1.2, where the
last inequality holds because (€%!)!0 = ¢ < (1.2)!0 & 6.2. Hence,

©.1% 1
e <

24 240000

0 < 1.2 = 0.000005

So when we drop the remainder in [*], the error that results is less than 0.000005.

The approximation €%! = 1+ 0.1+ 0.005 +0.00017 = 1.10517 is accurate to five
decimal places.

Problems

1. Compute the following:
a. logs 25 b. logs +/125 c. logs 1/25 d. log,,100~3
2. Find x for the following:
a. log,x=2 b.log e?=2 cloggx=-3 d. log,,x’ =100
3. Differentiate the functions given by the following:
ay=5-3 b.y=2hx ¢ y=xlog,x d y=1logV1+x>
. Solve for x:
d
a. e*/x
. Solve the following inequalities:
alnx<-1 b.ln(x*-x-1)>0 ¢ lnx+1In(x-3) <In4

F =N

=e b. [1n(x+e)]3—[1n(x+e)2]2=1n(x+e)—4

n
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6. By using I’Hopital’s rule (Theorem 7.8 in Section 7.5), or otherwise, deter-
mine the following limits:

. ~1 b 1 et — ') , In(x =1)
a. 11m . 11nm —— C.
=0 X 1—0 12 =22+ x—+/8 = x2
d. lim x!~* e. lim xlnx f. lim x*
xX—00 x—0+ x—0

7. Evaluate the limit

x* =y

lim
A—0* A

where x and y are positive constants.

8. For the following functions, find Taylor approximations of order 3 about
x = 0 by using [5.11] in Section 5.5. (You can partly check the results by
using [8.20].)

a. x& b. ¢~ c. x>+ &P d. vVer +1
9. Use Taylor polynomials of degree 3 to find approximate solutions of the
equation

BrxE@E+e ) —(F—e*)—x=0

G| —

Harder Problems

10. For the function f(x) = e™'** (x # 0), £(0) = 0, verify that f®)(x) =
x ¥ pr(x)e™ 1% (x # 0), where p(x) denotes some polynomial whose de-
gree is 2k — 2. Hence, show that f®(0) = 0 for all positive integers .
(For this function, all Taylor polynomials at the origin are identically equal
to 0, but the function itself is O only at the origin. The lesson of this exam-
ple is that in order to be certain that the Taylor polynomials of a function
give a good approximation to the function, one must estimate the size of the
remainder.)

8.4 Applications of Exponentials
and Logarithms ‘

Suppose that f () denotes the stock of some quantity at time . The ratio f'(z)/ f(r)
is the relative or proportional rate of increase of the stock at time r. In many
applications, the relative rate of increase is a constant r. Then

ff@y=rf@)  (forallr) [8.21]

Which functions have a constant relative rate of increase? Functions of the type
f(t) = A€’ certainly have, because f'(1) = Are” = rf(r). We claim that
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there are no other functions having this property. Suppose that g is any function i
sansfying g'(t) = rg(t), for all r. Define a new function h by h(r) = g(t)e™"".

Then /(1) = g'(t)e™"" + g(t)(—r)e™" = e~ [g'(t) — rg(1)], which is O for all 1.
Thus, h(r) = A for some constant A, so that g(r) = Ae”’. Hence, we have proved
that

') =rf(t) forallt <= f(z) = Ae’”" for a constant A [8.22]

We now consider some applications where [8.22] is important.

Ecology

Suppose that f(r) denotes the number of individuals in a population at time ¢. The
population could be, for instance, a particular colony of bacteria, or the polar bears
in the Arctic. We call f'(t)/ f(¢) the per capita rate of increase of the population.
If there 1s neither immigration nor emigration, then the per capita rate of increase
of the population will be equal to the difference between the per capita birth and
death rates. These rates will depend on many factors such as food supply, age
distribution, available living space, predators, disease, and parasites, among other
things.

Equation [8.21] specifies a very simple model of population increase. The
result [8.22] implies that the population must grow exponentially. In reality, of
course, exponential growth can go on only for a limited time. Instead of assuming
that the relatve rate of increase is constant, it is more realistic to assume that
once the population is above a certain quantity K (called the population’s carry-
ing capacity), the per capita rate of increase is negative. A special form of this
assumption 1s expressed by the equation

@) =rf@) <1 - %) [8.23]

Observe that when the population f(z) is small in proportion to K. so that
f()/K 1s small, then f'(z) =~ rf(t), and f(z) increases (approximately) expo-
nenually. As f(z) becomes larger. however, the factor 1 — f(z)/K increases in
significance. In general, one can show (see Problem 8) that if f(z) satisfies [8.23]
(and 1s not identically equal to 0), then f(¢) must have the form

K
f(t) = —— (for some constant A) (8.24]
1+ Ae™ !

If there are N individuals at time r = 0, then f(0) = Ny, and [8.24] gives
No= K /(1 + A), so that A = (K — Np)/Ny. Provided that Ny < K, then A > 0.
So it follows from [8.24] that f(z) is strictly increasing, and f(z) »> K ast — oo
(assuming that r > 0). The graph of f(r) is shown in Fig. 8.7.
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1 - ]

FIGURE 8.7 Logistic growth towards the level K.

Equatons like [8.23] with solutions of the form [8.24] appear in numerous
models—see, for instance, Problems 5 and 6. Function f defined by [8.24] is
called a logistic function.

Log-Linear Relations

Suppose that two variables x and y are related by the equation
y = Ax* (x, y, and A are positive) [1]

Let log denote the logarithm to any base. By taking the log of each side of [1]
while applying the rules [8.14], we find that [1] is equivalent to the equation

logy =logA +alogx (2]

From [2], we see that log y is a linear function of log x. and so we say that [1] is
a log-linear relation between x and y. The transformation from [1] to [2] 1s often
seen in economic models. usually with natural logarithms. (See Problems 9 and
10. for example.)

Suppose that the relation between the two positive variables x and y is set
out in a table. Make a new table for the relation between Inx and Iny. Plot the
results in a new coordinate system where Inx and In y are measured along the two
axes. If. to a good approximation, the resulting points are all on a straight line,
then the relation between x and y will be approximately of the form y = Ax“. (In
Section 15.7 we show how to find a straight line that, in a certain precise sense,
fits the data as well as possible.)

Example 8.8
Table 8.2 is from Consumer Survey 1980-1982 (published by the Norwe-
gian Central Bureau of Statistics, 1984). It gives the relationship between
v, consumption expenditure on health care. and x, total consumption ex-
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penditure, for married couples without children whose total consumption
expenditure was below 150,000 Norwegian crowns. For this purpose, the

population has been divided into four different consumption expenditure
groups.

TABLE 8.2 From the Consumer Survey
19801982

x 28316 49412 77006 122,085
y 664 1028 1501 2010

(a) Make a table for the relation between Inx and In y, and plot this data

in a coordinate system where Inx and In y are measured along the two
axes.

(b) Roughly fit a straight line through the point pairs in the resulting dia-
gram, and construct an empirical formula for y as a function of x.

Solution

(a) We construct Table 8.3.

TABLE 8.3

Inx  10.25  10.81  11.26  11.71
Iny 6.50 6.94 7.31 7.61

(b) The straight line we have drawn through the two extreme points in
Fig. 8.8 seems to give a good approximation to all the numbers in the
table. The equation for the line is of the form Iny = InA + alnx.

FIGURE 8.8
Iny
st

— Inx

10 11 12
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Using the extreme points (10.25, 6.50) and (11.71, 7.61). we find that
the slope of the line is

L__161-65 111 _
T 11.71-1025 146

0.76

If we require the line to pass through (11.71,7.61), then 7.61 = In A+
0.76 - 11.71. Hence. InA = 7.61 — 0.76 - 11.71 = —1.2896, so that
A = ¢~ 1289 2 (0.275. The relation between y and x is then

v =0.275x%7
Suppose that y is an exponental function
y = Aa* (a and A are positive)
Taking the log of each side gives
logy =log A+ xloga [*]

We see that in this case logy becomes a linear function of x. In a coordinate
system where there is an ordinary (linear) scale on the horizontal axis and a log y
scale along the vertical axis, [*] represents a straight line with slope loga.

Elasticities and Logarithmic Differentiation

In Example 5.20 of Section 5.6, we considered the demand function D(p) =
8000p~!-°> and showed that the elasticity E1,D = (p/D) (dD/dp) is equal to the
exponent —1.5. Taking natural logarithms of this demand relation gives

InD(p) =In8000 - 1.5np

So El,D is also equal to the (double) logarithmic derivative d1n D(p)/d In p.
which is the constant slope of this log-linear relationship.

This example illustrates the general rule that elasticities are equal to such
logarithmic derivatives. In fact, whenever x and y are both positive variables, with
v a differentiable function of x, one has

xdy dlny dlog,y
E,y=-—= =
ydx dlnx dlog,x

[8.25]

where a is any positive base for constructing logarithms. The first equality just
repeats the definition of elasticity. To see why the second must hold, note that
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Iny is a differentiable function of y, whereas y is assumed to be a differentiable
function of x, and x = e/"* is a differentiable function of Inx. So the chain rule
can be applied twice to give

dlny dlny dy dx
dinx ~ dy dx dlnx

But

diny

-

1 dx _ de
dy y dlnx dlnx

=elnx=x

Substituting these values into the previous expression for d In y/d Inx implies that

dlny 1
dlnx y dx y dx

Finally, from [8.13], it follows that log, z is proportional to Inz, so the third !
equality in [8.25] is easy to verfy.

Problems

1. Compute the relative rate of increase x/x for the following:
a x=5+10 b. x=In+1) c. x =5¢€
d x=-3.2 e. x=e" f.x=e¢+e'

Which of these functions have a constant relative rate of increase? Compare
your findings with the result in [8.22].

2. In a stable market where no sales promotion is carried out, the decrease in
S(t), sales per unit of time of a commodity, has shown a tendency to be
proportional to the quantity of sales, so that

S'(t) = —aS(1)

a. Find an expression for S(r} when sales at time O are S;. (Hint: Use
(8.22].)

b. Solve the equation Spe™* = %S, for r. Interpret the answer.

3. The world’s population in 1975 was almost 4 billion. and increasing by nearly
2% per year. If we assume that the population increases exponentially at this

relauve rate, then r years after the year 1975 the population in billions will
be equal to

P(1) = 4e%0¥

a. Estimate the world’s population by the year 2000 (1 = 25).
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b. How long will it take before the world’s population doubles, if its growth
continues at the same rate?

4. Let P(r) denote Europe’s population in millions ¢ years after 1960. Accord-
ing to Example 2.17 of Section 2.5, we have P(0) = 641 and P(10) = 705.
Suppose that P(r) grows exponentially, with P(¢) = 641¢*'. Compute & and
then find P(15) and P (40) (estimates of the population in 1975 and in 2000).
Compare with the UN numbers in Table 2.4.

5. The number N(z) of persons who develop influenza ¢ days after a group of
1000 persons has been in contact with a carrier of infection is given by

1000

NGy = ——2
B = T o99e05

a. How many develop influenza after 20 days?
b. How many days does it take until 800 are sick?
¢. Will everyone eventually get influenza?

6. A study of tractors in British agriculture from 1950 onwards estimated that
the number y in use (measured in 1000 tractors), as a function of ¢ (measured
1n years, so that 1 = 0 corresponds to 1950), is given by

228.46
1 + 8.11625¢=0340416¢

y =250.9 +

a. Find the number of tractors in 1950. How many tractors were added in
the decade up to 1960?

b. Find the limit for y as + — oo, and draw the graph.

7. After the big flood catastrophe in Holland in 1953, a research project was
initiated to determine the optimal height of the dikes. One of the (simpler)
models involved finding the value of x that minimizes the function

fx)=1Iy+ kx + Ae™™* x>0

where x denotes the number of meters that should be added to the dikes.
Iy + kx is the construction cost, and Ae™®* is an estimate of the losses
caused by flooding. Iy, k, A, and « are all positive constants.
a. Suppose that f(x) has minimum for some xo > 0. Find xo.
b. What condition must we put on «, A, and k for xq to be positive? Show
that if the condition is satisfied, then xq solves the minimization problem.
¢. Constant A is given by the formula

PR N PO
=5 P 100

where p; is the probability that the dikes will be flooded if they are not
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rebuilt, V is an estimate of the cost of flood damage, and § is an interest
rate. Show that xy may be written in the form

1 100apoV (1 +6/100)
Xo=—1In
o ké

Examine what happens to xo when one of the variables pgy, V., 4, or k&
increases. Comment on the reasonableness of the results.>

8. Suppose that f(z) is a function satisfying [8.23], and define a new function
h by h(t) = —1 4+ K/ f (). Prove that h'(t) = —rh(z) for a constant A, so
(using [8.22]) one has h(t) = Ae™" for some constant A. Then what can be
said about f(r)?

9. Voorhees and colleagues studied the transportation systems in 37 American
cities and estimated the average travel time to work, m (In minutes), as a
function of the number of inhabitants, N. They found that

-0.02
m = =002 NO.19

Write the relation in ln-linear form. What is the value of m when N =
480,000?

10. The following data are taken from a survey of persons who in 1933 migrated
to Tartu in Estonia from the surrounding countryside. Here y is the number
of persons that moved per 100,000 rural inhabitants, and x is the distance
moved (measured in kilometers and rounded to the nearest whole number
divisible by 20).

. g

X 20 40 60 80 100 120 140 160 180 200
y 1700 550 230 120 75 60 45 35 25 20

a. Construct a table of the relationship between Inx and Iny, and plot the
data in a coordinate system where Inx and In y are plotted along the two
axes.

b. Roughly fit a straight line to the pairs of points in the diagram plotted
for part (a), and derive an empirical formula for y as a function of x.

11. Write the relation z = 694,500p~% in In-linear form (see Example 3.8 in
Section 3.4). In addition, find p expressed in terms of z.

12. a. Determine the constants A and a such that the graph of y = Ax® passes

through the points (x, y) = (2.5) and (3.7). (Hint: Use the In-linear
form.)

2The problem is discussed in D. van Dantzig. “Economic Decision Problems for Flood Preven-
ton.” Economerrica. 24 (1956): 276-287.
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b. Repeat part (a) when the graph goes through points (x;, y;) and (x, y»),
where x; # x;.
13. The effect on chicken embryos of cooling the eggs has been studied. The

following table shows results from an experiment where the pulse of a chicken
embryo was measured at different temperatures.

Temperature T (°C) 36.3 35.0 33.9 32.4 247 24.2
Pulse n (heartbeats/minute) 154 133 110 94 38 36

a. Prepare a table showing the relationship between T and Inn, and plot the
pairs of numbers (7, In n) in a coordinate system with ln» on the vertical
axis and T on the horizontal axis. Fit a straight line to these points.

b. We want to find an empirical function f(T) = ce®” that approximates
the pulse rate as a function of the temperature 7. Using the line obtained
In part (a), determine g and c.

¢. By how many degrees does the temperature have to fall in order to halve
the pulse rate?

Harder Problems

14. All organic material contains stable carbon 12 and some (very little) of the
radioactive isotope carbon 14. The proportion between the quantities of car-
bon 14 and of stable carbon in living organisms is constant, and seems to
have been constant for thousands of years. When an organism dies, carbon 14
decays according to the law

f@) = f(to)e'l'zs'lo—‘(’-lo)

where f(2p) is the quantity of carbon at the moment of death 7y, and f(z) is
the quantity that is left at time 7. Show that 7y is given by

f@)
f ()
(This formula is the basis for “radioactive dating.” In 1960, the American

W. F. Libby received the Nobel prize in chemistry for the discovery of
radioactive dating.)

1o = t+ 80001n

15. Helge and Anne Stine Ingstad found several Viking tools on old settlements
in Newfoundland. The charcoal from the fireplaces was analyzed in 1972,
and the percentage of carbon 14 in the charcoal (compared with the content
of carbon 14 in fresh wood) was 88.6%. Use the result from Problem 14 to
determine when the Viking settlers lived in Newfoundland.
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8.5 Compound Interest and Present Discounted

Values

Equation [8.21], f'(z) = rf(¢) for all ¢, has a particularly important application to
economics. After ¢ years, a deposit of $X earning interest at the rate p% per year
will increase to

K(1+r) (where r = p/100) (1]

(see Section A.1, Appendix A). Each year the principal increases by the factor 1+r.

Formula [1] assumes that the interest is added to the principal at the end of
each year. Suppose instead that payment of interest is offered each half year, but
at an interest rate p/2. Then the principal after 1/2 year will have increased to

K+K117—£=K(1+%)

Therefore, the principal increases by the factor 1+r/2 each half year. After 1 year,
the principal will have increased up to K (1 +r/2)2, and after ¢ years it will be

K (1 + %)2' 2]

It is clear that a biannual interest payment at the rate 5 p% is better for a lender
than an annual interest payment at the rate p%. This is easily seen also from the
factthat (1 +r/2)° =1+r+r2/4 >1+r.

More generally, suppose that interest at the rate p/n% is added to the prin-
cipal at n different times distributed evenly over the year. Then the principal will
be multiplied by a factor (1 + r/n)" each year. After ¢ years, the principal is

K (1 + %)' 3]

The greater is n, the more profitable is the investment for the lender. See Problem 3.
In practice, there is a limit to how frequently interest can be added to savings

accounts. However, let us examine what happens to the expression in [3] as the

annual frequency n tends to infinity. We put r/n = 1/m. Then n = mr and so

K(l+;:-)m=K <1+%>m”=1< KH%)T [4]

As n — oo (with r fixed), so m = n/r — oc. and according to {8.i7], we have
(1 +1/m)™ — e. Hence, the expression in [4] approaches K¢’/ as n tends to
infinity. When we let n approach infinity, the accumulation of interest happens
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more and more frequently. In the limit, we talk about continuous compounding
of interest. After 7 years, an initial amount $X will have increased to

K@) =Ke" (continuous compounding) [8.26]

The number r is often referred to as the rate of interest. By differentiating [8.26],
we have the following important fact.

With continuous compounding of interest at rate r, the principal increases at
the constant relative rate r, so that K'(2)/K (1) =r.

From [8.26], we infer that K (1) = Ke", so that the principal increases by the factor
¢’ during the first year. In general. K(r + 1) = K" = Ke'e” = K(1)e', so
that with continuous compounding of interest, the principal increases each year by
the fixed factor €.

Comparing Different Forms of Interest

At an interest rate of p% (= 100r) per year, continuous compounding of interest
is best for the lender. (See Problem 3.) For comparatively low interest rates.
however, the difference between annual and continuous compounding of interest
1s quite small.

Example 8.9
Find the amount by which $1 increases in the course of a year when the
interest rate 1s 8% per year and interest is added:

(a) only at the end of the year
(b) at the end of each half year
(¢) continuously

Solution In this case, r = 8/100 = 0.08. so we obtain the following:

(@) K =(1+0.08) =1.08
(b) K = (1+0.08/2)> =1.0816
() K = %% =~ 1.08329

If we increase the interest rate or increase the number of years over which
interest accumulates. then the difference between yearly and continuous com-
pounding of interest increases.

Note: A consumer who wants to take out a loan may be faced with several offers
from financial institutions. It is therefore of considerable importance to compare
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the various offers. The concept of effective interest rate is often used in making
such comparisons. Imagine an offer that implies a yearly interest rate p% with !
interest p/n added n times during the year. A principal amount of K will then '
have increased after 1 year to K(1+r/n)”, where r = p/100. Define the effective
interest rate P as the annual percentage interest rate that, when compounding
is continuous, gives the same total interest over the year. If R = P/100, then
after 1 year, the initial amount K increases to KeX. Hence, R is defined by the
equation

KeR =K1 +r/n)

Canceling X and then taking In of both sides gives
R =nln(l +r/n) 8.27] |

If r = 0.08 and n = 1, for example, then R = In(1 4+ 0.08) = 0.077. Thus, a
yearly interest rate of 8% corresponds to an effective interest rate (with continuous

compounding) of about 7.7%.

The Present Value of a Future Claim

Suppose that an amount K is due for payment r years after the present date.
What is the present value of this amount when the interest rate is p% per year?
Equivalently, how much must be deposited today eamning p% annual interest in
order to have the amount K after ¢ years?

If interest is paid annually, the amount A will have increased to
A(l + p/100)" after ¢ years, so that we need A(l + p/100)’ = K. Thus,
A =K1+ p/100)™ = K1 4+ r)~", where r = p/100. If interest is com-
pounded continuously, however, then the amount A will have increased to Ae™
after r years. Hence, Ae” = K, or A = Ke™”. Altogether, we have the fol-
lowing:

If the interest rate is p% per year and r = p/100, an amount X that is
payable in 7 years has the present value:

- . . (8.28]
KQ+nr™, with yearly interest payments
Ke™ ', with continuous compounding of interest
Problems

1. An amount $1000 earns interest at 5% per year. What will this amount have
grown to after (a) 10 years, and (b) 50 years, when interest is compounded
(1) yearly, (i1) monthly, (ii1) continuously?
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2. Suppose that the price of a commodity after x years is given by f(x) = Ae**,

where A and k are constants.

a. Find A and k when f(0) = 4 and f'(0) = 1. In this case. what is the
price after 5 years?

b. We assume now that A = 4 and k = 0.25. When the price has increased
to 18, it becomes controlled so that the annual price increase is limited to
10%. When are price controls first needed? What length of time is needed
for the price to double before and after price controls are introduced?

Harder Problems

3. We showed (in the discussion following Equation [4]) that (1 + r/n)" — &’
as n — oo. For each fixed r > 0, we claim that (1 + r/n)" is strictly
increasing in n, so that

(1+5) < tim (1+5) =¢  (forn=1.2..) [

n—+co n

This shows that continuous interest at interest rate p% per year, with r =
p/100, is more profitable for the lender than interest payments n times a vear
at interest rate p/100n.

To confirm this, define the function g for all x > 0 by

X
2(x) = ( 1+ 5) (r is a positive constant)
X

Show that

g'(x) = g(x) [ln (1+§) I }

B 1+r/x

(Use logarithmic differentiation.) Put 2(x) = In(1 + «) — «/(1 + u). Then
h(0) = 0. Show that #»’'(«) > O for ¥ > 0, and hence that g'(x) > O for all
x > 0. What conclusion can you draw?
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Single-Variable
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If you want literal realism, look at the world around
you; if you want understanding, look at theories.

—R. Dorfman (1964)

Looking for the best way of pursuing a certain goal involves what are called
optimization problems. Examples can be drawn from almost all areas of human-
activity. A manager seeks those combinations of inputs (such as capital and labor)
that maximize profits or minimize costs. A doctor might want to know when
the concentration of a drug in the bloodstream is at its greatest. A farmer might
want to know what amount of fertilizer per square yard will maximize profits.
An oil company may wish to find the optimal rate of extraction from one of its
wells.

Studying an optimization problem of this sort using mathematical methods
requires us to construct a mathematical model for the problem. This is usually
not easy, and only in simple cases will the model lead to the problem of max-
imizing or minimizing a function of a single variable—the main topic of this
chapter.

In general, no mathematical methods have more important applications in
economics than those designed to solve optimization problems. Though economic
optimization problems usually involve several variables, the examples of quadratic

optimization in Section 3.2 indicate how useful economic insights can be gained
even from simple one-variable optimization.
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9.1 Some Basic Definitions

Recall from Section 7.2 that, if f(x) has domain D, then

¢ € D is a maximum point for f <= f(x) < f(c), forallx € D [9.1]

d € D is 2 minimum point for f <= f(x) > f(d), forallx e D [9.2]

In [9.1], we call f(c) the maximum value, and in {9.2], we call f(d) the minimum
value. If the value of f at ¢ is strictly larger than at any other point in D, then ¢
is a strict maximum point. Similarly, 4 is a strict minimum point if f(x) > f(d)
for all x € D, x # d. As collective names, we use optimal points and values, or
extreme points and values.

If f is any function with domain D, then — f is defined in D by (— f)(x) =
—f(x). Note that f(x) < f(c) for all x € D, if and only if —f(x) > —f(c)
for all x € D. Thus, ¢ maximizes f in D if and only if ¢ minimizes — f in D.
This simple observation, which is illustrated in Fig. 9.1, can be used to convert
maximization problems to minimization problems and vice versa.

Our main task in this chapter is to study how to determine the possible

maximum and minimum points of a function. In this connection, the following
definition is crucial:

xg is a stationary point for f if f'(xg) =0 [9.3]

Geometrically, stationary points occur where the tangent to the graph of the function
1s parallel to the x-axis.

Before starting to explore systematically the properties of maxima and min-
ima, we provide some geometric examples based on the graph of the function.
They will indicate for us the role played by the stationary points of a function in
the theory of optimization.

FIGURE 8.1 Point ¢ is a maximum point for f(x) and a minimum point for —f(x).

: y=sx

: C

y
4
!

X




284 Chapter 9 / Single-Variable Optimization
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Figure 9.2 is the graph of a function f having two stationary points, ¢ and
d. At c, there is a maximum,; at d, there is a minimum.

In Fig. 9.3, the function has no stationary points. There is a maximum at the
end point b and a minimum at 4. At d, the function is not differentiable. At b,
the derivative (the left-hand derivative) 1s not 0.

Finally, the function f whose graph is shown in Fig. 9.4 has three statonary
points, xp, xj, and x». At end point a, there is 2 minimum, whereas f does not
have any maximum value because it approaches co as x tends to b. At the cnitical
point xp, function f has a local maximum in the sense that its value at that point
is higher than at all neighboring points. Similarly, at x;, it has a local minimum,
whereas at x» there is a stationary point that is neither a local maximum nor a local
minimum. We call x> an inflection point.

The three figures represent the most important properties of single-variable
optimization problems. Because the theory is so important in practical applications,

we must not simply rely on geometric insights, but must rather develop a firmer
analytical foundation for optimization theory.

9.2 A First-Derivative Test for Extreme Points

In many important cases. we can find maximum or minimum values for a function
just by studying the sign of its first derivative. Suppose f(x) is differentiable
on an interval I and suppose f(x) has only one stationary point. x = ¢. If
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‘ c i d

FIGURE 9.5 Point x = cis a FIGURE 9.6 Pointx=dis a
maximum point. minimum point.

f'(x) > 0 for all x €.] such that x < ¢, whereas f'(x) < O for all x € I
such that x > ¢, then f(x) is increasing to the left of ¢ and decreasing to the
right of c. It follows that f(x) < f(c¢) for al x < ¢ and f(c) > f(x) for
all x > ¢. Hence, x = ¢ is a maximum point for f in /, as illustrated in
Fig. 9.5.

With obvious modification, a similar result holds for minimum points, as

illustrated in Fig. 9.6. Briefly stated:!

A First-Derivative Test for Max/Min

If f'(x) >0 forx <c¢,and f'(x) <0 for x > ¢, then x = ¢ is a maximum
point for f. [94]

If f'(x) <0 forx <c¢,and f'(x) >0 for x > ¢, then x = ¢ is a minimum
point for f.

Example 9.1

Measured in milligrams per liter, the concentration of a drug in the blood-
stream ¢ hours after injection is given by the formula

t
c(t) = ——
o1
Find the time of maximum concentration.
Solution Differentation with respect to r yields

1-(P+4)—1-21  4-12  Q2+nQ2-1)

cn= (12 + 4)? T2 +42 T (12+4)2

IMany books in mathematics for economists instruct students always to check so-called second-
order conditions. even in cases where the first-derivative test [9.4] is much easier to check.
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For 1 > 0, the term (2 —1) alone determines the algebraic sign of the fraction,
because the other terms are positive. In fact, if 1 < 2, then ¢'(z) = 0, whereas
if t > 2, then ¢’(t) < 0. From [9.4], we conclude that = 2 maximizes
¢(r). Thus, the concentration of the drug is highest 2 hours after injection.

Because ¢(2) = 0.25, the maximum concentration is 0.25 milligrams per
liter.

Example 9.2
Suppose Y(N) bushels of wheat are harvested per acre of land when N
pounds of fertilizer per acre are used. If P is the dollar price per bushel of

wheat and ¢q is the dollar price per pound of fertilizer, then profits in dollars
per acre are

n(N)=PY(N)-gN (N=0) [1]

Suppose that for some N*, #/(N) > 0 for N < N*, and 7/(N) < 0 for
N > N*. Then N* maximizes profits, and #'(N*) = 0, that is, PY'(N*) —
g =0, so

PY'(N*) =g [2]
Let us give an economic interpretation to this condition. Suppose N* units
of fertilizer are used and we contemplate increasing N* by one unit. What
do we gain? If N* increases by one unit, then Y(N* + 1) — Y(N*) more
bushels are produced. Now Y(N*+1)—-Y(N*) = Y'(N™). For each of these
bushels, we get P dollars, so

by increasing N* by one unit, we gain & PY'(N*) dollars
On the other hand,
by increasing N* by one unit. we lose ¢ dollars

because this is the cost of one unit of fertilizer. Hence. we can interpret [2]
as follows: In order to maximize profits. you should increase the amount of
fertilizer to the level N* at which an additional pound of fertilizer equates
your gains and losses.

In a certain study from Jowa in 1952, the yield function Y(N) was
estimated as

Y(N) = —13.62 + 0.984N — 0.05N3/?

If the price of wheat is $1.40 per bushel and the price of fertilizer is $0.18
per pound, find the amount of fertilizer that maximizes profits.
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Solution In this case.
7(N) = 1.4(—13.62 + 0.984N — 0.05N°>”) = 0.18N.

SO

7'(N) = 1.4[0.984 — (3/2) - 0.05- N'*] - 0.18 [3]
Thus, 7'(N*) = 0 provided that
14-(3/2) -0.05(N*)'? =1.4-0.984 — 0.18
This implies that

_1.4-0984-0.18  1.1976
T 14(3/2)0.05  0.105

(N5 ~ 11.406

Hence,

N* = (11.406)* ~ 130

Looking at [3], we see that #'(N) = 0 for N < N*, and n'(N) < O for
N > N*. Hence, N* =~ 130 maximizes profits.

Example 9.3 (“Neither a Borrower nor a Lender Be”)®
A student has current income y; and expects future income y»>. She plans
current consumption ¢; and future consumption ¢, in order to maximize the
utility function

Inc, + Inc,

1446

where § is her discount rate. If she borrows now, so that ¢; > y,, then future

consumption, after repaying the loan amount c; — y, with interest charged at
rate r, will be

c=y—QAQ+r)(c—yn)

Alternatively, if she saves now, so that ¢; < y;, then future consumption
will be

a=y+ 0+ -a)

after receiving interest at the same rate on her savings. Find the optimal
borrowing or saving plan.

2According to Shakespeare. Polonius’ advice to Hamlet was “Neither a borrower nor a lend-
er be.”
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Solution Whether the student borrows or saves, second period consump-
tion will be given by

ca=ys— (1+r)c1 —y)

in either case. So the student will want to maximize

1
U=lnc¢ + T3 Infy, ~ (1 4+r)(c; — y1)]

Differentiating this function with respect to ¢; gives

du 1 1+r 1

—

dey, ¢ 148 yo—A+r)c—y)

Rewriting the fractions so that they have a common denominator yields

dU _ A+ = A +r)e)—yDl =1 +r)e
dc) a1+ 8)[y» — (1 +r) =yl

[1]

Rearranging the numerator and equating the derivative to 0, we have

dU 1+ +y+»—-Q+8)(A+r)a ]
de, c1 (14 8)[yr — (1 + 1)) — y1)) - -

The unique solution of this equation is

C*_(1+5)[(1+7)yl+)’2]_. (1 +8)y = A +r)n 3]
=T eroa+n 2+ +7)

From (2], we see that for ¢; > ¢} one has dU /dc, < 0, whereas for ¢; < ¢}
one has dU /dc, > 0. We conclude that ¢} indeed maximizes U. Moreover,
the student lends if and only if (1+8)y> < (1+r)y;. In the more likely case
when (14+8)y» > (1+r)y; because future income is considerably higher than
present income, she will borrow. Only if by some chance (14 8)y is exactly
equal to (1+r)y, will she be neither a borrower nor a lender. However, this
discussion has neglected the difference between borrowing and lending rates
of interest that one always observes in reality.

Problems

1. Let y denote the total weekly weight of pigs slaughtered by the butcheries of
Chicago during 1948 (in millions of pounds) and let x be total weekly work
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effort (in thousands of hours). Nichols estimated the relation
y = =2.05 + 1.06x — 0.04x>

Determine the value of x that maximizes y by studying the sign variation
of y'.

. Find the derivative of the function A defined for all x by

8x

h =
*) 3x2+4

Use the sign variation of h'(x) to find the maximum/minimum value of A (x).
. Consider the function V defined by

Vx) =4x(9—x)* =4x> - 72x> +324x  (x €(0.9])

(See Problem 1(e) in Section 1.3 for an interpretation of V.)

a. Compute V'(x) and show that V is increasing in (0, 3) and decreasing
in (3,9). Find the maximum point of V in [0, 9].

b. Explain what the result in part (a) implies for Problem 1(e) in Section 1.3.

c. Also solve the problem by logarithmic differentiation of V (x), for x €
(0. 9). Which method do you prefer?

. a. Show that

2x- — Fx) = 4x(1 +x7)(14+x)(1 -x)

F& = x* +1)2

[¥]

b. Use [*] to find the maximum value of f on [0, o). Show that f(—x) =
f(x), for all x. What are the maximum points for f on (—o0, c0)?

. Occasionally, one can find maximum/minimum points of a function just by
studying the formula. For example, consider f(x) = +/x — 5 — 100, defined
for x > 5. Because /x —51is > 0 for all x > 5, so f(x) > —100 for all
x > 5. Because f(5) = —100, we conclude that x = 5 is a minimum point.

Use similar direct arguments to.find maximum/or minimum points for the
following:

a. f(x)=3x2+4 b. gx) =3 - (x-2)

c. h(x) =5(x+2)* =3 d. F() = 5—

e. G(x)=2—-+/1—x f. H(x) = 14 (x € [~1.1])
l1+x

. Study the sign variation of the derivative of each function in Problem 5 and
confirm the conclusions obtained there.
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Harder Problems

7. If the tax T a person pays on gross income Y is T = a(bY + c¢)?

+ kY, where a, b, and ¢ are positive constants, then the average tax rate
is '

p
T_ Y+ v s

T =5 Y

Find the value of Y that maximizes the average tax.

8. Given n numbers a;, a3, - .., a,, find the number x that approximates these
numbers best, in the sense that

d(x) = (x —a))?> + (x —a)* +--- + (x — a,)’

is as small as possible. What do you call this x value?

9.3 Alternative Ways of Finding Extreme Points

Sometimes it is awkward or impcssible to locate extreme points by considering
how the sign of the first derivative varies. Other ways of characterizing extreme
points are often more useful, as this section demonstrates.

We begin by examining precisely the role played by stationary points of a
function in locating extreme points. Suppose we know that a function f has a
maximum at a point ¢ in an interval /. That maximum might very well occur at
an end point of the interval, as is the case in Fig. 9.3. However, when ¢ is not
an end point, and if f is differentiable, it seems geometrically obvious that the
tangent to the graph at ¢ must be horizontal. In other words, ¢ must be a stationary
point. The same conclusion applies to a minimum point. A formal statement and
a proof of this important result were given in Theorem 7.4 of Section 7.2. Thus,
the condition f'(c) = 0 is a necessary condition for an interior point ¢ at which f’
exists to be an optimal point. The condition is not sufficient, however. In Fig. 9.4
of Section 9.1, points xg, x), and x, are all stationary points, but none is an optimal
point. (In fact, xg is a local maximum point, x; a local minimum point, and x, an
inflecion point.)

How to Search for Maxima/Minima

Suppose we know that a function f has a maximum and/or a minimum in a bounded
interval /. The optimum must occur either at an interior point of / or at one of
the end points. If it occurs at an interior point (inside the interval /) and f is
differentiable, then by Theorem 7.4 in Section 7.2 the derivative f’ is zero at that
point. In addition, there is the possibility that the optimum occurs at a point where
f is not differentiable. Hence, extreme points can be only one of the following
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three types:

1. interior points in I where f'(x) =0
2. end points of I

3. points in [ where f' does not exist

A typical example showing that a minimum can occur at a point of type 3
is suggested in Fig. 9.3 of Section 9.1. However, the functions economists study
are usually differentiable everywhere. The following recipe, therefore, covers most
problems of interest.

Problem:

Find the maximum and the minimum values of a differentiable function f
defined on a closed. bounded interval [a, b].

Solution

(@) Find all stationary points of f in (a, b)—that is, find all points x € 5]

(a, b) that satisfy the equation f'(x) = 0.
(b) Evaluate f at the end points a and b of the interval and at all stationary
points found in (a).
(c) The largest function value in (b) is the maximum value of f in [a, b].
(d) The smallest function value in (b) is the minimum value of f in [a, b].

A differentiable function is continuous, so the extreme-value theorem (The-
orem 7.3 of Section 7.2) assures us that maximum and minimum points do exist.
Following the procedure just given, we can, in principle, find these extreme points.
(In very special examples, there could be an infinite number of stationary points.
Such “pathological” functions almost never appear in applied problems.)

Example 94
Find the maximum and minimum values of

—2x+1, (x € [-3,3)
Solution  The function is differentiable everywhere, and

fy=it-ix-3=10"-x-) =@+ DHx -2
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Thus, there are two points in the interval (=3, 3) where f'(x) = 0, namely,
x = —1 and x = 2. Evaluating f at these points and the end points, we
have

f(=3)=-3/2, f(=1) =25/18, f@Q=-19  f@ =10

The minimum value is —3/2 at x = -3, and the maximum value is 25/18
at x = —1.

Example 9.5
A firm is producing some commodity and wants to maximize its profits.
The total revenue generated in a certain period by producing and selling
Q units is R(Q) dollars, whereas C(Q) denotes the associated total dol-

lar cost. The profit obtained as a result of producing and selling Q units
is then

m(Q) = R(Q) — C(Q) (1]

Because of technical limitations, suppose there is a maximum quantity Q
that can be produced by the firm in a given period. Assume that R and C
are differentiable functions of Q in the interval [0. Q). The profit function
7 is then differentiable, so continuous, and consequently 7 has a maxi-
mum value. In special cases, that maximum might occur at Q = 0 or at
Q = Q. If not, the maximum production level Q* satisfies 7'(Q*) = 0,
and so

R'(Q") =C'(@M) (2]

Hence, production should be adjusted to a point where the marginal revenue
is equal to the marginal cost.

Let us assume that the firm gets a fixed price P per unit sold. Then
R(Q) = PQ, and [2] takes the form

P=C'(Q" (3]

Thus, in the case in which the firm has no control over the price, production
should be adjusted to a level at which the marginal cost is equal to the price
per unit of the commodity (assuming that 7 does not have a maximum at 0
or at Q).

For special choices of R(Q) and C(Q). it might happen that [2] has
several solutions. If so, the maximum profit occurs at that point among the
solutions of [2] that gives the highest value to 7(Q).

An interpretation of [2] in line with that given for the corresponding
optimality condition in the wheat example in Example 9.2 of Section 9.2 is
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as follows. Suppose we contemplate increasing production from the level O~
by one unit. Revenue will increase by: R(Q* + 1) — R(Q*) = R'(Q*). We
would lose the amount C(Q*+1)—~C(Q*) = C'(Q™). because this is the cost
increase by increasing production by one unit. Equation [2] equates R'(Q*)
and C'(Q*), so that marginal revenue of selling an extra unit is exactly offset
by the marginal cost of producing that unit.

Suppose a tax of ¢ dollars per unit 1s imposed on the production of the
commodity. Then the profit function becomes

n(Q) = R(Q) - C(Q)—10 (4]

because selling Q-units incurs a total additional cost of Q. Assuming again
that the maximum profit is not at 0 = 0 or Q = 0, it can only occur at
a level Q* where 7'(Q*) = 0. Now, 7'(Q) = R'(Q) — C'(Q) —t. so the
condition for maximum profit is

R(Q") =C(Q") +1 [5]

What we gain by increasing production by one unit from the level Q* is still

(approximately) R'(Q*). What we lose is C'(Q*) + ¢, because we have to
pay ¢ dollars in tax for the extra unit of output.

In the previous examples that involved explicit functions, we had no trouble
in finding the solutions to the equation f’'(x) = 0. However, in some cases, finding

all the solutions to f'(x) = O might constitute a formidable problem. For instance,
the continuous function

F) =x® 3P —1lx°—2x* —x+28  (xe[-1,5)

does have a maximum and a minimum in [—1, 5], but it is impossible to find the
exact solutions to the equation f'(x) = 0.

Difficulties of this kind are often encountered in practical optimization prob-

lems. In fact, only in very special cases can the equation f'(x) = 0 be solved
exactly. Fortunately, there are standard numerical methods available for use on a
computer that in most cases will find points arbitrarily close to the actual solutions
of such equations.
Note: Suppose f is differentiable in an interval [a, b] and let xg be a maximum
point for f in [a, b]. If xo = a, then f'(a) cannot be positive because then there
would exist points x to the right of @ where f had a higher value than at a.
Arguing analogously, if xo = b is a2 maximum point of f in [a, b], then f'(b)
cannot be negative. If xo € (a,b), then f'(xg) = 0. Figure 9.7 illustrates the
three cases.
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(; b x C; Alto 5 I a b X
fia) =0 fixo) =0 iy =20
FIGURE 8.7 Maximum at a, xp, or b.

Problems
1. Find the maximum and minimum of

f(x) = 4x> — 40x + 80, x €[0,8)

Draw the graph of f over {0, 8].
2. Find the maximum and minimum of each function over the indicated interval:
a. f(x)=-2x-1, [0,3] b. f(x)=x>—3x+8, [—1.2]

c.f(x):x-:-l, (1.2) 4 fxy=x -5  [-1.5]

e. f(x) =x>—4500x%+6- 10, [0. 3000]

3. Find two positive numbers whose sum is 16 and whose product is as large
as possible.

4. A sports club plans to charter a plane. The charge for 60 passengers is $800
each. For each additional person above 60, all travelers get a discount of
$10. The plane can take at most 80 passengers.

a. What is the total cost when there are 61, 70, and 80 passengers?

b. If 60 + x passengers fly. what is the total cost?

¢. Find the number of passengers that maximizes the total amount of airfares
paid out by the sports club members.

5. Consider Example 9.5 and let R(Q) = pQ and C(Q) = 80 + y 0>.

a. Find the solution Q" to Equation [2] in this case.
b. Which value of O maximizes profits in the following cases, assuming
that O € [0.500]?
(i) R(Q) = 18400 and C(Q) =202 +40Q + 5000
(i) R(Q) =2240Q and C(Q) =20? + 400 + 5000
(i) R(Q) = 18400 and C(Q) =207 + 19400 + 5000
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6. The height of a plant after r months is given by
hy=+1—4 (1 €]0.3)

At what time is the plant at its highest?
7. Find the maximum of y = x’¢™* on [0. 4].

8. Let C(Q) be the total cost function for a firm in producing Q units of
some commodity. A(Q) = C(Q)/Q is then called the average cost func-
tion. If C(Q) is differentiable, prove that A(Q) has a stationary point at
Qo > 0O if and only if the marginal cost and the average cost are equal at
Qo. (C'(Qo) = A(Qo0))

9. With reference to the previous problem, let C(Q) =aQ’ +bQ>+ cQ +d,
where a > 0, 5 >0, ¢ > 0 and d > 0. Prove that A(Q) = C(Q)/Q has a

minimum in the interval (0. occ). Let & = 0 and find the minimum point in
this case.

10. With reference to Problem 8, let C(Q) =aQ®+c¢.fora>0,b > 1,and ¢ >
0. Prove that the average cost function has a minimum on (0. o0). and find it.

9.4 Local Maxima and Minima

So far in this chapter we have studied what are often referred to as global optimiza-
tion problems. The reason for this terminolcgy is that we have been seeking the
absolutely largest or smallest values of a function. when we compare the function
values at all pomnts in the domain. In applied optimization problems, it is usually
these global maxima and minima that are of interest. However, sometimes one is
interested in the local maxima and minima of a function. In this case, we compare
the function value at the point in question only with alternative function values
at nearby points. For example, considering Fig. 9.8 and thinking of the graph as
representing the profile of a landscape. mountain tops P, and P, represent local
maxima, whereas valley bottoms O, and Q, represent local minima.

FIGURE 9.8 Points ¢ and c; are local maxima; di and d, are local minima.
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If f(x) is defined on domain A, the precise definitions are as follows:

Function f has a local maximum at ¢ if there is an interval (¢, 8) about ¢ 9.6]
such that f(x) < f(c) for all those x in A that also lie in («, B). )

Function f has a local minimum at 4 if there is an interval (¢, 8) about d 19.7]
such that f(x) > f(d) for all those x in A that also lie in (¢, B). ’

Note: These definitions imply that point a in Fig. 9.8 is a local minimum point and b
is a local (and global) maximum point. Some authors restrict the definition of local
maximum/minimum points only to interior points of the domain of the function.
According to this definition, a global maximum that is not an interior point of
the domain is not a local maximum point. We want a global maximum/minimum

point always to be a local maximum/minimum point, so we stick to definitions
[9.6] and [9.7].

It is obvious what we mean by local maximum/minimum values of a function,
and the collective names are local extreme points and values.

In searching for maximum and minimum points, Theorem 7.4 of Section 7.2
is very useful. Actually, the same result is valid for local extreme points: At a
local extreme point in the interior of the domain of a differentiable function, the
derivarive must be zero. This is clear if we recall that the proof of Theorem 7.4
was concerned only with the behavior of the function in a small interval about the
optimal point. Consequently, in order to find possible local maxima and minima
for a function f defined in an interval 7, we can again search among the following
types of points:

1. interior points in / where f'(x) =0
2. end points of /
3. points in ] where f’ does not exist

We have thus established necessary conditions for a function f defined in
an interval / to have a local extreme point. But how do we decide whether a
point satisfying the necessary conditions is a local maximum, a local minimum,
or neither? In contrast to global extreme points, it does not help to calculate the
function value at the different points. To see why, consider again the functon
whose graph is given in Fig. 9.8. Point ¢, is a local maximum point and d, is

a local minimum point, but the function value at ¢, is smaller than the functon
value at d,.
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The First-Derivative Test

There are two main ways of determining whether a given stationary point is a local
maximum, a local minimum, or neither. One of them is based on studying the sign
of the first derivative about the stationary point, and is an easy modification of
[9.4] in Section 9.2.

Theorem 9.1 (The first-derivative test for local extrema)
Suppose ¢ is a stationary point for y = f(x).

(@) If f'(x) = O throughout some interval (a, ¢) to the left of ¢ and f'(x) <
0 throughout some interval (¢, b) to the night of ¢, then x = c is a local
maximum point for f.

(b) If f'(x) < 0 throughout some interval (a. ¢) to the left of ¢ and f'(x) >
0 throughout some interval (c. b) to the right of ¢, then x = ¢ is a local
minimum point for f.

(¢) If f'(x) > 0 both throughout some interval (a, ¢) to the left of ¢ and
throughout some interval (c. b) to the right of ¢, then x = ¢ is not a
local extreme point for f. The same conclusion holds if f'(x) < 0 on
both sides of c.

Only case (c) is not already covered by [9.4] in Section 9.2. In fact, if f'(x) > 0
in (a,c) and in (¢, b), then f(x) is strictly increasing in (a, c] as well as in {c, b).
Then x = ¢ cannot be a local extreme point.
Example 9.6
Classify the stationary points of f(x) = gx> — tx2 — 2x + 1.
Solution  In this case (see Example 9.4), we have f'(x) = (x+1)(x—2),
s0x = —1 and x = 2 are the stationary points. The sign diagram for f'(x) is:

=2 -1 0 1 2 3
— —+ t ‘ —
L +1) —mmommmmmme : ' i
X=2 e e T
flx) ———————0-mm e l
f(x) 7L
We conclude from this sign diagram that x = —1 is a local maximum point

whereas x = 2 is a local minimum point.
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Example 9.7
Classify the stationary points of

6x3
T =

Solution Because x* + x> + 2 is > 2 for all x, the denominator is never
0, so f(x) is defined for all x. Differentiation of f(x) yields

—6x° 4+ 6x* +36x*  —6x*(x* —x* —6)

)= (x*+x242)2 (@ +x242)?2

In order to study the sign variation of f'(x), we must factorize x* — x> — 6.
In fact, we have x* —x2 =6 = (x3)> = (x}) =6 = (x* =) X* +2) =
(x = v/3)(x + /3)(x? + 2). Hence,

_ =6x%(x = /3)(x + /3)x* +2)

Fo 22 427

Both the denominator and the factor (x> + 2) in the numerator are always
positive. Hence, the sign variation of f'(x) is determined by the other factors
in the numerator, as in the following sign diagram. Studying it we conclude
from (a) in Theorem 9.1 that x = /3 is a local maximum point, and from
(b) that x = —~+/3 is 2 local minimum point. According to (c), x = 0 is
neither a local maximum, nor a local minimum point, because f'(x) > 0 in

(—=+/3.0) and in (0, v/3).

=k . %

—6x=  -———- } ——————————— A
Y S T-; --------- T ----------- S
x+3 ————- o }

A |

The graph is shown in Fig. 9.9. Note that f(—x) = — f(x) for all x. so the
graph of f is symmetric about the origin.
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x4+ x2+2

1+ fx)y=

FIGURE 8.9

The Second-Derivative Test

For most problems of practical interest in which an explicit function is specified,
Theorem 9.1 will determine whether a stationary point is a local maximum, a local
minimum, or neither. Note that the theorem requires the knowledge of f'(x) at
points in a neighborhood of the given stationary point. In the next sufficiency
theorem, we need only properties of the function at the stationary point.

Theorem 9.2 (The Second-Derivative Test) Let f be a twice dif-

ferentiable function in an interval I. Suppose c¢ is an interior point of 7.
Then:

@) f'(c)=0and f"(c) < 0 = c is a strict local maximum point.
M) f'(c) =0and f"(c) > 0 = c is a strict local minimum point.
) f'(c)=0and f'(c) =0=?

Proof  To prove part (a), assume f'(c) = 0 and f”(c) < 0. By definition
of f”(c) as the derivative of f’(x) at c.

won _ v Je+R)y=f) . fllc+h)
f (@—2{% A _I}]—.n})_h—

{x]

Because f”(c) < 0, it follows from [x] that f'(c+h)/h < Oif |k| is sufficiently
small. In particular, if 4 is a small positive number, then f'(c+h) < 0, so f’
is negative in an interval to the right of ¢. In the same way, we see that f' is
positive in some interval to the left of c. But then ¢ is a strict local maximum

point for f. Part (b) can be proved in the same way; for the inconclusive part
(c), see the comments that follow.

Theorem 9.2 leaves unsettled case (c) when f'(¢c) = f”(¢) = 0. Then
“anything” can happen. Each of three fuactions f(x) = x*, f(x) = —x*, and
f(x) = x3 satisfies f/(0) = f”(0) = 0. Atx = 0, they have, respectively, a (local)
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y y y
f

/.o . L
7 /

FIGURE 9.10 FIGURE 9.11 FIGURE 9.12
f/(0) = 7(0) = 0. £(0) = 7(0) = 0. £(0)= 17(0) = 0.
0 is a minimum 0 is a maximum 0 is an inflection
point. point. point.

minimum, a (local) maximum, and a point of inflection, as shown in Figs. 9.10 to
9.12. Usually (as here), Theorem 9.1 can be used to classify stationary points at
which f'(c) = f”(c) = 0. (For the definition of an inflection point, see [9.11] in
Section 9.5.)

Theorem 9.2 can be used to obtain a useful necessary condition for local
extrema. Suppose f is differentiable in the interval / and suppose that ¢ is an
interior point of / that is a local maximum point. Then f'(c) = 0. Moreover,
f"(c) > 0 is impossible, because by Theorem 9.2 (b) this inequality would imply
that ¢ 1s a strict local minimum. Hence, f”(c) has to be < 0. In the same way, we
see that f”(c) > 0 is a necessary condition for local minimum. Briefly formulated:

¢ is a local maximum for f = f"(c) <0 [9.8]

¢ 1s a local minimum for f = f"(¢) > 0 [9.9]

The function studied in Example 9.7 is a typical example of when it is convenient
to study the sign variation of the first derivative in order to classify the stationary
points. (Using Theorem 9.2 requires finding f“(x), which is a rather involved
expression.)

In theoretical economic models, it is more common to restrict the signs of
second derivatives than to postulate a certain behavior in the sign variation of first
derivatives. We consider a typical example.

Example 9.8

If a firm producing some‘commodity has revenue function R(Q), cost func-

tion C(Q), and there is a sales tax of ¢ dollars per unit, then Q* > 0 can
only maximize profits provided that

RO =C(Q") +1 [*]

(See Example 9.5 of Section 9.3, Equation [5].) Suppose R”(Q*) < 0 and
C"(Q*) > 0. Equation [x] implicitly defines Q* as a differentiable function
of 1. Find an expression for d Q* /dr and discuss its sign. Also compute the

derivative with respect to 7 of the optimal value 7 (Q*) of the profit function,
and show that dw (Q*)/dt = —Q*.
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Solution Differentiating [*] totally with respect to 7 yields

oy 497 aQ*
R * — 1" * 1
(% r ¢ (g% P
Solving for d Q*/dt gives
a0* 1

= [x]

di~ R'(Q7) - C"(Q")

The sign assumptions on R” and C” imply that dQ*/dt < 0. Thus, the

optimal number of units produced will decline if the tax rate ¢ increases.
The optimal value of the profit is 7(Q*) = R(Q*) — C(Q*) —tQ".

Taking into account the dependence of Q* on z, we get

49" _ preom 32 _ o839 e _ 497
dt _R(Q)dt C(Q)dt 0 tdr
— 7 *\ ’ * g__ L dQ*___ *
= [R'(Q") - C'(0")] — Q' -t =-0

where we used [x¥]. Thus, we see that by increasing the tax rate by one unit,
the optimal profit will decline by O* units. Note how the terms in d Q*/d¢
disappear from this last expression because of the first~order condition [*].

This is an instance of the “envelope theorem,” which will be discussed in
Section 18.7.

Example 9.9 (When to Harvest a Tree?)
Consider a tree that is planted at time z = 0, and let P(r) be its current
market value at time 7, where P(z) is differentiable. When should this tree
be cut down in order to maximize its present discounted value? Assume that
the interest rate is 100r% per year, compounded continuously.

Solution By using [8.28] in Section 8.5, the present value is
f@)=P@)e™" [1]

whose derivative is

f'@)y=P @ + P@)(-r)e" =€ [P'(t) = rP(1)] [2]

A necessary condition for t* > 0 to maximize f(r) is that f'(z*) = 0. We
see from [2] that this occurs when

P (") =rP@") (3]

The tree, therefore, should be cut down precisely at time r* when the increase
in the value of the tree over time interval (*.z* + 1) (= P’(t*)) is equal
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to the interest one would obtain over this time interval by investing amount
P(t*) at interest rate r (= r P(t*)).
Let us look at the second-order condition. From [2], we find that

(&) =—=re”"[P'(t) = rP@®)] + ™ [P"(t) = r P'(1)]
Evaluating f”(¢) at t* and using [3] yields
£y = e [P"(*) = r P't%)] [4]

Assuming P(t*) > 0 and P”(t*) < O, from [3] we have P'(t*) > 0. Then
[4] gives f"(r*) < 0, so t* defined by [3] is a local maximum point. An
example is given in Problem 4.

In this example, we did not consider how the ground the tree grows

on may be used after cutting—for example, by planting a new tree. See
Problem 5.

Note: In accepting maximization of present discounted value as a reasonable cri-
terion for when a tree ought to be felled, one automatically dismisses the naive
solution to the problem: Cut down the tree at the time when its current market
value is greatest. Instead, the tree is typically cut down a bit sooner, because of
“impatience” associated with discounting.

Problems
1. Consider the function f defined for all x by
fx)= x> —12x

Find the two stationary points of f and classify them both by using the first-
and second-derivative tests.

2. Determine all local extreme points and corresponding extreme values for the
functions given by the following formulas:

a. f(x)=-2x-1 ‘ b. f(x)=x>—3x+8
c. fFxX)=x4+1/x d. f(x)=x’—5x°

1 - 3 2
e. f(x)=5x"—=3x+5 f. fX)=x"+3x"—-2

3. A function f is given by the formula

F)=Q0+2/x)vVx+6

a. Find the domain of f, the zeros of f, and the intervals where f(x) is
positive.

b. Find possible local extreme points and values.
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c. Examine f(x) as x — 0, x — 07, and x — 00. Also determine the
limit of f'(x) as x — oo. Has f a maximum or a minimum in the
domain?

With reference to the tree-cutting problem of Example 9.9, consider the case
where

f@) = @+ 10 +25)e7°% (1 >0)

a. Find the value of ¢ that maximizes f(z). Prove that the maximum point
has been found.
b. Find lim,_, f(¢) and draw the graph of f.

. Consider Example 9.9. Assume now that immediately after a tree is felled, a

new tree of the same type is planted. If we assume that a new tree is planted
at times ¢, 2t, 3¢, etc., then the present value of all the trees will be

F@6) = P(e™ + P(t)e™" + ..

a. Find the sum of this infinite geometric series.
b. Prove that if f(z) has a maximum for some * > 0, then

P()

] —e-rr”

P (@) =r

and compare this condition to condition [3] in Example 9.9.
What requirements must be imposed on constants a, b, and ¢ in order that

fy=x+ax*+bx+c
a. will have a local minimum at x = 07
b. will have stationary points at x = 1 and x = 3?

Figure 9.13 graphs the derivative of a function f. Which of points a, b, c,
d, and e are local maximum or minimum points for f?

Let function f be defined by

f(x)=—xz_*_3x_i_2

FIGURE 9.13
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a. Find f'(x) and f”(x), and find the local extreme points of f.

b. Find the global extreme points, and draw the graph of f.

c. Use the previous results to find global extreme points for the function g
defined for all x by g(x) = f(e*).

9. Consider the function

3
IO =a0ea

a. Compute f’(x) and find all local maximum and minimum points for f.
Has f any global extreme points?
b. Draw the graph of f.

Harder Problems

10. Discuss local extreme points for the function f(x) = x> + ax + b. Use the

result to show that the equation f(x) = 0 has three different real roots if and
only if 4a> +27b* < 0.

11. Let f be defined for all x by f(x) = (x* — 1)*~.
a. Compute f'(x) and f”(x).
b. Find the local extreme points of f, and draw the graph of f.

9.5 Convex and Concave Functions
and Inflection Points

What can be learnt from the sign of the second derivative? Recall how the sign of
the first derivative determines whether a function is increasing or decreasing:
f'(x) >0on (a,b) <= f(x) is increasing on (a, b) [1]

f'(x) <0on (a,b) <= f(x) is decreasing on (a. b) (2]
The second derivative f”(x) is the derivative of f'(x). Hence:

f’(x)=0o0n (a,b) < f’(x) is increasing on (a, b) [3]

f"(x) <0on(a,b) < f'(x)is decreasing on (a. b) (4]

The equivalence in [3] 1s illustrated in Fig. 9.14. The slope of the tangent,
f/(x), is increasing as x increases. On the other hand, the slope of the tan-
gent to the graph in Fig. 9.15 is decreasing as x increases. (Place a ruler as
a tangent to the graph of the function. As the ruler slides along the curve

from left to night, the tangent rotates counterclockwise in Fig. 9.14, clockwise
in Fig. 9.15.)




Sec. 9.5 / Convex and Concave Functions and Inflection Points 305

y y
r A
y=f)
X » X
FIGURE 9.14 The slope of the FIGURE 9.15 The slope of
tangent increases as x increases. the tangent decreases as x
f’(x) is increasing. increases. g’(x) is decreasing.

We introduce the following definitions, assuming that f is continuous in the
interval I and twice differentiable in the interior of I, denoted by 1°:

f is convex on /| <= f”(x) >0 for all x in /°

[9.10]
f is concave on ] <= f”(x) <O for all x in I°

The distinction between convexity and concavity of a function is absolutely crucial
in many economic models. Study carefully the cases illustrated in Fig. 9.16.

Example 9.10
Check the convexity/concavity of the following:

(@) f(x)=x>=2x+2 and (b) f(x) =ax>+bx+c
Solution

(a) Here f'(x) =2x —2s0 f"(x) = 2. Because f”(x) > O for all x, f is
convex.

(b) Here f/(x) =2ax+b,so f"(x) =2a. If a=0, then f is linear and
f 1is convex as well as concave. If a > 0, then f”(x) > 0, so f is
convex. If a < 0, then f”(x) < 0, so f is concave. Compare with the
graphs in Fig. 3.1 in Section 3.1.

»
R e T A
——p '

X - X ; > X T X
Increasing: convex Increasing: concave Decreasing; convex Decreasing: concave

FIGURE 9.16



306 Chapter 9 / Single-Variable Optimization

Some Typical Examples

We consider two typical examples of convex and concave functions. In Fig. 9.17
we have drawn roughly the graph of function P, where :

P(tr) = world population (in 1000 millions) in year ?

It appears from the figure that not only is P(z) increasing, but the rate of increase
increases. (Each year the increase becomes larger.) So P(z) is convex.

The graph in Fig. 9.18 shows the crop of wheat Y (N) when N pounds of
fertilizer per acre are used, based on fertilizer experiments in Iowa during 1952
(see Example 9.2 in Section 9.2). The function has a maximum at N = Ny =
172. Increasing the amount of fertilizer beyond Ny will cause wheat production
to decline. Moreover, Y(N) is concave. If N < Ny, increasing N by one unit
will lead to less increase in Y (N) the larger is N. On the other hand, if N >
Ny, increasing N by one unit will lead to a larger decrease in Y (N) the larger

1s N.
World population (billions) {
60..
401
20+
No
: v » Year — — /
1600 1700 1800 1900 2000 50 100 150 200 250
FIGURE 9.17 FIGURE 8.18

Example 9.11
Examine the concavity/convexity of the production function

Y = AK? (A>0, O<a<]

defined for all X > 0.

Solution  Differentiating ¥ twice with respect to K yields
Y" = Aa(a — DK*?

Because a € (0, 1), coefficient Aa(a—1) <0, sothat Y” < O for all X > 0.
Hence. the function is concave. The graph of ¥ = AK“?. for 0 <a < 1. is
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Y Y
Y = AK¢
O<a<l
Y = AK“
@a>1)
K - K
FIGURE 9.19 Y = AK?, A > 0, FIGURE 9.20 Y = AK?, A> 0,
ae(0,1). a>1.

shown in in Fig. 9.19. If @ > 1, then Y” > 0 and Y is a convex function of
K, as shown in Fig. 9.20.

Example 9.12

Suppose that functions U and g are both increasing and concave, so that
U =>0,U"<0,¢g >0, and g” <0. Prove that the composite function

f(x)=g(UW))

1s also increasing and concave.

Solution Using the chain rule yields
fx)=¢Uw) -U'x) [x]

Because g’ and U’ are both > 0, so f'(x) > 0. Hence, f is increasing. (An
increasing transformation of an increasing function is increasing.)

In order to compute f”(x), we must differentiate the product of the two
functions g’(U (x)) and U'(x). According to the chain rule, the derivative
of g'(U(x)) is equal to g"(U(x)) - U'(x). Hence,

Fo=g'Uml - U®) +&U®)-U"x) [o¢]

Because g” < 0, g > 0. and U” < 0. it follows that f"(x) < 0. (An
increasing concave transformation of a concave function is concave.)

Inflection Points

Functions we study in economics are often convex in some parts of the domain
but concave in others. Points at which a function changes from being convex to
being concave, or vice versa. are called inflection points.
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holds:

or

Inflection Points

Point ¢ is an inflection point for a twice differentiable function f if there is
an interval (a, b) containing ¢ such that either of the following two conditions

[9.11]
@ f'(xy=0ifa<x<cand f"(x) <0ifc<x<b

®) f'(x)<0ifa<x<cand f"(x) >0ifc <x < b

Briefly, x = ¢ is an inflection point if f”(x) changes sign at ¢c. We also refer to the
point (¢, f(c)) as an inflection point on the graph. An example is given in Fig. 9.21.
Figure 9.22 shows the profile of a ski jump. Point P, where the hill is steepest, is
an inflection point.

Theorem 9.3 (Test for Inflection Points) Let f be a function with
a continuous second derivative in an interval I, and suppose that ¢ is an
interior point of /.

(a) If ¢ is an inflection point for f, then f”(c) = 0.
) If f"(c) = 0 and f” changes sign at ¢, then ¢ is an inflection point

for f.
FIGURE 9.21 Point P is an FIGURE 9.22 Point P, where the
inflection point on the graph slope is steepest, is an inflection
(x = c is an inflection point for the point.
function).

y . :
. W - Q

20 1 fray <o

c —> X
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Proof

(a) Because f”(x) < O on one side of ¢ and f”(x) > O on the other,

) =0.

(b) If f” changes sign about point c, then ¢ is an inflection point for f
according to [9.11].

According to Theorem 9.3 (a), the condition f”(c) = O is a necessary con-
dition for ¢ to be an inflection point. It is not a sufficient condition, however,
because f”(c) = 0 does not imply that f” changes sign at x = ¢. A typical case
is given in the next example.

Example 9.13
Show that f(x) = x* does not have an inflection point at x = 0, even though

() =0.

Solution  Here f’(x) = 4x3 and f”(x) = 12x?, so that f”(0) = 0. But
f"(x) > 0 for all x # 0, and hence f” does not change sign at x = 0.
Hence, x = 0 is not an inflection point. (In fact, it is a global minimum, of
course, as shown in Fig. 9.10 in Section 9.4.)

Example 9.14

Find possible inflection points for f(x) = %xB - %xz - %x + 1.

Solution We find the first and second derivatives to be
f’(x)=%x2—%x—% and f”(x):%c—%:%(x—%)

Hence, f”(x) < 0 for x < 1/2, whereas f”(1/2) = 0 and f”(x) > O for
x > 1/2. According to Theorem 9.3(b), x = 1/2 is an inflection point
for f.

Example 9.15
Find possible inflection points for f(x) = x2¢*. Draw its graph. (See
Example 8.2, Section 8.1.)

Solution The first derivativé of fis f'(x) =2xe* + x2e*, so the second
derivative is

F7(x) = 2¢% + 2xe* + 2x€* + x°¢" = F (x> + 4x +2) = " (x — x;)(x — x2)

where x; = =2 — /2 & =341 and x» = —2 + /2 = —0.59 are the
two roots of the quadratic equation x*> + 4x + 2 = 0. The sign diagram
associated with f”(x) is shown below. From this diagram we see that
f has inflection points at x = x| and at x = x,. The graph is convex
in the intervals (—oo, x;] and [x,, 00), and it is concave in [x;, x3]. See
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21 flx)= X2

—4 -3 -2 -1 0 ' 1
FIGURE 9.23 f(x) = x%¢e*

Fig. 9.23 in which we have also taken advantage of the results of Example 8.2.

X1 X2
ef(x~—x)) ————mm————- C
X—X3  ———=mm—mmmm— e &
£ R
) - ~ -

Example 9.16
A firm produces a commodity using only one input. Let x = f(v), v > 0, be
the maximum production obtainable when v units of the input are used. Then
f is called a production function. It is often assumed that the marginal
product f'(v) is increasing up to a certain production level vy, and then
decreasing. Such a production function is indicated in Fig. 9.24. If f is

FIGURE 9.24 [ is a production function. v, is an inflection point.
x i

A f
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twice differentiable, then f”(v) is > 0 in [0, vg) and < 0 in (vp, o0). Hence,
f is first convex and then concave, with vg as an inflection point. An example
of such a function is given in Problem 9.

A Useful Result

Suppose that f”(x) <0 for all x in an interval /. Then f’(x) is decreasing
in I. So if f'(c) = O for an interior point ¢ in I, then f’(x) must be > 0
to the left of ¢, whereas f'(x) < O to the right of ¢. This implies that the
function itself is increasing to the left of ¢, and decreasing to the right of
c. We conclude that x = ¢ 1s 2 maximum point for f in /. This important
observation 1is illustrated in Fig. 9.25. We have a corresponding resuit for
the minimum of a convex function.

Theorem 9.4 (Maximum/Minimum for Concave/Convex Functions)
Suppose f is a concave (convex) function in an interval /. If ¢ is a stationary
point for f in the interior of /, then ¢ is 2 maximum point (minimum point)
for f in /. Bnefly stated, when c is an interior point of /, then

Ff"(x) <Oforall x €/, and f'(c) =0=>

x = ¢ is a maximum point for f in / [9.12]

f'x)>0forall xel,and f'(c) =0 =

X = ¢ is a minimum point for f in / [9.13]

Example 9.17

Let the total cost of producing Q units of a commodity be

C(Q)=aQ*+bQ +c, (0 > 0)

FIGURE 9.25 f is concave, f’(c) = 0, and ¢ is a maximum point.

¥
'S
i
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where a, b, and ¢ are positive constants. Prove that the average cost function
A(Q) =aQ+b+c/Q has a minimum at Q* = /c/a. (See also Problem 8
in Section 9.3.)

Solution The first-order derivative of A(Q) is
A(Q) =a—c/Q*

and the only stationary point is Q* = ./c/a. Because A”(Q) = 2¢/Q* > 0
for all 0 > 0, A(Q) is convex, and by Theorem 9.4, O* = ./c/a is the
minimum point.

Problems

1. Determine the concavity/convexity of f(x) = —%xz + 8x — 3.

2. Let f be defined for all x by f(x) = x> + 2x> — 6x + 10.
a. Find f'(x) and f"(x).
b. Find the stationary points of f and the intervals where f is increasing.
c. Find the inflection points of f and the intervals of concavity/convexity.

3. A competitive firm receives a price p for each unit of its output, pays a price
w for each unit of its only variable input, and incurs fixed costs of F. Its
output from using x units of variable input is f(x) = /x.

a. Write the firm’s revenue, cost, and profit functions.

b. Write the first-order condition for profit maximization, and give it an
economic interpretation.

c. Check whether profit really is maximized at a point satisfying the first-
order condition.

d. Explain how your answers would change if f(x) = x>.

4. What are the extreme points and the inflection points of function f whose
graph is given in Fig. 9.26?

5. Decide where the following functions are convex and determine possible
inflection points:

a. f(x)= H’_‘xz b. g(x) = -~ c. h(x) = xé*

1+x '

FIGURE 9.26

A

/V‘ = f(0)
\/2_..
l..

-3 -2 -1 0 1 2 3 4 5 6
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6. Find numbers a and b such that the graph of
flx)= ax’ + bx*

passes through (—1. 1) and has an inflection point at x = 1/2.

7. Find the intervals where the following cubic cost function is convex and
where it is concave, and find the unique inflection point:

C(Q)=aQ®+bQ*+cQ+d, @>0, b<0, ¢>0, d>0)

8. With reference to Example 9.5, let R(Q) = PQ and C(Q) = aQ®+c, where
P. a, b, and ¢ are positive constants with b > 1. Find the value of Q that
maximizes profits 7(Q) = PQ — (@@’ + ¢). (Use Theorem 9.4.)

Harder Problems

9. With reference to Example 9.16, let f(v) = (v — 1)'/> =1 for v > 0.

a. Show that f is an increasing function of v and that f“(v) > 0 in [0, 1),
f"(v) < 0in (1. c0). Draw the graph of f.

b. Suppose that the price per unit of the commodity is 1 and that the price
the firm must pay per unit of the input i1s p. The profit is then 7 (v) =
f () — pv. Suppose that v, > 0 maximizes 7 (v) for the given value of
p > 0. Find v,, expressed in terms of p.

c. Draw the graph of 7 for the case p = 1. Use the same diagram as in
part (a).

d. Find the nonnegative roots of the equation 7 (v) = 0. For which values
of p are there three real roots?

e. For all values of p, find the solution of the problem

maximize 7 (v) subject to v > 0

9.6 More on Concave and Convex Functions

So far convexity and concavity have been defined only for functions that are twice
differentiable. An alternative geometric characterization of convexity and concavity
suggests a more general definition that is valid even for functions that are not
differentiable. It is also easier to extend this new generalized definition to functions
of several vanables.

Function f is called concave (convex) if the line segment joining any two
points on the graph is never above (below) the graph.

[9.14]
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>
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I » X X

FIGURE 9.27 f is convex. FIGURE 9.28 f is
concave.

These definitions are illustrated in the Figs. 9.27 and 9.28. For twice differentiable
functions, one can prove that the definition in [9.14] is equivalent to the definitions
of convexity/concavity in terms of the sign of the second derivative.

In order to use [9.14] to examine convexity/concavity of a given function,
we must have an algebraic formulation of this definition. To this end, note that an
arbitrary point x in the interval [a, b] (with a < b) can be written as

x=(0—=Na+ib=a+ib—a) (for some € [0, 1]) !

Forif b>aand0<A<l1,thena <a+ A(b—a) <b. Conversely, if x € [a. b]
and we put A = (x —a)/(b —a),then 0 <A <1 and

X

a1 A)a-}—kb—(l x—a>a+x—a _ba—az—xa+a2+xb—ab_

b-a b—a’ " b—a
(Here A = (x — a)/(b — a) is the rato between the distance from x to g and the
total distance from a to b.)

Consider Fig. 9.29. We want to calculate the number s. According to the
point—point formula (2.7) of Section 2.5, the line through (a. f(a)) and (b. f (b))
has the equation

f®) = fa)
= T (x

y—fl@= T

—a)
Let x = (1 — A)a + Ab. Then y = s, and so

fb) = f(a)
b—a

s— fa) = [(1=Ma+ib—a] =1[f(b) - f(a)]

implying that s = (1 — ) f(a) + A f(b). Now, as A takes on all values in [0, 1],
so the number (1 — A)a + Ab will take on all values in [a., b]. The requirement
that the line segment joining (a. f(a)) and (b. f(b)) always lies below (or on) the
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graph of f is therefore equivalent to the requirement that s < f((1 — A)a + Ab)
for all A € [0, 1]. The following definitions should now be quite understandable.

Function f is concave in the interval / if foralla.b € I and all A € (0. 1),

f(A=Xa+ib) =2 -1fl@)+2rf(b)

[9.15]

Function f is convex if — f is concave (see Fig. 9.1). So the following holds:

Function f is convex in the interval / if for all a,b € I and all A € (0, 1),

f(A=Ma+ib) <1 -1f@)+1rfb)

[9.16]

Note that these definitions can be applied to functions that are not even differen-

tiable.

In definition [9.15], if we require that the inequality is strict for a # b, then
f 1s called strictly concave; the graph of f will always be strictly above the line
segment joining any two points on the graph. For instance, the function graphed in
Fig. 9.29 is strictly concave. Fig. 9.30 shows a typical case in which the function
is concave, but not strictly concave. Function f is strictly convex if — f is strictly

concave.

Example 9.18

Prove that f(x) = |x| iIs convex in (—00.00). (See the graph of f in

Fig. 9.31))
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Fx) = x|
| /\ o
| X — X
FIGURE 9.30 Concave; not FIGURE 9.31 Convex; not
strictly concave. differentiable at x = 0.

Solution Let a and b be arbitrary numbers, and let A € [0, 1]. We have to
show that the difference D between the left and the right side of the inequality
in [9.16] is always < 0. Because |xy| = |x||y| and |x + y| < [x| + |y]| for
all real x, y, it follows that

£ =Na +3b) = [(1 = M) f@) +AF®)] = (1 = Wa + ib] — (1 — Vla] — Alb]

< (1 =MNlal +Albl = (1 = M)la| — A|b|
=0

Thus, f(x) = |x| is convex.

For twice differentiable functions, it 1s usually much easier to decide concavi-
ty/convexity by checking the sign of the second derivative than by using definitions
[9.15] and [9.16]. However, in theoretical arguments, the latter definitions are often
very useful, and they generalize easily to functions of several variables.

Example 9.19
Suppose U(x) is a concave function defined in an interval I. Let g be
an increasing concave function defined in an interval containing the range
of U, and define f(x) = g(U(x)). Prove that f(x) is concave in /. (In
Example 9.12 in Section 9.5 we proved this result with “unnecessary” dif-
ferentiability assumptions.)

Solution Let a and b beiong to [, witha < b, and let A € [0, 1]. By
definition of f,

f{1=Xa+ib) = g(U((1 = X)a + 1b)) [1]
Because U 1s concave,
U((1=MNa+irb) = (1 —1U(a) + 21U D) (2]

Because g is increasing, r > s implies g(r) > g(s). Hence, applying g to
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each side of [2] yields
gU((1 = Ma +ib)) 2 g((1 = MU (a) + AU (b)) [3]

By the concavity of g,

g((1=MNU (@) +2U®)) = (1 - 1)g(U(a)) + +g(U (b))

[4]
= (-3 f(a)+Arf(b)

From [1], [3], and [4], we see that f((1 —X)a+Ab) = (1 —=1) f(a) +Arf(b),
so f is concave.

An easy test for strict concavity/convexity is the following, which we present
without proof:

f"(x) <0 for all x € (a. b) => f(x) is strictly concave in (a, b)

[9.17]
f"(x) > 0 for all x € (a.b) => f(x) 1s stictly convex in (a. b)

The reverse implications are not correct. For instance, one can prove that f(x) =
x* is strictly convex in the interval (—oo, 00), but f”(x) is not > 0 everywhere,
because f”(0) = 0.

Note: Here are some of the most commonly used functions that are concave
(convex) in their domains:
Concave: ax* +bx+c (@ <0), x* 0<a<1, x>0), lnx (x>0 [1]
Convex: ax’+bx+c¢ (@>0), x* @>1, x> 0), &, |x| 2]
It follows immediately from definitions [9.15 f(x), g(x)] and [9.16] that nonneg-
ative linear combinations af (x) + bg(x)(a, b > a) of concave (convex) functions
are concave (convex). Using these facts and [1] and [2], we can often quite easily

decide concavity/convexity. In Sections 17.7 and 17.8, we shall prove many other
properties that will help us decide concavity (convexity).

Jensen’s Inequality

Looking at definition [9.15] of a concave function, suppose we put a = x1, b = xa,
1 —A =Xy, and A = A,. Then definition [9.15] would read: f(x) is concave on /
if for all x; and x, in 7/, and forall A;; > 0and A» >0 with A; + A, =1,

FGaxy +Aax2) = A f(x) + A2 f(x2)

Jensen’s inequality is a generalization of this inequality.
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Jensen’s Inequality

A function f is concave in the interval ] if and only if the following inequality
is satisfied for all x;, ..., x, in I, and for all A; > O, ..., A, > 0 with
AMAFF R =10

FQuxy + -+ X)) = A fOx)+ -+ An f(xn) [9.18]

The corresponding result for the case where f is convex is obtained by reversing
the inequality in [9.18]. The more general vector version of this result is given in
Section 17.6.

Example 9.20 (Production Smoothing)
Consider a manufacturing firm producing a single commodity. The cost of
maintaining an output level y per year for a fraction A of a year is AC (y),
where C’(y) > 0 and C”(y) > 0 for all y > 0. In fact, the firm’s output level
can fluctuate over the year. Show that, given the total output Y that the firm
produces over the whole year, the firm’s total cost per year is minimized by
choosing a constant flow of output.

Solution Suppose the firm chooses different output levels y;, ..., y, per
year for fractions of the year 4, ..., A,, respectively. Then the total output
is Y7, Ay = Y produced at total cost y ._, 4;C(y;). Applying Jensen’s
inequality to the convex function C gives

> MCo)=C (Zm»—) = C(Y)
=1 i=l]

The right-hand side is the cost of maintaining the constant output level Y
over the whole year, and this is the minimum cost.

Problems

1. Suppose f(x) =1 —x% .
a. Show that D = f((1 = X)a+ Ab) — (1 — ) f(a) — A f(b) can be written
in the form

D =A(1 = D)(@* = 2ab+b*) = A1 — A (a — b)?

b. If » € (0. 1), what is the sign of D? Is f concave, convex, or neither?
c. Is f strictly concave/convex?
d. Check the result in part (c) by using [9.17].

2. Suppose that a function f is concave. What restrictions on a and b will
guarantee that g(x) = af(x) + b is also concave?
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3. Are the following functions concave/convex (assuming that x > O in parts
(b) and (c¢))?
a. 1e* + 1™ b. 2x —3+4Inx c. 5x%% —10x'3

d 3x*~2x+1+e™7
Harder Problems

4. A consumer 1s planning to choose a lifetime consumption stream ¢;, ..., 7 to
maximize (1/7T) ZLI u(c,) subject to the budget constraint (1/T) ZL, ¢ <
(1/T) ZL, y,. Here y, is the income stream, and the utility function satisfies
u'(¢) > 0 and u”(c) < 0.

a. Use Jensen’s inequality to show that the optimal consumption is constant
and equal to the mean lifetime income.

b. Replace (1/T) 1, u(c) by .1, (1 + r)~u(c,), with the new budget
constraint

T
> A+nTe-y) <0
=1

where r > —1 1s the rate of interest. What is the new optimal consump-
tion stream?

S. Prove that if f and g are both concave, then
h(x) = min{ f (x). g(x)}

1s concave. Illustrate. (Note that for each given x, £(x) is the smaller of the
two numbers f(x) and g(x).)
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3. Are the following functions concave/convex (assuming that x > 0 in parts
(b) and (c))?
a. 15 + e~ b. 2x ~3+4Inx c. S5x% —10x'?

d. 3x> - 2x +1+e 3
Harder Problems

4. A consumer is planning to choose a lifetime consumption stream ¢y, ..., 7 t0
maximize (1/T) 3., u(c,) subject to the budget constraint (1/7) S°7_ ¢, <
(1/T) Z;f:, y,. Here y, is the income stream, and the utility function satisfies
u’(¢) > 0 and u”(c) < 0.

a. Use Jensen’s inequality to show that the optimal consumption is constant
and equal to the mean lifetime income.

b. Replace (1/T) ZL, u(c,) by Z,T=1(l + r)"'u(c,), with the new budget
constraint

T
> A+nTe=-y) <0
=1

where r > —1 1s the rate of interest. What is the new optimal consump-
tion stream?

S. Prove that if f and g are both concave, then
h(x) = min{f(x), g(x)}

is concave. [llustrate. (Note that for each given x, h(x) is the smaller of the
two numbers f(x) and g(x).)
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Indeed, models basically play the same role

in economics as in fashion. They provide an
articulated frame on which to show off your
material to advantage, ... a useful role, but
fraught with the dangers that the designer may
get carried away by his personal inclination
for the model, while the customer may forget
that the model is more streamlined than reality.
—J. H. Dréze (1984)

The geometric problem of finding the steepness of a curve at a point leads to the
concept of the derivative of a function. The derivative turns out to have important
interpretations apart from the geometric one. Particularly important in economics
is the fact that the derivative represents the rate of change of a function.

The main concept to be discussed in this chapter can also be introduced ge-
ometrically. In fact, we begin with the problem of measuring the areas of certain
plane regions that are bounded not only by straight lines. Solving this problem will
involve the concept of the definite integral of a function over an interval. This con-
cept also has a number of important interpretations in addition to the geometric one.

As early as about 360 B.C., the Greek mathematician Eudoxos developed a
general method for determining the areas of plane regions, known as the method of
exhaustion. The idea was to inscribe and circumscribe the region (say, a circular
disk) by simpler geometric regions such as rectangles, triangles, or general polyg-
onal regions—whose area we already know how to measure. Now, if the area of
the inscribed region and the area of the circumscribed region tend to the same limit
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as more and more refined polygons are chosen, this limit 1s defined as the area of
the region.

The method of exhaustion was used by Eudoxos and Archimedes to determine
the areas of a number of specific plane regions. Similar methods were developed
to determine the lengths of curves and the volumes of solids. However, the method
of exhaustion turned out to work only in a limited number of cases, partly because
of the algebraic problems encountered. Nearly 1900 years passed after Archimedes
before anyone else made significant progress in measuring areas of plane regions.
In the seventeenth century, a new method of finding areas was devised, called
integration, that is closely related to differential calculus. Demonstrating the precise
relationship between differentiation and integration is one of the main achievements
of mathematical analysis. It has even been argued that this discovery is the single
most important in all of science. Barrow, who was Newton’s teacher, and Newton
and Leibniz in particular, are the mathematicians associated with this discovery.

After these introductory comments, we begin by solving the geometric prob-
lem of finding the areas of certain specific plane regions. We then develop the
theory of integration based on this foundation.

10.1 Areas under Curves

The problem to be considered in this section is illustrated in Fig. 10.1. It can be
formulated as follows: How do we compute the area A under the graph of f from
a to b, assuming that f(x) is positive and continuous?

To answer this question, we first introduce the function A(x) that measures
the area under the curve y = f(x) over the interval [a, x], as shown in Fig. 10.2.
Clearly, A(a) = 0, because there is no area from a to a, and the area in Fig. 10.1
i1s A = A(b).

It is obvious from Fig. 10.2 that because f is always positive, A(x) increases
as x increases. Suppose we increase x by a positive amount Ax. Then A(x + Ax)

FIGURE 10.1 FIGURE 10.2

y= fx) = f(x)

Afx)
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FIGURE 10.3 FIGURE 10.4

is the area under the curve y = f(x) over the interval [a,x + Ax]. Hence,
A(x + Ax) — A(x) is the area AA under the curve over the interval [x, x + Ax],
as shown in Fig. 10.3.

In Fig. 10.4, area AA is magnified. It cannot be larger than the area of the
rectangle with edges Ax and f(x + Ax), nor smaller than the area of the rectangle
with edges Ax and f(x). Hence, for all Ax > 0,

f(x) Ax < A(x+ Ax) — A(x) < f(x+ Ax) Ax [*]
But then
Alx + Ax) — A(x)

fx) < ~ < f(x+ Ax) (]

(If Ax < 0, the inequalities in [*] are reversed, whereas the inequalities in [**]
are preserved. The following argument is equally valid when Ax < 0.) Let us
consider what happens to [**] as Ax — 0. The interval [x, x + Ax] shrinks to the
single point x, and by continuity of f, the value f(x + Ax) approaches f(x). The
Newton quotient [A(x + Ax) — A(x)]/Ax, squeezed between f(x) and a quantity
that approaches f(x), must therefore approach f(x) as Ax — 0.! So we arrive at
the remarkable conclusion that the function A(x). which measures the area under
the graph of f over the interval [a, x], is differentiable, with derivative given by

A'(x) =;f(x) (for all x € (a, b))

This proves that the derivative of the area function A(x) is the curve’s “height”

function f(x).

The function f in the figures is increasing in the interval [x. x + Ax). It is easy to see that the
same conclusion is obtained whatever the behavior of f in the interval [x. x + Ax). On the left-hand
side of [*]. just replace f(x) by f(c). where ¢ is the minimum point of the continuous function f in

the interval: and on the right-hand side. replace f(x + Ax) by f(d), where d is the maximum point of
f in [x.x + Ax].
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Suppose that F (x) is another continuous function with f(x) as its denvative,
so that F'(x) = A'(x) = f(x) for all x € (a, b). Because (d/dx)[A(x) — F(x)] =
A'(x) — F'(x) = 0, it must be true that A(x) = F(x)+ C for some constant C (see
Theorem 7.7 of Section 7.3). Recall that A(a) = 0. Hence, 0 = A(a) = F(a)+C,
so C = —F(a). Therefore,

A(x) = F(x)— F(a) when F'(x)= f(x) [10.1]

This leads to the following.

Method for finding the area below the curve y = f(z) and above the
z-axis fromz =atox =b:

2
1. Find an arbitrary function F that is continuous on [a, b] such that (10-2]

F'(x) = f(x) for all x € (a, b).
2. The required area is then F(b) — F(a).

A function F with the property that F'(x) = f(x) for all x in some open interval,
is often called an antiderivative of f. Note that there are always many such
antiderivatives because (d/dx)[F(x) + C] = F'(x) = f(x) whenever C is any
real constant.

Example 10.1
Calculate the area under the parabola f(x) = x> over the interval [0, 1].

Selution The area in question is the shaded region A in Fig. 10.5. Ac-
cording to step 1 of [10.2], we must find a function having x? as its deriva-
tive. We look for a power function. Indeed (d/dx)ax” = anx"~' = x*> when
n=3and a = 1/3. So we put F(x) = $x> and then F'(x) = x*. Thus, the

O

FIGURE 10.5
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required area is

13 0® =

A=F()—-FQ) =

W—

1 1.
37 3
Figure 10.5 suggests that this answer is reasonable, because the shaded region
appears to have roughly 1/3 the area of a square whose side is of length 1.

Note: If you tried seriously to use the method of exhaustion for determining the
area in Fig. 10.5, you would appreciate the extreme simplicity of the method based
on [10.2].

Example 10.2
Find the area A under the straight line f(x) = cx+d over the interval [a, b].
(We assume that the constants ¢ and d are chosen so that f(x) > 0 in [a, b].)

Solution  The area is shown in Fig. 10.6. If we put F(x) = 1cx? +dx,
then F'(x) = c¢x +d, and so

A = F(b) — F(a) = (3¢b° + db) — (}ca® + da)
= 1c(b* ~a*) +d(b—a)

Compute the same area in another way and check that you get the same
answer.

The argument leading to [10.2] was based on rather intuitive considerations.
However, the concept of area that emerges agrees with the usual concept for regions
bounded by straight lines. Example 10.2 is a case in point.

Formally, we choose to define the area under the graph of a continuous
and nonnegative function f over the interval [a, b] as the number F(b) — F(a).
where F'(x) = f(x). Suppose G(x) is any other function with G’(x) = f(x) for
x € (a,b). Then G(x) = F(x) + C, for some constant C. Hence,

Gb)—G@)=Fb)+C~[F(a)+Cl=F(b)— F(a)

FIGURE 10.6
y

fx)=cx+d
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This argument tells us that the area we compute using [10.2] is independent of
which antiderivative of f we choose. Moreover, according to Theorem 10.1 of
Section 10.3, any continuous function f in [a, b] has an antiderivative.

What Happens if f(x) Has Negative Values
in [a,b]?

We assumed before that f was continuous and positive-valued. Let us consider
the case in which f is a function defined and continuous in [a, b], with f(x) <0
for all x € [a,b]. The graph of f, the x-axis, and the lines x = g and x = b
still enclose an area. If F'(x) = f(x), we define the area to be —[F (b) — F(a)].
We choose this definition because we want the area of a region always to be
positive. '

Example 10.3
Compute the area shaded in Fig. 10.7. It is the area between the x-axis and
the graph of f(x) = ¢*/3> — 3, over the interval [0, 31n3].

Solution =~ We need to find a function F(x) whose derivative is /> — 3.
Trial and error leads to the suggestion F(x) = 3¢*” ~ 3x. (Check that
F'(x) = ¢*/* — 3.) The area is therefore equal to
~[F(3In3) — F(0)] = ~(3¢"> —3-31n3 - 3¢)
=—-9-9In3—-3)=9In3 -6~ 3.89

Is the answer reasonable? (Yes, because the shaded set in Fig. 10.7 seems to
be a little less than 4 units in area.)

Suppose f is defined and continuous in [a, b], positive in some subinter-
vals, and negative in others, as is the case in Fig. 10.8. The total area bounded

FIGURE 10.7 FIGURE 10.8
y y

1 ]

fx)y=e7-3
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by the graph of f, the x-axis, and the lines x = a and x = b is then calcu-
lated by computing the positive areas in each subinterval [a, c|], [c;, ¢2], [ca2, 3],

and [c3, b] in turn according to the previous definitions, and then adding these
areas.

Problems

1. Compute the area under the graph of f(x) = x* over [0. 1] by using [10.2].
2. For each of the following cases, draw a rough graph of f and indicate (by

shading) the area of the set bounded by the x-axis, the lines x = a and x = b,
and the graph of f. Also calculate the area in question.

a. f(x)=3x>in [0,2] b. f(x)=x®in [0.1]
c. f(x)=¢€" in [-1,1] d. f(x)=1/x*in [1, 10]

3. Compute the area A bounded by the graph of f(x) = 1/x3, the x-axis, and
the lines x = —2 and x = —1. (Make a drawing.)

4. Compute the area A bounded by the graph of f(x) = %(e‘+e‘x), the x-axis,
and the lines x = -1 and x = 1.

10.2 Indefinite Integrals

The problem of computing areas under the graph of a function f leads to the
problem of finding an antiderivative of f—that is, a function F whose derivative
s f.

Although the name antiderivative is very appropriate, we shall follow the
usual practice and call F an indefinite integral of f. As a symbol for an indef-
inite integral of f, we use [ f(x)dx. Two functions having the same derivative
throughout an interval must differ by a constant, so we write

/f(x) dx=Fx)+C when F'(x) = f(x) [10.3]

For instance, : !

3 1 / -
/x’ dx =3x*+C  because (3x*) =x°

where ()’ denotes differentiation. The symbol [ is the integral sign, the func-
tion f(x) appearing in [10.3] is the integrand, and C is the constant of inte-

gration. The dx part of the integral notation indicates that x is the variable of
integration.
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Let a be a fixed number % —1. Because the derivative of x“*'/(a + 1)

' I
/x“dx=—x"+‘+c (@ —1) [10.4]
. a

This very important integration result states that the indefinite integral of any power
of x (except x~!') is obtained by increasing the exponent of x by 1. dividing by
the new exponent. and then adding the constant of integration. Here are some
examples:

+ 1
(b) —dx= [ xdx= X777+ C=~-—+C
X- .

—3+1 2x*
(¢) /ﬁdx:/x'/zdx=

' 1 1,
(a) /xdx:/.r'dx:l—x'+‘+C=EX'+C

]
1/2+1

2 .
x4 C = -gx"/z +C

When a = —1, the formula in [10.4] is not valid, because the right-hand
side involves division by zero and so becomes meaningless. The integrand is
then 1/x, and the problem is thus to find a function having 1/x as its derivative.
Now Inx has this property. but it is only defined for x > 0. Note, however.
that In(—x) is defined for x < 0, and according to the chain rule, its derivative
is [1/(=x)](=1) = 1/x. Recall that |x| = x when x > 0 and |x| = —x when
x < 0. Thus. whether we integrate over an interval where x > 0 or x < 0. we
have

1
/—dx:lnixl+C [10.3]
J x

Consider next the exponential function. The derivative of ¢* is e*. Thus.
[ e*dx =e* + C. More generally.

|
/e“" dx = -+ C (a #0) [10.6]

because the derivative of (1/a)e?* i1s e**.

W
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For a > 0 we can write a* = ¢*'"¢. As an application of [10.6], for Ina # 0
(that is, for a # 1), we have

/axdx=m%ax+C (a>0anda#1) [10.7]

Some General Rules

Two rules of differentiation are (aF(x))’ = aF'(x) and (F(x) + G(x)) = F'(x) +
G'(x). They immediately imply the following integration rules:

Constant Multiple Property

/af(x) dx =a / fx)dx (a is a real constant) [10.8]

The integral of a sum is the sum of the integrals

/[f(x)+g(x)] dx=/f(x)dx+/g(x)dx [10.9)

Repeated use of these two properties yields the general rule

/' [a1 fi(x) + ot aufu(x)] dx = al/fl(x)dx+---+an/fn(x)dx [10.10]

for the indefinite integral of any linear combination of continuous functions.

Example 10.4
Find the integral [(3x* 4+ 5x2 — 2)dx.
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Solution

/(3x4+5x2—2)dx=3/x4dx+5/x2dx—2/ldx

3(I°+C)+5(38°+C) —2(x+ C3)
x5+ 2x3 = 2x +3C) +5C, — 2G5

i

wiw  Liw

xX+3x3~2x+C

Because C;, C», and C; are arbitrary constants, 3C; + 5C, — 2C; is also
an arbitrary constant. So in the last line we have replaced it by C for sim-
plicity. ‘

It is not necessary to write all the intermediate steps when integrating
in this way. More simply, we write

/(3x4+5x2-—2)dx=3/x4dx+5/x2dx—-2/ldx

3 5
=§x5+§x3—2x+C

By systematically using the proper rules, we can differentiate very
complicated functions. On the other hand, finding the indefinite integral
of even quite simple functions can be very difficult, or impossible. Note,
however, that it is usually quite easy to check whether a proposed indefinite
integral is correct. We simply differentiate the proposed function to see if its
derivative is equal to the integrand.

Example 10.5
Verify that (in an interval where ax + b > 0)

2
/J%dx = 5 (ax —2)ax+b+C
ax -

Solution We put F(x) = (2/3a®)(ax — 2b)vax+b = (2/3a%)u - v,
where u = ax — 2b and v = +/ax + b. Now

p)
Fl(x) = —@W'v+uv
(x) 3a2( )
where, after introducing the new variable w = ax + b, one has

1 a
u'=a, v=asax+b=Jw - V= —— = — —
2/ w 2vax +b
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Hence,

F'(x) = 53—2- [a\/ax + b+ (ax — 2b)——a—————J

2Vax + b
2 2a(ax+b)+(ax—2b)a} _ 2 2a’x+2ab+a’x —2ab
" 3a? 2ax +b T 3a2 2/ax + b

2 3a’x

x
T 3a22/ax+b Jax+b

which shows that the integral formula is correct.

Initial-Value Problems

As was seen before, there are infinitely many “antiderivatives,” or indefinite integral
functions, having a given function as their common derivative. For instance, the
derivative of 1x> + C is x* for all choices of the constant C. The graphs of these
functions are all transiates of each other in the direction of the y-axis. Given any
point (xg, yo), there is one and only one of these curves that passes through (xg. yo)-

Example 10.6
Find all functions F(x) such that

F'(x) = —(x — 1) [1]

and draw some of the graphs in the xy-plane. Find in particular the function
whose graph passes through the point (xg, yo) = (1, 1).

Solution Equation [1] implies that
F(x) = /—(x - D¥dx = —%(x— D*+C

All values of C are possible. Some of the associated graphs are drawn
in Fig. 10.9. The curve that passes through (1. 1) is found by solving the
equation F(l) =1, or

—-1(1-1)*+C=1
This gives C = 1. so the required function is

Fix)=1-1(x-1)

J

The last part of Example 10.6 can be formulated this way: Find the unique
functon F(x) such that F'(x) = —(x—1)? and F(1) = 1. This is called an initial-
value problem and the requirement that F(1) = 1 is called an initial condition.
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Fx)=-3(x-1*+C

Cc=0
C=-1
C=-=2

FIGURE 109 F(x)= —3(x — 1)+ C.

Example 10.7
The marginal cost of producing x units of some commodity is 1 + x + 3x?
and fixed costs are 150. Find the total cost function.

Solution Denoting the total cost function by c(x), we have
[1] d(x)=1+x+3x* and (2] ¢(0) =150

because ¢(0) is the cost incurred even if nothing is produced. Integrating [1]
yields

cx)y=x+3x*+x3+C [3]

Substituting x = 0 in [3] gives ¢(0) = C, and so C = 150 because of [2].
Hence, the required total cost function is

c(x) =x + 3x* + x> + 150

So far, we have always used x as the variable of integration. In economics,
the variables often have other labels.

Example 10.8
Find the following:

B
(a) fmdr
(b) [(a+bg +cg?®)dg
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Solution

(a) Writing B/r?> as Br™23, we see that formula [10.4] applies, and so

B -25 1 ~2.5+1 B s
—_— = - = _— - = —— ) C
_/rz.sdr B/r dr B_2.5+1r +C 1.Sr +

() [(a+bg+cg*)dg=aq+3bg*+1cg’+C
Problems
1. Find the following integrals using [10.4]:

a. /x”dx b. /xﬁdx /————dx d. /\/x\/x_ﬁdx

2. Find the following integrals: ;

a. /(z3-+-2z—3)dz b. /(x—l)zdx c./(x—l)(x-+-2)dx
3 _
d. /(x+2)3dx e. /(e3“—e2‘-+-e")dx f. /f—-i—xj—-—‘—ldx

3. Find the following integrals:

. 92 3
=2 dy b. / > dx c. /x(1+x2)15dx
G

x+1

(Hint: In part (a), first expand (y — 2)? and then divide each term by Jy. In
part (b), do long division. In part (c), what is the derivative of (1 + x*)'®?)

4. a. Show that

/(ax+b)”dx=—1—(ax+b)”+1+C a@#0 p#-1)
a(p+1)

b. Find the following:

(1) /(2x+1) dx (i1) /\/ 2dx (1i1) /
5. Show that

Wi

(3ax — 2b)(ax + b)*? + C

/ xvax Fhdx = 152 :
—

6. Solve the following initial-value problems:
a. Find F(x) if F'(x) =1 —2x and F(0) = 1/2.
b. Find F(x) if F'(x) = x(1 — x2) and F(1) = 5/12.

7. In the manufacture of a product, the marginal cost of producing x units is
c'(x) = 3x + 4. If fixed costs are 40, find the total cost function c(x).




Sec. 10.3 / The Definite Integral 333

8. Find the general form of a function f whose second derivative is x2. If we
require in addition that f(0) =1 and f'(0) = —1, what is f(x)?
9. a. Suppose that f”(x) = 2 for all x, and f(0) =2, f'(0) = 1. First find
f/(x) and then f(x).
b. Similarly, suppose that f”(x) = 1/x>+x>+2 for x > 0, and f(1) = 0,
f'(1) =1/4. Find f(x).

10.3 The Definite Iintegral

Let f be a continuous function defined in the interval [a, b]. Suppose that the
function F is continuous in [a, b] and has a derivative satisfying F'(x) = f(x) for
every x € (a, b). Then the difference F(b) — F(a) is called the definite integral
of f over [a, b]. As observed in Section 10.1, this difference does not depend on
which of the infinitely many indefinite integrals of f we choose as F. The definite
integral of f over [a, b] is therefore a number that depends only on the function f
and the numbers a and b. We denote it by

b
/ fx)dx [10.11]

This notation makes explicit the function f(x) we integrate, which is called the
integrand, and the interval of integration [a, »]. The numbers a and b are called,
respectively, the lower and -upper limits of integration. The letter x is a dummy
variable 1n the sense that the integral is independent of its label. For instance,

/abf<x>dx=/abf<y>dy=/abf@)ds

In many other mathematical writings, the difference F(b) — F(a) is often denoted
b
by F(x) | , or by [F(x))2. But

a

we shall use. Thus:

b
F (x) 1s also common, and this is the notation
a

Definition of the Definite Integral

where F'(x) = f(x) for all x € (a, b).

b

b
/ f(x)dx =| F(x) = F(b)— F(a) [10.12]

a

Definition [10.12] does not necessarily require a < b. However, if a > b and f(x)
is positive throughout the interval (b, a], then fab f(x)dx 1s a negative number.
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Note that we have defined the definite integral without necessarily giving
it a geometric interpretation. In fact, depending on the context. it can have dif-
ferent interpretations. For instance. if f(r) is an income density function, then
i) ab f(r)dr is the proportion of people with income between a and b. (See the next
section.)

With the new notation, the results in Examples 10.1 and 10.2 can be writ-

ten as

1 1

/ x*dx=| ix3=1

o) o)
JO 0
b . b

/ (cx +d)dx =| (Fcx*+dx)

a a

= (3¢b* + db) — (3ca* + da) = 3¢(b* —a*) +d(b — a)

Although the notations for definite and for indefinite integrals are similar, they are

entrely different concepts. In fact, f: f(x)dx denotes a single number, whereas
f f(x)dx represents any one of the infinite set of functions all having f(x) as
their derivative. The relationship between the two is that [ f(x)dx = F(x) +

C over an interval 1, if and only if [ f(x)dx = F(b) — F(a) for all a and
binl.

Properties of the Definite Integral

From the definition of the definite integral in [10.12], a number of properties can
be derived. If f is a continuous function in an interval that contains a, b, and c.
then

b a
/ f(x)dx=——/ fx)dx [10.13]
Ja b
/ fx)dx=0 - ‘ ' [10.14]
b b
/ af(x)dx = Ot/ f(x)dx (a is an arbitrary number) [10.15]

b 4 b
/f(x)dx:/ f(x)dx+/ f(x)dx [10.16]

All these rules follow easily from {10.12]. For example, [10.16] can be proved as
follows. Let F be continuous in [a. b]. and suppose that F'(x) = f(x) for all x

et
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»
Ld

y=f(x)

— L X
a c b

FIGURE 10.10 [ f(x)dx = [ f(x)dx + [, #(x) dx.

in the interior of an interval long enough to include a, b, and c. Then

c b
/f(x)dx+/ f(x)dx=[F(c)—F(a)]+[F(b)—F(c)]
b
=F(b)-—F(a)=/ f(x)dx

When the definite integral is interpreted as an area, [10.16] is the additivity prop-
erty of areas, as illustrated in Fig. 10.10. Of course, [10.16] easily generalizes to
the case in which we partition the interval [a, b] into an arbitrary finite number of
subintervals.

The constant multiple property [10.8] and the summation property [10.9] are
also valid for definite integrals. In fact, if f and g are continuous in [a, b], and if
« and B are real numbers, then

b : b b
/ [0 f(x) + Bg(x)] dx = a/ f(x)dx + ﬂ/ g(x)dx [10.17]

The proof is simple. Let F/(x) = f(x) and G'(x) = g(x) for all x € (a.b). Then
[(@F(x) + BG(x)] =aF'(x) + BG'(x) = a f(x) + Bg(x). Hence,

b
[@F (x) + BG ()]

a

b
/ [af(x)+ Bg(x)] dx =

= [aF(®) + BG®)] - [F(a) + BG(a)]
= a[F() - F@)] + B[G(b) - G(@)]

. b b
=/f(x)dx+/3/ gx)dx

The rule in [10.17] can obviously be extended to more than two functions.
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Some Important Observations

It follows directly from the definition of the indefinite integral that the derivative
of the integral is equal to the integrand:

<4 / Flydx = f(x) [10.18]
dx

Also

/ F'(x)dx=F(x)+C [10.19]

/f(X)dx=

So, differentiating w.r.t. z with a fixed, it follows that

Moreover,

F(x)=F() — F(a)

a

% / " tydx = Fl@) = £2) (10.20]

In other words: The derivative of the definite integral w.r.t. the upper limit of inte-
gration is equal to the integrand as a function evaluated at that limit.
Correspondingly,

/ f(x)dx =

-5;/ fx)dx = —F/(t) = —f(1) [10.21]

a

F(x) = F(a) — F(1)

!

so that

In other words: The derivative of the definite integral w.r.t. the lower limit of inte-
gration is equal to minus the integrand as a function evaluated at that limit.

The results in [10.20] and [10.21) can be generalized. In fact, if a(z) and
b(t) are differentiable and f(x) is continuous, then

d b(r)

a Loy fx)dx = f(b®) (1) — fla®))a'(1) (10.22]

To prove this formula, let F'(x) = f(x). Then fu” f(x)dx = F(v) = F(u), so in
particular,
b(1)

o f(x)dx = F(b(@) — F(a())
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Using the chain rule to differentiate the right-hand side of this equation w.r.t. 7,
we obtain F/(b(1))b'(r) — F'(a(t))a’(r). But F'(b(t)) = f(b(z)) and F'(a(r)) =
f(a(r)). so [10.22] results. (Formula [10.22] is a special case of Leibniz’s formula
discussed in Section 16.2.)

Continuous Functions Are Integrable

Suppose f(x) is a continuous function in [a, b]. Then we defined fab f(x)dx as
the number F(b) — F(a), provided that F(x) is some function whose derivative
is f(x). In some cases, we are able to find an explicit expression for F(x). For
instance, we can evaluate fol x° dx as 1/6 because (1/6)x® has x> as its derivative.
On the other hand, for the integral

2
/ e dx
0

(closely related to the “normal distribution” in statistics), there is no standard func-
tion whose derivative is e~ .2 Stil], the integrand function is continuous in [0, 2]
and there should be an area under the graph from 0 to 2.

In fact, one can prove that any continuous function has an antiderivative:

Theorem 10.1 If f is a continuous function in [a, b], then there exists a
continuous function F(x) in [a, b] such that F'(x) = f(x), for all x € (a. b).

A sketch of a proof: Let x € (a, b). Subdivide the interval [a. x] into n equal parts so that
the points of subdivision are a+(x —a)/n, a+2(x—a)/n, ...,a+(n—1)(x—a)/n. For each
natural number n, define the new function F, as an approximation to F using the formula

= S22 [0+ 7 (o0 552 01 (10 2552)

+---+f(a+(n—l)x;a)]

(Try to illustrate this definition of F,(x).) Define F(x) = lim,—oc Fr(x). It is possible (but
not easy) to show that this limit exists for each x € [a. b], that F is continuous in {a. b],
and finally that F(x) has f(x) as its derivative in (a. b).

The Riemann Integral

The kind of integral discussed so far, which is based on the antiderivative. is called the
Newton-Leibniz (N-L) integral. Several other kinds of integral are considered by math-
ematicians. For continuous functions, they all give the same result as the N-L integral.

2See (11.4) in Section 11.2 for other examples of “unsolvable integrals.”
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We briefly sketch the so-called Riemann integral. The idea behind the definition is closely
related to the exhaustion method that was described in the introduction to this chapter.

Let f be a bounded function in the interval [a, »]. and let n be a natural number.
Subdivide [a, b] into n parts by choosing points @ = xg < X] < X3 < *+* < Xp—] < Xp = b.
Put Ax; = xj41—x;,i =0, 1, ..., n—1, and choose an arbitrary number &; in each interval
[x;, x;+1] (draw a figure). The sum

f&)Axo + f(§1)Dxy + -+ + f(§n-1) DX

is called a Riemann sum associated with the function f. This sum wili depend on f as
well as on the subdivision and on the choice of the &;’s. Suppose that, when n approaches
infinity and simultaneously the largest of the numbers Axg. Ax;i...., Ax,_; approaches
0, the limit of the sum exists. Then f is called Riemann integrable (R-integrable) in the
interval [a, b], and we put

b n—1
/ fydx=1m} f@E) Ax

i=0

The value of the integral is independent of the choice of the &;’s. One can show that every
continuous function is R-integrable, and that the R integral in this case can be evaluated
using [10.12]. The N-L integral and the R integral thus coincide for continuous functions.

Problems

1. Evaluate the following integrals by using [10.12]:

I 2 3
a. / xdx b. / (2x + x*) dx c. / (3x% — 3x%) dx
0 I

=2

19—

2. Evaluate the following integrals:

2 2 1 3 1
a. / (r’ =tHdr b / (2t5 - —,) dt c. / (——+t> dx
0 1 t= 2 \7—1

3. The profit of a firm as a function of its output x (x > 0) is

3000000

X

f(x) =4000 — x —

a. Find the output that maximizes profit. Draw the graph of f.
b. The actual output varies between 1000 and 3000 units. Compute the
average profit

1 3000
[=_1_ d
2000 /,000 fldx
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4. Evaluate the integrals:

-1
/——dx b./ £2dg
1 -3

c. / aef"dr (B #0) d. / —dy

0 -2 Y
5. By using [10.22] or otherwise, evaluate the following:
| d ", a [* _o d 1 _p

. — “d b. — > d .- ' d

a ar s x~dx dt/ e X c T -:e x
d [’ d

d — Inxdx e. — 6d f. — ————d
dt VI nx dr Jon xoax - A xt + *

6. Compute fo 2x* (2 x)>dx. Give a rough check of the answer by drawing
the graph of f(x) = 2x%(2 — x)? over [0.2].

7. Find the area between the two parabolas defined by the equations y + 1 =
(x — 1)*> and 3x = y*. (The points of intersection have integer coordi-
nates.)

8. Compute the following:

1 b b d
a./(x+ﬁ+ﬁ)dx b./ (A"“L +—> dx
0 1 x+c b4
'/"x2+x+«/x+1
C. dx
0 x+1

Harder Problems

9. A theory of investment has used a function W defined for all T > 0 by
K T
wW(T) = r / e~ dr (K and g are positive constants)
0

Evaluate the integral, and prove that W(T') takes values in the interval (0, K)
and is strictly decreasing.

10. a. Show that if f is continuous in [a, b]. then there exists a number x* €
[a, b] such that

f&x* )——/ f(x)dx

This is called the mean-value theorem for integrals, and f (x*) is called
the mean value of f in [a,b]. (Hinz: Put F(x) = [ f(z)dt, and use
Theorem 7.5 of Section 7.3.)

b. Find the mean value of f(x) = 4/x in [0, 4], and illustrate.
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10.4 Economic Applications of Integration

We motivated the definite integral as a tool for computing the area under a curve.
However, the integral has many other important interpretations. For instance, we
are led to a definite integral when we want to find the volume of a solid of revolution
or the length of a curve. Several of the most important concepts in statistics are also
expressed by integrals of continuous probability distributions. This section presents
some examples showing more directly the importance of integrals in economics.

Extraction from an Oil Well

Assume that at time ¢ = ( we start extracting oil from a well that contains K
barrels of oil. Let us define

x(t) = amount of oil in barrels that is left at time ¢

In particular, x(0) = K. If we assume that we cannot pump oil back into the well,
then x(z) is a decreasing function of . The amount of oil that is extracted in a
time interval {z, r + Ar] (where Ar > 0) is x(z) — x(z + At). Extraction per unit
of ume is, therefore,

x(t) —x(t+ Ar) _ _x(t + Ar) — x(1)
At N At

]

If we assume that x(r) is differentiable, then the limit as Ar approaches zero of
the fraction [x] is equal to —x(¢). Letting u(z) denote the rate of extraction at time
t, we have

x(t) = —u(t) with x(0) =K [10.23]

The solution to the initial-value problem [10.23] is

xt) =K —/ u(t)dr [10.24)
0

Indeed, we check [10.24] as follows. First, setting 7 = 0 gives x(0) = K. More-
over, differentiating [10.24] w.r.t. 7 according to rule [10.20] in Section 10.3 yields
x(t) = —u(tr). The result [10.24] may be interpreted as follows: The amount of
oil left at time ¢ is equal to the initial amount K, minus the total amount that has
been extracted during the time span [0, 1], namely [; u(t)dT.

If the rate of extraction is constant, with u(z) = &, then [10.24] yields

'
ut = K —ut

!
x(t)=K—/ﬁdT=K—
0 0

In particular, we see that the well will be empty when K — ar = 0. or when
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t = K/u. (Of course, this particular answer could have been found more directly,
without recourse to integration.)

The example illustrates two concepts that are important to distinguish in
many economic arguments. The quantity x(z) is a stock, measured in barrels. On
the other hand. u(¢) is a flow. measured in barrels per unit of time.

A Country’s Foreign Exchange Reserves

Let F(z) denote a country’s foreign exchange reserves at time 7. Assuming that
F is differentiable, the rate of change in the foreign exchange reserves per unit of
time will be

()= F'@t) [10.25]

If f(r) > 0, this means that there is a net flow of foreign exchange into the country
at time 7z, whereas f(¢) < O means that foreign exchange is flowing out. From the
definition of the definite integral, it follows that

F(t)) = Flty) = / F@dr [10.26]

We see that this expression measures the change in the foreign exchange reserves
over the time interval [z, #;]. An example is illustrated in Fig. 10.11. Here there is
a net flow of foreign exchange into the country from 7y to ¢’, then a net flow out of
the country from ¢’ to ¢”, and, finally, there is a net flow into the country from ¢ to
t,. (Note that f,:)' f(t)dt does not denote the total area bounded by the graph, the
x-axis, and the lines ¢t = 1y and ¢ = 1; in this case. See the end of Section 10.1.)

Income Distribution

In many countries, anonymous data from income tax authorities can be used to
reveal some properties of the income distribution within a given year, as well as
how the distribution changes from year to year.

FIGURE 10.11 The rate of change of foreign exchange.

A
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We measure income in dollars and let F(r) denote the proportion of indi-
viduals who receive no more than r dollars. Thus, if there are n individuals in
the population, nF(r) is the number of individuals with income no greater than
r. If rog is the lowest and r; is the highest (registered) income in the group, we
are interested in the function F in the interval [rg, r;]. By definition, F is not
continuous and therefore also not differentiable in [rg, r;] because r has to be a
multiple of $0.01 and F(r) has to be a multiple of 1/n. However, if the popula-
tion consists of a large number of individuals, then it is usually possible to find a
“smooth” function that gives a good approximation to the true income distribution.
Assume, therefore, that F is a function with a continuous derivative denoted by f,
so that

F(ry=F'(r) (for all r € (rp, ry))
According to the definition of the derivative, we have
fryAr = F(r + Ar) = F(r)

for all small Ar. Thus, f(r) Ar is approximately equal to the proportion of
individuals who earn between r and r + Ar. The function f is called an in-
come density function, and F is the associated cumulative distribution func-
tion.?

Suppose that f is a continuous income distribution for a certain population
with incomes in the interval [ro.ry]. If rp < a < b < r;, then the previous
discussion and the definition of the definite integral imply that j; b f(r)dr is the
proportion of individuals with incomes in [a, b]. Thus,

n [P f(r)dr

{the number of individuals [10.27]

with incomes in the interval [a, b]

We will now find an expression for the combined income of those who
earn between a and b dollars. Let M(r) denote the total income of those who
earn no more than r dollars, and consider the income interval [r,r + Ar]. There
are approximately nf(r) Ar individuals with incomes in this interval. Each of
them has an income approximately equal to r, so that the total income of these
individuals, M(r + Ar) — M(r), is approximately equal to nrf(r)&r. So we
have

M@+ Ar)y—M(@)
Ar

xnrf(r)

Readers who know some elementary statistics will see the analogy with probability density
functions and with cumulative (probability) distribution functions.
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The approximation improves (in general) as Ar decreases. and by taking the limit
as Ar — 0, we obtain M'(r) = nrf(r), son j: rf(r)ydr = M(b)— M(a). Hence.

" fab rfrydr = {the total income of individuals

2
with incomes in the interval [a. b] [10.28]

The argument that leads to [10.28] can be made more exact: M(r + Ar) — M(r) is
the total income of those who have income in the interval [r.7 + Ar]. when Ar > 0. In
this income interval, there are n[ F (r + Ar) — F(r)] individuals each of whom earns at most
r + Ar and at least r. Thus.

nr[F(r+Ar) = F()] < M(r + Ar) = M(r) < n(r + AN[F(r+ 8r) = F(n] 1]

If Ar > 0, division by Ar yields

) F(r +Ar) — F(r) - M(r+ Ar) — M(r) < ntr + A7) F(r + Ar) — F(r) 2]
Ar Ar ar

n

(If Ar < 0. then the inequalities in [1] are left unchanged. whereas those in [2] are reversed.)
Letting Ar — 0 gives nr F'(r) < M'(r) < nrF/(r). so that

M'(r) =nrF'(r) = nrf(r) {3]
The ratio between the total income and the number of individuals belonging

to a certain income interval [a, b], is called the mean income for the individuals
in this income interval. We have, therefore,

b
The mean income of individuals }: I L rf(rdr [10.29]

with incomes in the interval [a. b] B fab f(r)ar

An income distribution function that approximates actual income distributions
quite well, particularly for large incomes, is the Pareto distribution. In this case.
the proportion of individuals who earn at most r dollars is given by

f(ry=Br* (10.30]

Here B and B are positive constants. Empirical estimates of § are usually in the
range 2.4 < B < 2.6. For values of r close to 0, the formula is of no use when

B > 1, because fab f(rydr — o0 as r — 0 (See Section 11.3).
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Example 10.9
In a population with incomes between g and b, suppose the income distribu-
tion is given by

f(r)=Br** (B a positive constant) (1]

Determine the mean income 1n this group.

Solution Here

b b
/ f(r)dr=/ Br*dr=B8B

Also

b
(_%r—-l.S) = %B(a—l.S - b-l.S)

a

b
r=13 dr

b b
/ rf(rydr = / rBr~*°dr =B
a a

b
r—0.5 = 2B (a—O.S - b-O.S)

a

a

= —-2B

So the mean income of the group is

2B (a'o-s - b—O.S) a5 — p=0s5
"= ' = 2)
(2/3)B(a~13 —p=!3)  Tg=lS —pis

Suppose that b is very large. Then 579> and b~!- are both close to 0. and
so [2] implies that m = 3a. The mean income of those who earn at least a
is therefore approximately 3a.

The Influence of Income Distribution on Demand

Assume that the individuals in a population are offered a commodity for which
demand depends only on the price p and the income r of each individual. Let
D(p.r) be a continuous function that denotes the number of commodity units
demanded by an individual with income r when the price per unit is p. If the
incomes in the group vary between a and b, and the income distribution is f(r),
what is the total demand for the commodity when the price is p?

Let the price p be fixed, and denote by 7 (r) the total demand for the com-
modity by all individuals who earn less than or equal to r. Consider the in-
come interval [r,7 + Ar]. There are approximately nf(r) Ar individuals with
incomes in this interval. Because each of them demands approximately D(p, r)
units of the commodity, the total demand of these individuals will be approxi-
mately nD(p,r) f(r) Ar. However, the actual total demand of individuals with
incomes in the interval [r,r + Ar] is given by T(r + Ar) — T(r). So we must
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have T(r + Ar) — T(r) = nD(p.r)f(r) Ar, and thus

T(r+Ar)—T(r) ~ nD(p. r)f (r)
Ar

The approximation improves (in general) as Ar decreases, and by taking the limit
as Ar — 0, we obtain 7'(r) = nD(p.r) f(r). By definition of the definite integral,
Tb)—T(a)=n fab D(p.r)f(r)dr. But T(b) — T(a) 1s the desired measure of
total demand for the commodity by all the individuals in the group. This will
naturally depend on the price p. So we denote it by x(p), and thus have

b
x(p) = / nD(p.r)f(r)dr (total demand) [10.31]

Example 10.10
Let the income distribution function be that of Example 10.9, and let D(p. r)
= Ap~' r29%_ (This function describes the demand for milk in Norway
during the period 1925-1935. See Example 15.2.) Compute the total demand.

Solution Using [10.31] gives

b b
x(p) = / nAp—l.SrZ.OSBr-—Z.S dr = nABp—l.S/ r—0.42 dr
a a

Hence,

® 1 ,ss nAB

— _ AL 15,058 _ 058
L 058 0ss? T e

x(p) =nABp~"?

Present Discounted Value of a Continuous
Future Income Stream

Section 6.6 discussed the present value of a series of future payments made at
specific discrete moments in time. It is often more natural to consider revenue as
accruing continuously, such as the proceeds from a large growing forest.

Suppose that income is to be received continuously from time r = 0 to time
t = T at the rate of f(z) dollars per year at time z. We assume that interest is
compounded continuously at rate r. Let P(z) denote the present discounted value of
all payments made over the time interval [0, z]. This means that P (r) represents the
amount of money you would have to deposit at time z = 0 in order to match what
results from (continuously) depositing the income stream f(z) over the time interval
(0, T1. If dr is any number, the present value of the income received in the interval
(z.1+4dt])is P(t+dt)— P(r). If dt is a small number, the income received in this
interval is approximately f(z)dt, and the present discounted value (PDV) of this
amount is approximately f(t)e™"* dt. Thus, P(t+dt)— P(t) = f(t)e™"" dt and so

P +dt)y— P@)

4 ~ f(t)e™
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This approximation gets better the smaller is d¢, and in the limit as d¢ — 0, we have
P'(t) = f(r)e™

By the definition of the definite integral, P(T) — P(0) = fOT f(@)e " dr. Because
P (0) = 0, we have the following:

The present discounted value (at time 0) of a continuous income stream at
the rate of f(z) dollars per year over the time interval [0, T'], with continu-
ously compounded interest at rate r, is given by

' T
PDV = / f()e " dt [10.32]
0

Equation [10.32] gives the value at time 0 of income stream f(z) received
during time interval [0, T]. The value of this amount at time 7, with continuously

. . T - .
compounded interest at rate r, is "7 fo f(t)e™™ dt. Because the number ¢'7 is a

constant, we can rewrite the integral as fOT F@)e T dt. This is called the future
discounted value (FDV) of the income stream:

The future discounted value (at ime 7') of a continuous income stream at the
rate of f(z) dollars per year over the time interval [0, T], with continuously
compounded interest at rate r, is given by

T
FDV = / f)e"T=D 4y [10.33]
0

An easy modification of [10.32] will give us the discounted value (DV) at
time s € [0, T] of an income stream f () received during time interval [s, T]. In
fact, the DV at time s of income f(z) received in the small time interval [z, 1 +dt]
is f(1)e~""=9 dt. So we have the following:

The discounted value at time s of a continuous income stream at the rate
of f(z) dollars per year over the time interval {s, T}, with continuously
compounded interest at rate r, is given by

T
DV = Ff@)e =9 gy [10.34]

I=s
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Example 10.11
Find the PDV and the FDV of a constant income stream of $1000 per year
over the next 10 years, assuming an interest rate of r = 8% = 0.08 annually,
compounded continuously.

Solution

10

10
PDV = / 1000e 993" g7 —
4]

—0.087
1000 (_ e ) 1000

_ 2V =08y o
008 (1-e7"°) =~ 6883.39

. ~ 0.08

FDV = %®10pDV = 08 . 6883.39 &~ 15,319.27

Problems

1. Assume that the rate of extraction () from an oil well decreases exponen-
tially over time, with u(r) = ue™%, where a is a positive constant. Given
the initial stock x(0) = xo, find an expression x(t) for the remaining amount
of oil at time ¢. Under what condition will the well never be exhausted?

2. a. Follow the pattern in Example 10.9 and find the mean income m over
the interval [b, 2b] when f(r) = Br—2.

b. Assume that the individual’s demand function is D(p,r) = Ap*r®, A >

0,y <0.8 >0,8 # 1. Compute the total demand x(p) by using

formula [10.31], assuming that there are »n individuals in the population.

3. Let K(z) denote the capital stock of an economy at time . Then net in-
vestment at time 7, denoted by I(z), is given by the rate of increase K (1)
of K(1).

a. If 1(¢) = 3t>+ 2t +5 (¢ > 0), what is the total increase in the capital
stock during the interval from ¢t =0 to t = 5?

b. If K(t) = Kj, find an expression for the total increase in the capital
stock from time ¢ = 7y to ¢t = 7 when the investment function /(1) is as
in part (a).

4. Find the present and future values of a constant income stream of $500 per

year over the next 15 years, assuming an interest rate of r = 6% = 0.06
annually, compounded continuously.

5. a. Find the present discounted value (PDV) of a constant income stream of
a dollars per year over the next T years, assuming an interest rate of r
annually, compounded continuously.

b. What is the limit of the PDV as T — oc? Compare this resuit with
(6.22) in Section 6.6.
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Further Topics
in Integration

The true mathematician is not a
Juggler of numbers, but of concepts.
—1I. Stewart (1975)

This chapter continues the study of integration started in Chapter 10. In particular,
it presents some methods of integration that are used quite often in economics and
even more often in statistics. These include integration by parts and by substitu-
tion, integrals of discontinuous functions, and integrals over infinite intervals. The
last part of this chapter considers Lorenz curves, which can be a useful way of
visualizing income distributions and some of their properties.

A RSSO ¢ R

11.1 Integration by Parts

We often need to evaluate integrals such as | x2e** dx whose integrand is a prod-
uct of two functions. We know that 1x> has x? as its derivative and that {e** has
e as its derivative, but (3x°)(3e*) certainly does not have x>e?* as its derivative.
In general, because the derivative of a product is nor the product of the derivatives,
the integral of a product is not the product of the integrals.

The correct rule for differentiating a product allows us to derive an important
and useful rule for intergrating products. In fact.

(f)g) = f'(x)gx) + fx)g (x) [*]

348
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Taking the indefinite integral of each side and using the rule for integrating a sum
gives

Fg(x) = / F0gx) dx + / FG)g' (x) dx

where the constants of integration are implicit in the indefinite integrals on the
right-hand side of this equation. Rearranging this last equation yields:

Formula for Integration by Parts
/f(x)g'(x)dx = f(x)g(x)—/f’(x)g(x)dx [11.1]

At first sight, this formula does not look at all helpful. Yet the examples that follow
show how this impression is quite wrong, once one has leamned to use it properly.

Suppose we are asked to integrate a function H (x) that can be written in the
form f(x)g'(x). By using [11.1], the problem can then be transformed into that
of integrating f’'(x)g(x). Usually, a function H (x) can be written as f(x)g’(x)
in several different ways. The point is, therefore, to choose f and g so that it
is easier to find [ f'(x)g(x)dx than it is to find [ f(x)g’(x)dx. Sometimes the
method works not by producing a simpler integral, but one that is similar. See
Example 11.2(a).

Example 11.1
Use integration by parts to evaluate [ xe* dx.

Solution In order to use [11.1], we must write the integrand in the form
f(x)g'(x). Let f(x) =x and g(x) = ¢*. Then f(x)g'(x) = xe*, and so
/x cefdx= x - e“-—f 1 -exdx=xex—/e"dx=xe"-ex+c
I I I 4
f&x) g'x) fx) gx)  fl(x) gx)

The derivative of xe* — e¢* + C is &* + xe* — &* = xe*, so the integration
has been carried out correctly.

The right choice of f and g enabled us to evaluate the integral. Let
us see what happens if we try f(x) = ¢* and g(x) = %xz instead. Again
f(x)g'(x) =& x = xe*, and by [11.1]:

/e“- xdx:e’-%xz—/e"’ -%xzdx
) N y 4
fx) &) fx) g(x) f(x) gx)
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In this case, the integral on the right-hand side is more complicated than the
original one. Thus, this second choice of f and g does not simplify the
integral.

The example illustrates that we must be careful how we split the integrand.
Insights into making a good choice, if any, will come only with practice. Often,
even experienced “integrators” must resort to trial and error.

Example 11.2
Evaluate the following:

1
(a) I=/—lnxdx
J x
(b) J = [e¥x3dx
Solution

(a) Choosing f(x) = 1/x and g’(x) = Inx does not work well because it
is difficult to find g(x). Choosing f(x) = Inx and g’(x) = 1/x works

better:
1 1 1
1=/——lnxdx=/lnx - dx=1nx1nx—/—- Inxdx
X . X x
I 1 I 4 I 1

fx)g'(x) fx)g(x) fx)gx)

In this case, the last integral is exactly the one we started with, namely
1. So it must be true that / = (Inx)? — I, implying that / = (Inx)?.
Adding an arbitrary constant, we conclude that

1 1 5
/—lnxdx = —(nx)"+C
X 2

(b) We begin by arguing rather loosely as follows. Differentiation makes
x3 simpler by reducing the power in the derivative 3x> from 3 to 2.
On the other hand, ¢* is about equally simple whether we differentiate
or integrate it. Therefore, we choose f(x) = x> and g’(x) = e so
that we differentiate f and integrate g’. This yields f’'(x) = 3x> and
we can choose g(x) = 3e**. Therefore,

= %x:’ez" - %/xzezx dx [1]
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The last integral is somewhat simpler than the one we started with

because the power of x has been reduced. Integrating by parts once
more yields

Using integration by parts a third and final time gives

/xel" dx = x (

ez") —-/ %el" dx = %xe2Jr — %ez“" +C (31

1)~

Successively inserting the results of [3] and [2] into [1] yields (with
3C/2 =o¢):

3 2 3.2 9r 3. 2¢ 3.2
J = x’e-x—ix'e'*-kixe'“‘—%e“-kc

W~

It is a good 1dea to double-check your work by verifying thatdJ /dx =
3,2
x e,

There is a corresponding result for definite integrals. From the definition of
the definite integral and [x] (the product rule for differentiation), we have

1h

b b d !
/ [f(0)g(x) + f(x)g'(x)] dx =/ - /(g ()] dx=l| fx)g(x)

a

implying that

b b )
/f(X)g'(X)dx=‘ f(X)g(X)—/ fl(x)gx) dx [11.2]

Example 11.3

Evaluate fos x~/1 + xdx.

Solution We must write the integrand in the form f(x)g’(x). If we let
f(x) = x and g'(x) = ~/T+x = (1 + x)!7, then what is g? A certain
amount of reflection should suggest choosing g(x) = 3(1 + x)*?. Using
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t y=xv1+x
6-.
5-.
4
3._
2..
A
14 ,
I 2 3 4 57
FIGURE 11.1
[11.2] then gives
3 3 3
/ xvT+xdx=| x-3(1+x)3" —/ 1-3(1+x)dx
0 0 0
3
=3.2.82 % | 1(1+x)°"
0
- 4 4502 _ 4 =11
_16—3(4/ ~D=16--31="75
Alternatively, we could have found the indefinite integral of x+/1 + x
first. and then evaluated the definite integral by using definition [10.12] of the
definite integral. Figure 11.1 shows the area under the graph of y = x+/1 + x
over the interval [0, 3], and you should ask yourself if 7% 1S a reasonable
estimate of area A.
Problems

1. Use integration by parts to find the following:
a. /xe‘x dx b. /3xe4Jt dx ¢ /(l +xPe*dx d. /xlnx dx

2. Evaluate the following: (2) [, xIn(x+2)dx (b) [Jx27dx (c) f x%¢* dx
3. Of course, f(x) = 1- f(x) for any function f(x). Use this fact to prove that

/f(x)dx=xf(x)—/xf’(x)dx

Apply this formula to the case when f(x) = Inx.
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4. Suppose wu(tp) = u(t;) = 0. Show that, with appropriate requirements on F
and u.

n

/h F(t);l(t)dr:-/ F()u(r) dt

1o

(Recall that the dot notation £(¢) and F(z) means differentiation w.r.t. .)
5. Show that

R xp+1 xp-H
x’Inxdx = Inx — +C -1
/ p+1 (p+1)? (o#-D

6. With appropriate requirements on the functions involved, show that if
U(C(O)) = (, then

T T
/ U(C@))e™ dt = % (/ U'(C))C'(tye™" dt — U(C(T))e-'7>
0 0

Harder Problems

7. Compute the following integral when y > c:

T = k/ W@ —u) " du
0

11.2 Integration by Substitution

In this section, we shall see how the chain rule for differentiation leads to an
important method for evaluating many complicated integrals. We start with a
simple example,

/ (x> + 10)°%2x dx [1]

One way of integrating this would be to write out all 51 terms of (x> + 10), and
then integrate term by term. But this would be extremely cumbersome.! Instead,
let us introduce x> + 10 as a new variable. We pretend that the symbol dx in [1]
denotes the differential of x, and argue as follows: If we let ¥ = x* + 10, then
du = 2x dx, and using this in [1] yields

/uso du

I'The expression (x2 + 10)*° can be evaluated using the Newton binomial formula (7.16) in
Section 7.4.
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This integral is easy, [udu = gu’' + C. Because u = x* + 10, it appears
that

/ (x? +10)2x dx = £ (x> + 10> + C [2]

By the chain rule, the derivative of #-(x* + 10)*! + C is precisely (x* + 10)>°2x,
so the result in [2] is confirmed.
Let us try this method on another example, namely

e“dx
J1 +e*

This time we introduce u = 1 + ¢* as a new variable. Then du = e* dx, and so
the integral reduces to

(3]

du -1
;37;:/“ /3du

This integral is equal to %uzﬂ + C. Because u = 1 + €%, it appears that

e dx 3

SM+e& 2

Again, using the chain rule, we can quickly confirm that [4] is correct, because
the derivative of 2(1 + €)*? is (I + &5)713¢* = & /J/T+e*. (Actually, the
substitution u = /1 + ¢* works even better.)

In both of these examples, the integrand could be written in the form f(u)u’,
where u = g(x). (In [1], put f(u) = «*® and u = g(x) = x> +10. In [3], put
fW) =1/Yu and u = g(x) =1+¢*)

Let us try the same method on the more general integral

A+ +C [4]

/f(g(X))g'(X)dx [5]
If we put u = g(x), then du = g'(x) dx, and so (5) reduces to

/f(u)du

Suppose we could find an antiderivative function F(u) such that F'(u) = f(u).
Then

/f(u) du=F(u)+C
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which implies that

/f(g(X))g’(X)dx = F(g(x)+C [6]

Does this purely formal method always give the right result? To convince you that
it does, we use the chain rule to differentiate F ( g(x)) + C w.r.t. x. The derivative
is F'(g(x))g'(x). which is precisely equal to f(g(x))g'(x), thus confirming [6].
We frame this result for further reference:

Integration by Substitution

/f(g(x))g’(x)dx=/f(u)du (u = g(x)) [11.3]

Note: Precise assumptions for this formula to be valid are as follows: g is continu-
ously differentiable, and f(u) is continuous whenever u belongs to the range of g.

It is quite easy to integrate by substitution when the integrand is directly of
the form f (g(x))g'(x), as in the previous examples. Sometimes we need to make
some preliminary adjustments.

Example 11.4
Integrate the following:

/8):2'(3):3 - 1)'%dx

Solution We substitute u = 3x> —1. Then du = 9x2dx and so 8x2dx =
(8/9)9x2dx = (8/9) du. Thus,

/8x2(3x3 — 1)'%dx = (8/9) /ulﬁdu

=@8/9) -A/1Nu'7 +C
= (8/153)3x> - D" +C

Check your understanding of this method by doing Problems 1 and 2 right
now.

More Complicated Cases

The examples of integration by substitution considered so far were rather simple.
More challenging applications of this integration method are to cases where it is
difficuit to see how the integrand can be expressed in the form f (g(x))g'(x).
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Example 11.5
Try to evaluate the integral

x = J3
/x+fdx (x> 0)

Solution Because /x occurs in the numerator as well as in the denom-
inator, it might be a good idea to try to simplify the integral by substituting
u = /x = g(x). Then du = g'(x) dx = dx/2./x. This last expression does
not occur in the given integral. However, we can remedy this problem by
multiplying the integrand by 2./x/2./x, obtaining

x— /3
[T re= [ m e ]

Now, if we replace ./x by u and hence x by u?, and also replace dx /2./x
by du, then the integral becomes

ur—u ut—u
/ 2udu—2/ du
u*+u u—+1

2
=2/<u—2+ )du
u+1

=uw—4du+4hnju+1|+C

where we have performed the division (4> — u) = (¥ + 1) in order to derive
the second equality. Replacing u by /x yields the result

/i+§dx—x—4\/_+4ln(\/_+l) C

Actually, the trick used in [*] is unnecessary. If u = /x, then x = u? and
dx = 2udu, so we get immediately

x—/x u>—u
dx = 2ud
/x+f g 2 a4
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The last method 1n the previous example is the one used most frequently.
We can summarize it as follows:

st

Method for Finding a Complicated Integral [ G(x) dz:

1. Pick out a “part” of G(x) and introduce this “part” as a new variable,
u = g(x). '
. Compute du = g'(x)dx.
. Using the substitution u = g(x), du = g'(x) dx, transform (if possible)
[ G(x) dx to an integral of the form [ f(u) du.
. Find (if possible) [ f(u)du = F(u) + C.
. Replace u by g(x). The final answer is then

w N

Uy

/G(x)dx =F(gx))+C

At step 3 of this procedure, it is crucial that after substituting you are integrating
a function that only contains ¥ (and du), without any x’s. Probably the most
common error when integrating by substitution is to replace dx by du, rather than
use the correct formula du = g'(x)dx. If one particular substitution does not
work, one can try another. Note: There is always the possibility (assumed much
too quickly by some students) that no substitution works because the integral 1s
“insoluble.” Here are some quite common integrals that really are impossible to
“solve,” except by introducing special new functions:

32 % et X 1 dx
/e dx. ‘/e dx, ‘/ ;’d.l In—xdx, /T/__;de [114]

Example 11.6
Find the following:

(a) /xB\/l—i-xzdx
I

(b)/x3\/1+x3dx
0

Solution
(a) We follow previous steps 1 to 5:

1. We pick a “part” of x°+/1+ x2 as a new variable. Let us try
U = 4/ 1 +X2.



358 Chapter 11 / Further Topics in Integration
2. When u = +/1 + x2, then u? = 1 + x> and so 2udu = 2x dx, im-

plying that u du = x dx. (Note that this is easier than differentiating
u directly.)

3. /):3\/1+x2dx=/x2\/1+x2 -xdx=/(u2—l)u-udu
=/(u4—u2)du
4. /(u4—u2)du=%u5—%u3+c
5. /x3v1+x2dX=§(~/l+x2)5—§( 1+x2)3+c
(b) Using the result in part (a),
I

/x3\/1+x2dx=
0

= &2+

[ (TF2) -4 (VT2

1
0

Note 1: In this example, show that the substitution # = 1 + x> also works.

Note 2: One is inclined to think that an integral like f x%+/1 + x2dx should
be even easier to find than the one considered in Example 11.6. However, the
substitution u = /1 + x? leads to the integral [xu’du = [=+vu? - 1u’du,
which is not very encouraging. (Actually, one has to introduce a rather bizarre
substitution in order to find this integral. The substitution suggested in Problem 11
works.)

The definite integral in the previous example can also be evaluated by “car-
rying over the limits of integration” as follows. We substituted # = +/1 + x2. As
x varies from O to 1, so u varies from 1 to ﬁ, and the right answer is obtained
as follows:

I : V2
/ x3\/1+x2dx=/ w® —u>)du
0 1

V2
(30" - 1) -

o

(V2+1)

1

w

1

This method of carrying over the limits of integration works in general. Under the
same assumptions as in the note to [11.3], we obtain

b g(b)
/ F(2(0)g' @) dx = / fwde (=g (11.5]
a 8

(a)
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The reason is simple. If F'(u) = f(u). then

b
/ flgx))g'(x)dx =

b g(h)

F(g(x)) = F(gh)) - F(g@) = f () du

a g(a)

Problems

1. Find the following integrals by using [11.3]:

: oy — 1
a. /(x2+1)82xdx b. /(x+2)‘°dx c. /;‘x—dx
x*—x+8

2. Find the following integrals by means of an appropriate substitution:

3 1 2
a. /x(2x2 +3)°dx b. /xze" 2 dx c. /—n(x—-*_—)dx
. 2x +4

d. /x«/1+xdx e. /(li—q)ﬂdx f. /xS\/4—x3dx
x=)? :
3. Find the following integrals:
‘ \ 31
a. / xV 1+ x2dx / -Bldv c. — e dx

y Ji x?
4. Solve the following equation for x:

x -2
/ 272 gr=tn(2x—1)

3 1 =2t

5. Find the following integrals:

a. /]( - D%ax b [ PMar e f dx
X7 — x° - — 2 —_—_
0 VX 0 V1+/x

6. Show that
/ S'(x(®)x@) dr = S(x(t)) = S(x (1))

o

N

a. Show that if a # b, then for all x # a and x % b,

cx +d -1 (ac+d bc+d>

(x—a)(x—b) a—-b\x—a x-b

b. Use the identity in part (a) to compute

xdx 2x+3
(l)/x~—3 2 (ll)/x--5x+6
. Show that if f is continuous in the interval [a, b], and A is a constant # O,
then )
a. [*f(ydx = [[5 fx =2 dx
b. [P fx)dx =1 [ £ () dx

o0
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Harder Problems

9. In a model of optimal macroeconomic stabilization, A. J. Preston makes
investment / a function of the time that is given by the integral

* A(1 — Dt
0 1+CDe3’-'

All constants are positive. Find / by using the substitution x = CDe?* and
also the identity in Problem 7(a).

10. Find the following:
xl/2
I 2/1—-—_de

(Hint: How can you eliminate the fractional exponents in x'/> and x!/3
simultaneously using only one substitution?)

11. Sometimes the change of variable formula [11.3] 1s used the other way around
in the following sense: To evaluate f f(x)dx, we introduce x = g(z),
dx = g'(t)dt, and try to solve the new integral expressed in terms of 7.
Finally, we use t = g~!(x) to get the answer in terms of x. (This requires g '
to have an inverse.) Apply this method to

d
() /7}‘2% (b) /\/x3+1dx

(Hint: Introduce the substitution x = (¢’ — e™). This might strike you
as rather odd. but it works. You will need the answers to Problem 6 of
Section 8.1 and Problem 23 of Section 8.2.)

11.3 Extending the Concept of the Integral

In this section, we extend the concept of the integral in several directions. Again,
each of these extensions is useful in economics and/or statistics.

Integrals of Certain Discontinuous Functions

So far we have only been integrating continuous functions. It is useful to extend
the definition to certain discontinuous functions. A function f is called piecewise
continuous over the interval from a to b if it has at most a finite number of
discontinuity points in the interval, with one-sided limits on both sides at each
discontinuity point.

A typical graph of a piecewise continuous function is shown in Fig. 11.2,
where the discontinuity points are at x = ¢ and at x = d. Suppose we replace
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a c d b
FIGURE 11.2 [ f(x)dx = [ f(x)ax+ [T f(x)dx + [, f(x)dx.

» X

f(x) in [a, c] by the continuous function f)(x) that is equal to f(x) throughout
la, ¢) and has the value f;(¢) = lim,_..- f(x) at x = ¢. Then f: fi(x)dx is well
defined and it is reasonable to define [ f(x)dx = [ fi(x)dx. By a similar trick,
we define fcd f(x)dx and f: f(x)dx by considering continuous functions in the
intervals [c. d] and [d, ], respectively, that are equal to f except at one or both
of the end points. The only sensible definition now is

b ¢ d b
/ f(x)dx:/ f(x)dx—i—/ f(x)dx—i—/ fx)dx
a a c d

Then the interpretation of fab f(x)dx is simply the sum of the three areas in

Fig. 11.2. This should make clear how fab f(x)dx can be defined for all functions
f(x) that are piecewise continuous on [a, b].

Infinite Intervals of Integration

Suppose f is a function that is continuous for all x > a. Then fab f(x)dx is
defined for each b > a. If the limit of this integral as b — oo exists (and is finite),
then we say that f is integrable over [a, 00). and define

o0 b
/ f(x)dx:'bllm/ f(x)dx [11.6]

The improper integral fa°° f(x)dx 1s then said to converge. If the limit does not

exist, the improper integral is said to diverge. If f(x) = 0 in [a, o), we interpret

the integral [11.6] as the area below the graph of f over the interval [a. c0).
Analogously, we define

b b
/ f(x)dx=alj131°c/ fx)dx [11.7)
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when f is continuous in (—oo, b]. If this limit exists, the improper integral is said
to converge. Otherwise, it diverges.

Example 11.7
The exponential distribution in statistics is defined by

fx) = re ™ (x > 0; A is a positive constant)

Show that the area below the graph of f over [0, o0) is equal to 1. (See
Fig. 11.3)

Solution For b > 0, the area below the graph of f over [0, b] is equal to

b -
/ re M dx =
0 .

As b — 00, so —e™* + 1 approaches 1. Therefore,

b
(—eTM) =—e?+1
0

b=00

o b
/ Ae™™ dx=lim [ ie™dx=lim (e +1) =1
0 b= Jo

Example 11.8
Show that

/—l-dxz 11 (fora > 1) [
1

Then study the case a < 1.

Solution Foras#1land b > 1,

bl b
-—dx-—/ x%dx =
i

p x4

b
L e |

l—a _
y 1—a l—a(b D 2]

FIGURE 11.3 Area A has an unbounded base, but the height decreases to 0 so rapidly
that the total area is 1.

f(X) = )‘e—kx

- X
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FIGURE 114 “A= f1°°(1 /X)dx = 00.” 1/x does not approach 0 fast enough, so the
improper integral diverges.

For a > 1, one has b!=¢ = 1/b°"' — 0 as b — oc. Hence, [1] follows
from [2] by letting b — o0.

For a = 1, we have [(1/x)dx =Inb~Inl = Inb, which tends to
oo as b tends to 00, so [~ (1/x)dx diverges. See Fig. 11.4.

For a < 1, the last expression in [2] tends to oo as b tends to oo.
Hence, the integral diverges in this case.

If both limits of integration are infinite, the improper integral of a continuous
function f on (—o0, 00) is defined by

co 0 )
/ f(x)dx =/ f(x)dx+/ f(x)dx [11.8]
—00 —00 0

If both integrals on the right-hand side converge, the improper integral | _‘_”oo f(x)dx
is said to converge; otherwise, it diverges. Instead of using O as the point of sub-
division, one could use an arbitrary fixed real number ¢. The value assigned
to the integral will always be the same, provided that the integral does con-
verge.

It is important to note that definition [11.8] requires both integrals on the
right-hand side to converge. Note in particular that

b
lim / f(x)dx [x]

is not the definition of f_'*';o f(x)dx. Problem 4 provides an example in which [*]
exists, yet the integral in [11.8] diverges. So [x] is not an acceptable definition,
whereas {11.8] is.

Example 11.9
For ¢ > 0, examine the convergence of

+oc .
/ xe % dx
—00



364 Chapter 11 / Further Topics in integration

Solution  Let us begin with the indefinite integral [ xe~**" dx. Making
the substitution # = —cx?, we have du = —2cx dx and so

2 1 1 1 2
/xe"“ dx = ~5 fe“ du = —Ec-e“ +C= —Ze"” +C
c

According to [11.8], provided both integrals on the right side exist, one has

0 . 0 . oc .
/ xe * dx =/ xe dx+/ xe % dx (%]
-0 -0 0
But now
0 ) 0 . L 1
/ xe " dx = lim xe~* dx = lim ——e " = ——
oo a—- [, a=»-co | 2¢ 2c

In the same way, we see that the second integral in {*] is 1/2¢, so

o0 N 1
—ex d o e — +
/ xe x 2c

-

1
% =0 (c>0) [x]

(This result is very important in statistics. See Problem 13.)

Integrals of Unbounded Functions

We turn next to improper integrals where the integrand is not bounded.
Consider first the function f(x) = 1//x, with x € (0, 2]. (See Fig. 11.5.)
Note that f(x) = oo as x — 0*. The function f is continuous in the interval {4, 2]

FIGURE 11.5 The “height” of the domain is unbounded, but y = 1/+/x approaches the
y-axis so quickly that the total area is finite.

4

21\ f)=1/V/x
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for an arbitrary fixed number 4 in (0. 2). Therefore. the definite integral of f over
the interval [A. 2] exists. and

21
—dx =
A

The limit of this expression as # — 07 is 2+/2. Then, by definition,

2
2Vx =22 - 2Vh
h

2

./0'-\}_;@::2\/5

The improper integral is said to converge in this case, and the area below the graph
of f over the interval (0, 2] is 2+/2. The area of 1/,/x over the interval (k. 2] is
shown in Fig. 11.5.

More generally, suppose that f is a continuous function in the interval (a, b],
but f(x) is not defined at x = a. Then we define

b -b
/ f(x)dx = lim / f(x)dx [11.9]
a h=0% Ja4n

if the limit exists, and the improper integral of f is said to converge in this case.
If f(x) > 0in (a.b], we identify the integral as the area under the graph of f
over the interval (a, b]. In the same way,

b b—h
/ fx)dx = hlir&/ f(x)dx [11.10]

if the limit exists, in which case the improper integral of f is said to converge.

Suppose f is continuous in (a, b). We may not even have f defined at g or b.
For instance, suppose f(x) = —oc as x — 4™ and f(x) — +o0as x — b~. In
this case, f is said to be integrable in (a, b), and we can define

b c b
/f(x)dx:/f(x)dx+/ fx)dx [11.11]

provided that both integrals on the right-hand side of [11.11] converge. Here c is
an arbitrary fixed number in (a, b), and neither the convergence of the integral nor
its value depends on the choice of c. If either of the integrals on the right-hand
side of [11.11] does not converge, the left-hand side is not well defined.

Suppose that S is a union of a finite number of intervals of the form

S=(a,b)VU(ar, by)U---Ulay, b,)

where a; < by <a; < by <--- <a, < b,, and a; = —oc and/or b, = 00 are
allowed. Provided that f is integrable in each of the intervals (a;. by), ..., (an, b,)



366 Chapter 11 / Further Topics in Integration

according to the earlier definitions in this section, then f is said to be integrable
over S. We define the integral over § as:

n By

/f(x)dx=z fx)dx [11.12]
s

k=1 v

A Comparison Test for Convergence

The following convergence test for integrals is frequently useful because it does
not require evaluation of the integral.

Theorem 11.1 (A Comparison Test for Convergence)
Suppose that f and g are continuous for all x > a and

Ifx)| <g()  (for all x > a)

If [ ® g(x)dx converges, then fa°° f(x) dx converges, and

/ fx)dx s/ g(x)dx

Considering the case in which f(x) > 0, Theorem 11.1 can be interpreted as
follows: If the area below the graph of g is finite, then the area below the graph
of f is finite as well, because at no point in [a, oc) does the graph of f lie above
the graph of g. (Draw a figure.) This result seems quite plausible and we shall not
give an analytical proof. A corresponding theorem holds for the case where the
lower limit of integration is —oo. Also, similar comparison tests can be proved for
unbounded functions defined on bounded intervals.

Example 11.10
Integrals of the form

/ T U(e@)er s 1)

often appear in economic growth theory. Here ¢(z) denotes consumption at
time 7, U is an instantaneous utility function, and « is a positive discount
rate. Suppose that there exist numbers M and 8, with 8 < «, such that

U (c(0))] < Me* (2]
for all 7 > 1y and for each possible consumption level ¢(z) at time ¢. Thus,

the absolute value of the utility of consumption is growing at a rate less than
the discount rate «. Prove that then [1] converges.
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Solution From [2],
U (c(r))e™ | < Me™@ (for all t > 1p)

Moreover,

T T
/ Mg = | Mt o Moo eepr
L =B a—p

Because « — 8 > 0, the last expression tends to [M /(¢ — B)] e~ @ A% a5
T — oc. From Theorem 11.1, it follows that [1] converges.

Example 11.11
The function f(x) = e~ is extremely important in statistics, because it is
the basis of the Gaussian, or normal, distribution. It is possible to show that
the improper integral

+00 ,
/ e ¥ dx [1]
-0
converges. Note that according to [11.4] in Section 11.2, the function f (x) =
-=* has no indefinite integral that we can find. Because f (x) = e~* s

symmemc about the y-axis, it suffices to prove that fo e~ dx converges.
To this end, subdivide the interval of integration so that

oo R 1 \ o \
/ e ¥ dx = / e ¥ dx + / e " dx [2]
0 0 1

1 2 .. )
Of course, fo e~* dx presents no problem because it is the integral of a

continuous function over a bounded interval. For x > 1,one has 0 < e™ <
e *. Now f 1°° e~ * dx converges (to 1/e), so according to Theorem 11.1, the

integral [~ e dx must also converge. From [2], it follows that f0°° e " dx
converges. Thus, the integral [1] does converge, but we have not found its
value. In fact, more advanced techniques of integration show that

+o0
/ e X dx =7 [11.13]

-0

Problems

1. Determine the following integrals, if they converge. Indicate those that di-
verge.

® 1 * 1
a. —dx b. / —dx
/1 x> 1oAx



368 Chapter 11 / Further Topics in Integration

0 ¢  xdx
c. e*dx d. —_— (a >0
/:oo 0o Va?—x?

2. Define f forall x by f(x) = 1/(b—a) forx € [a.b], f(x) =0forx ¢ [a, b].
(In statistics, f is called the rectangular (or uniform) distribution). Find the

following:
+00 +20 +00
a. F(x)dx b. / xf (x)dx c. / x> f(x)dx
—00 - -0
3. In connection with Example 11.7, find the following:
o o
a. / xAe™™ dx b. / (x — 1/0)? e ™™ dx
0 0

w - -
c. / (x —1/0)° Ae ™ dx
0
(The three numbers you obtain are called respectively the expectation, the
variance, and the third central moment of the exponential distribution.)

4. Prove that [*°°x /(1 + x?)dx diverges, but that limy—.oc [°, x/(1 + x?) dx
converges.

5. The function f is defined for x > 0 by f(x) = (Inx)/x>.
a. Find the maximum and minimum points of f, if there are any.
b. Examine the convergence of fol f(x)dx and [ f(x)dx.

6. Use the comparison test of Theorem 11.1 to prove the convergence of

*® 1
/ > dx
1 I +x-

7. Show that

3 1 1
,/_2(Jx+2+«/3—x>dx=4ﬁ

8. R.E. Hall and D. W. Jorgenson, in their article on “Tax Policy and Investment
Behavior,” use the integral

o0
z=/ e " D(s)ds
0

to represent the present discounted value, at interest rate r. of the time-

dependent stream of depreciation allowances D(s) (0 < s < o0). Find z as

a function of 7 in the following cases:

a. D(s)=1/t for0<s <7, D(s) =0 for s > 7. (Constant depreciation
over T years.)

b. D(s) =2(t —s)/t? for 0 < s < t, D(s) =0 for s > 7. (Straight-line
depreciation.)
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9. Suppose you evaluate f:l (1/x?) dx by using definition [10.12] in Section 10.3

of the definite integral without thinking. You get a negative answer even
though the integrand is never negative. What has gone wrong?

10. Prove that the following integral converges and find its value:

1
Inx
—dx
/o 7
Harder Problems

11. Find the integral

12. Use the results in Example 11.8 to prove [6.18] in Section 6.5. (Hint: Draw
the graph of f(x) = x~7 in [1, 00), and interpret each of the sums 5 oo, n~7?
and ) oo ,n~” geometrically as sums of an infinite number of rectangles.)

13. In statistics, the normal, or Gaussian, density function is defined by

e-(x-u-)'/20‘

1
f(x)_an_z?

in the interval (—oco, 0o).? Prove that
@ [[2f@dx=1 () [[Zxf(x)dx=pu
© [T2x*f(x)dx =0+ u?

(Hint: Use the substitution ¥ = (x — u) /ﬁa, together with [11.13] and the
result in Example 11.9.)

11.4 A Note on Income Dlstnbutlon and Lorenz
Curves

In Section 10.4 it was explained how, if f(r) is the income distribution func-
tion for a population of »n individuals, then n fab f(r)dr represents the number
of individuals with incomes in the interval [a. b}—see Equation [10.27]. In ad-

diton, n fa by f(r)dr represents the total income of these individuals—see Equa-
tion [10.28].

This function. its bell-shaped graph, and a portrait of its inventor Carl Friedrich Gauss (1777-
1855). appear on the German 10-mark currency note issued in early 1989.
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TABLE 11.1 Shares of total income

Income United States Netherlands World
group 1980 1990 1959 1985 1989
Lowest fifth 5.2 4.6 5.0 7.8 1.4
Second fifth 11.5 10.8 11.9 13.9 19
Third fifth 17.5 16.6 17.4 18.1 2.3
Fourth fifth 24.3 23.8 227 23.4 117
Highest fifth 41.5 44.3 43.0 36.7 82.7

A statistical device for describing some important features of any such in-
come distribution is the Lorenz Curve.’> This curve is based on the shares of total
income that accrue to different groups of individuals in the population, starting
with the poorest and working up to the richest. Consider, for example, the data
in Table 11.1.* It may be apparent already that inequality increased in the United
States during the 1980s, and that it decreased in the Netherlands during the much
longer period 1959-1985. The distribution in the Netherlands in 1959 is quite close
to that in the United States for 1980. The reported distribution for the world as a
whole 1s close to an extreme.

These preliminary insights are confirmed by a rather more careful analysis
based on Lorenz curves. To construct these, we first cumulate the incomes of
different fifths of the population so that the five new groups we consider are re-
spectively the lowest 20%. then the lowest 40%, the lowest 60%, the lowest 80%,
followed by the whole population. This gives Table 11.2.

Figure 11.6 1llustrates two of the resulting Lorenz curves, found by fitting
smoothed curves to the data points in the second and fifth columns of Table 11.2.

The question we ask now is this: If the income distribution is really described
by the continuous density function f(r), as in Section 10.4, how does one find the
Lorenz curve? To answer this, we first need to consider the cumulative distribution
function F(r) of Section 10.4, whose value for each income level r represents the
proportion of the population having incomes < r. Thus, the value of this function

>Named after the American statistician Max Otto Lorenz. who introduced it as one of the “Meth-
ods for Measuring Concentration of Wealth™ (rather than income) in an article published in the Journal
of the American Statistical Association. 1905.

“Data for the United States are taken from the Bureau of the Census. Those for the Netherlands k ‘
come originally from the Dutch Central Bureau of Statistics. World income data are taken from the :
UN Development Program’s Human Development Report for 1992. Actually. data of this kind for the
world as a whole do not exist. The reported figures represent what the world distribution of income
would be if the gross domestic product of each nation were perfectly equally distributed as income to
all the inhabitants of that nation. Nevertheless. there is no reason to think that the resulting figures
seriously exaggerate the true extent of world inequality.

3As is often the case with data of this kind. rounding errors mean that the totals of the figures in
Table 11.1 are not exactly 100% in every case.
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TABLE 11.2 Cumulative incomes

Income United States Netherlands Worid
group 1980 1990 1959 1985 1989
Lowest 20% 52 4.6 5.0 7.8 1.4
Lowest 40% 16.7 15.4 16.9 21.7 3.3
Lowest 60% 34.2 32.0 34.3 39.8 5.6
Lowest 80% 58.5 55.8 57.0 63.2 17.3

Lowest 100% 100.0 100.0 100.0 100.0 100.0

Income Share

Iy
1.0

0.87

067

041

¥ Proportion
02 04 06 08 1.0

FIGURE 11.6 Approximate Lorenz curves for the U.S. in 1990 (solid curve) and the
whole world in 1989 (dotted curve). The dashed curve represents perfect equality.

1s given by the integral
F(r) =/ fx)dx
0

which evidently satisfies F'(r) = f(r) for all income levels r. We assume that
f(r) > 0 at all income levels r > 0, implying that F(r) i1s strictly increasing.
Moreover, assuming that everybody has some income, even if only a little, it must
be true that F(0) = 0. Also F(c0) = 1, because everybody has a finite income,
even if some individuals may have extremely large incomes. Here F(oo) = 11is a
shorthand notation for F(r) = 1 as r — 0.

Along the horizontal axis of the graph of the Lorenz curve, the vanable is
the proportion p = F(r) of the population having incomes < r. Constructing the
Lorenz curve requires considering the inverse of this function, r = R(p), which is
also strictly increasing.

The function R(p) can be given an important interpretation. For each p €
[0, 1], the value R(p) is that income level for which the exact fraction or proportion
p of the population has income r < R(p); this must be true because, by the
definition of an inverse function, F(R(p)) = p. When p = 1/2, for example,
the income level R(1/2) has the property that half the population has income
r < R(1/2), whereas the other half has income r > R(1/2); this “middle” income
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level is generally called the median of the distribution f(r). Ranges of income
between different values of R(p) also receive appropriate names—for example, the
interval [R(0.2), R(0.4)] is called the second quintile, [R(0.6), R(0.7)] is called
the seventh decile, and so on. The different values of R(p) are generally known
as percentiles, and also as order statistics.

By the usual rule for differentiating the inverse of a function (see [7.24] in
Section 7.6), we have

111
F'(r) ~ f(r)~ f(R(p)

This is valid for all p € (0, 1) because we assumed that f(r) > 0O at all income
levels r. "

The Lorenz curve is the graph of the function L(p) whose value for each
D represents the share of total income accruing to the poorest fraction p of the
population. Now, total income is given by n [J°r f(r)dr, where n is the total
number of individuals in the population. Because R(p) is the income level of the
richest person in the poorest fraction p of the population, the total income of this

group is n fOR(p) r f(r)dr. Thus, we have

R(p) R(p)
_nj r f(r)dr 1 / P
L(p) = nfooorf(r) = A r f(r)dr [11.15]

R'(p)=

[11.14]

where m is the mean income [~ r f(r)dr. Because 0 < OR(”) rf(rydr <
Jo - rf(r)dr, Equation [11.15) implies that 0 < L(p) < 1 for all p € [0, 1].
The slope of the Lorenz curve can be found by making use of the differentiation
rule (10.22) in Section 10.3. In fact,

1 R
L'(p) = —R(p) FR(P)R (p) = 2P
m m

where the second equality follows from [11.14]. Thus, the slope of the Lorenz
curve is equal to the ratio of the income level R(p) to mean income m. This slope
increases steadily from O = R(0) when p =0, to “c0 = R(1)” when p = 1. In
particular, differentiating a second time gives

_ R'(p) _ 1 >0
mf(R(p))

for all p € (0, 1), implying that a Lorenz curve is strictly convex. And, as Fig. 11.6
illustrates, each Lorenz curve has a horizontal tangent at p = 0, together with a
vertical tangent at p = 1. Finally, L'(p) = 1 at the unique point where R(p) = m
and so for p = F(m). For 0 < p < F(m), one has L’(p) < 1, so that the Lorenz
curve initially rises more slowly than the 45° line. At p = F(m), the horizontal

L”(p)
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distance between the Lorenz curve and the 45° line reaches a maximum. For
F(m) < p < 1, one has L'(p) > 1, so that the Lorenz curve ends by rising faster
than the 45° line until the two intersect once again when p = 1. In particular, this
shows that L(p) < p throughout the open interval p € (0, 1).

The Lorenz curve can also be used to define a common measure G of income
inequality, generally known as the Gini coefficient.® Geometrically, G is twice
the area of the set lying below the 45° line and above the Lorenz curve. But this
area can be represented as the difference between the two integrals fol pdp=1)2

and [, L(p)dp. So

1 1 1
G=2 b ——/ L(p)dp} =1- 2/0 L(p)dp (Gini coefficient) [11.16]
0

From this it follows that 0 < G < 1. The low extreme G = 0 is approached as
the Lorenz curve shifts up closer to the 45° line. This occurs as income becomes
distributed more equally, with each poorest fraction p of the population getting
closer to receiving its full share p of the total available income. The other extreme
G = 1 is approached as the Lorenz curve shifts down further away from the 45°
line. This occurs as income becomes distributed more unequally, with each poorest
fraction p of the population getting closer to a zero share of the total available
income, and a decreasingly small fraction of very prosperous people getting closer
to having all available income. Generally, as the Lorenz curve shifts down, the
income distribution becomes more unequal, and the Gini coefficient increases.

Problems

1. Draw the Lorenz curves for the first, third, and fourth columns of Table 11.2.

2. Estimate values of the Gini coefficients for all five distributions reported in
Table 11.2.

SThis is named after the ltalian Corrado Gini. who first proposed it in 1912. and apparently
discovered the Lorenz curve independently of Lorenz. His definition was the double integral G =
(1/2m) [ [ 1r = /| £(r) (') dr dr". but this is equivalent to the definition given here. We do not
show this because we do not consider double integrals in this book.
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Functions of Several
Variables

You know we all became mathematicians
for the same reason: We were lazy.
—Max Rosenlicht (1949)

So far, we have mostly studied functions of one variable—that is, functions whose
domain is a set of real numbers and whose range is also a set of real numbers. Yet
a realistic description of many economic phenomena requires considering a large
number of variables simultaneously. For example, the demand for a good depends
on consumer tastes, the price of that good, on different consumers’ incomes, and
on the prices of complements and substitutes, among other things. This requires a
function of several variables to be considered.

Much of what economists need consists of relatively simple generalizations of
functions of one variable and their properties. Most of the difficulties already arise
in the transition from one variable to two variables. Therefore, it may be sensible
in the following to concentrate on functions of two variables before trying to tackle
the material dealing with functions of more than two variables. However, there are
many interesting economic problems that can only be represented mathematically
by functions of a large number of variables.

,/"5@'\'* 15.1 Functions of Two or More Variables

We begin with the following definition:

[Pe—

A function f of two variables x and y with domain D is a rule that assigns [15.1]
a specified number f(x, y) to each point (x, y) in D.

489



490 Chapter 15 / Functions of Several Variables

Example 15.1
Consider the function f that, to every pair of numbers (x. y), assigns the

number 2x + x?y>. The function f is thus defined by
f@x,y) =2x +x%°

What are f(1,0), £(0.1), f(-=2,3), and f(a+1,d)?

Solution  f(1,0) =2-1+12-0° =2, f0,1) =2-0+0*>-1> =0,
and f(—2,3) = 2(=2) + (=2)* - 3*> = =4 +4 - 27 = 104. Finally, we find
f(a+1, b) by replacing x with a+1 and y with b in the formula for f(x, y),
giving f(a+1.b) = 2(a + 1) + (@ + 1)*»°.

Example 15.2
A study of the demand for milk by R. Frisch and T. Haavelmo found the
relationship
7208
x=A (A is a positive constant) [*]

where x is milk consumption, p is-the relative price of milk, and r is income
per family. This equation defines x as a function of p and r. Note that milk
consumption goes up when income r increases, and goes down when the
price of milk increases, which seems reasonable.

Example 153
A function of two variables appearing in many economic models is

F(x,y) = Ax°y® (A, a, and b are constants) [15.2]

Usually, one assumes that F is defined only for x > 0 and y > 0; sometimes
for x > 0and y > 0. Then F is generally called a Cobb-Douglas function.'
Note that the function defined in [*] of Example 15.2 is a Cobb-Douglas
function, because we have x = Ap~!-r>%,

As another example of a Cobb-Douglas function, here is an estimated
production function for a certain lobster fishery:

F(S.E) = 2.26 S%4E048 [%]

where S denotes the stock of lobster, E the harvesting effort, and F(S. E)
the catch.

"The function in [15.2] is named after two American researchers. C. W. Cobb and P. H. Douglas.
who applied it (with a+6 = 1) in a paper on the estimation of production functions that appeared in 1927.
Actually. the function should properly be called a “Wicksell function.”™ because the Swedish economist
Knut Wicksell (1851-1926) introduced such production functions before 1900. See B. Sandelin, “On
the origin of the Cobb-Douglas production function.” Economy and History, 19 (1976), 117-123.
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Example 15.4
For the function F given in [15.2], find an expression for F(2x, 2y) and for
F(tx,ty), where t is an arbitrary positive number. What is F (1S, ¢tE) for
the function in [*x]?

Solution
F(2x,2y) = A(2x)?(2y)® = A29x°2by® = 2928 Ax®y? = 2°*°F(x. y)
F(tx,ty) = A@x)°(ty)? = Ar°x°tby? = 1270 Ax®y? = 1T F(x, )
F@S,tE) =2.26( S)°'44(t E)°'48 — 2.06 1044 §0-44,048 p0.48 __ ,0.92 F(S, E)

The last calculation shows that if we multiply both § and E by the factor
t, then the catch will be 1% times as big. If r = 2, for example, then this
formula shows that doubling both the stock and the harvesting effort leads
to a catch that is a little less than twice as big. (It is 292 ~ 1.89 times as
big.)

Functions of More Than Two Variables

Many of the most important functions we study in economics, such as the gross
domestic product (GDP) of a country, depend in a complicated way on a large
number of variables. In some abstract models, it may be sufficient to ascertain
that such a connection exists without specifying the dependence more closely. In
this case, we say only that the GDP is a funcrion of the different variables. The
function concept we use is a direct generalization of definition [15.1].

A function f of n variables x, ..., x, with domain D is a rule that assigns [15.3]
a specified number f(xi,...,x,) to each n-vector (xj, ..., x,) in D. ’

Let us look at some examples of functions of several variables in economics.

Example 15.5

(a) The demand for sugar in the United States in the period 1929-1935
was estimated by T. W. Schultz, who found that it could be described

a}proximately by the formula
x = 108.83 — 6.0294p + 0.164w — 0.4217t

Here the demand x for sugar is a function of three variables: p (the
price of sugar), w (a production index), and r (the date, where 1 = 0
corresponds to 1929).



492 Chapter 15 / Functions of Several Variables

(b) R. Stone estimated the following formula for the demand for beer in
England:
x = 1.058 x?.l36x2—0.727xg.914x2.816
Here the quantity demanded x is a function of four variables: x; (the
income of the individual), x, (the price of beer), x3 (a general price
index for all other commodities), and x4 (the strength of the beer).

The simplest of the functions in Example 15.5 is (a). The variables p, w,
and ¢ occur here only to the first power, and they are only multiplied by constants,
not by each other. Such functions are called linear. In general,

fx1,x2, ..., x) =a1X) +a@xa+---+apx, +b [15.4]

(where ay, @, ..., a, and b are constants) is a linear function® in n variables.
Example 15.5(b) is a special case of the general Cobb~Douglas function

F(x1,x2,...,x2) = Ax{'x3> ... x> (A, a, ..., a, are constants; A > 0)

[15.5]
defined for x; > 0,x> 0, ..., x, > 0. We encounter this function many times in

this book.

Note: If we compare the linear function in {15.4] with the Cobb-Douglas function
[15.5], the latter function is, of course, more complicated. Suppose, however, that
A>0and x; >0, ..., x, > 0. Then taking the natural logarithm of each side in
[15.5] gives

InF=InA+aInx;+alnx;+---+a,lnx, [15.6]

This shows that the Cobb-Douglas function is log-linear (or In-linear), because
In F is a linear function of Inx;, Inx,, ..., Inx,.

Example 15.6
Suppose that the results of n observations of a quantity are given by n positive
numbers x;, Xs, ..., X,. In statistics, several different measures for their

average value are used. The most common are

i
the arithmetic mean: %4 = ;z-(xl + Xy e+ Xp) (1]
the geometric mean: Xg = V/x1x2...x, (2]
1
the harmonic mean: iy = 77 7 l (3]
T
n \x X2 Xn

2This is rather common terminology, although mathematicians would insist that f should really
be called affine if b # 0, and Linear only if b = 0.
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Note that x4 is a linear function of x;, ..., x,, whereas x; and x; are
nonlinear functions. (xs is log-linear.)
For example, if the results of four observations are x; = 1, x5 = 2,

x3=3,andxs =4, thenxs = (1+2+3+4)/4 =25 3c=v1-2-3 -4 =
V282221, and Xy = [(1/1 +1/2+1/3 + 1/4)/4] 7' = 48/25 = 1.92. In

this case, xy < Xg < X4, and it rns out that these inequalities are valid in
general:

Xy S X6 < Xa (4]

For n = 2, we showed that x; < x4 in Example 1.3 in Section 1.4. See
also Problems 9 and 10 as a motivation for xy and Problem 11 concerning
a proof of the inequalities in [4].

Domains

For functions studied in economics, there are usually explicit or implicit restrictions
on the domain of variation for the variables. For instance, we usually assume that
the quantity x; of a commodity is nonnegative, so x; > 0. In economics, it is often
crucially important to be clear what are the domains of the functions being used.

As for functions of one variable, we assume, unless otherwise stated, that the
domain of a function defined by a formula is the largest domain in which the formula
gives a meaningful and unique value.

For functions of two variables x and y, the domain is a set of points in the
xy-plane. Sometimes it is helpful to draw a picture of the domain in the xy-plane.
Let us look at some examples.

Example 15.7
Determine the domains of the functions given by the following formulas and
draw the sets in the xy-plane.

@ fx.y)=+vx—1+.y

2
YY) = 0 — (x2 .2
() glx,y) x2+y2—4+v (x* +y9)

Solution

(a) We must require that x > 1 and y > 0, for only then do +/x — 1 and
/Y have any meaning. The domain is indicated in Fig. 15.1.

() /x2+ y> —4 is only defined if x2 + y*> > 4. Moreover, we must
have x2 + y? # 4; otherwise, the denominator is equal to 0. Further-
more, we must require that 9 — (x2 + y3) > 0, or x> + y> < 9.
All in all, therefore, we must have 4 < x> + y* < 9. Because
the graph of x> + y*> = r? consists of all the points on the cir-
cle with center at the origin and radius r, the domain is the set of
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1

FIGURE 15.1

points (x.y) that lie outside (but not on) the circle x> + y*> = 4,
and inside or on the circle x> 4+ y*> = 9. This set is shown in Fig. 15.2.

Example 15.8

An individual must decide what quantities of » different commodities to buy

during a given time period. Utility theory assumes that the individual has

a unlity function U(x,,xs, ..., x,) representing preferences, and that this

measures the satisfaction the individual obtains by acquiring x; units of good

no. 1, x> units of good no. 2, and so on. This is an important economic

example of a function of n variables, to which we return several times.
Some economic models assume that

Uy, xa,....x) =a1In(x; —¢y)) +axIn(xa — ¢2) +--- + a, In(x,, — cp)

where the parameters or constants ¢, ¢a2, ..., ¢, represent the minimum
“subsistence” quantities that the consumer must have of the different com-
modities in order to survive. (Some or even many of the constants ¢; could
be equal to 0.) Because Inz is only defined when z > 0, we see that x; > ¢,
X2 > €2, ..., Xp > Cp is the requirement for U to be defined.

FIGURE 15.2
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Problems

1. Let f(x.y) = xy>. Compute f(0.1). f(~1.2), and f(a.a).
2. Let f(x,y) = 3x> — 2xy + y>. Compute f(1,1), f(=2,3), f(1/x,1/y),
(f&x+h.y)— f(x,¥)]/h, and [f(x,y + k) — f(x,y)]/k.
3. Let f(x,y) = x2+ 2xy + y2.
a. Find f(-1,2), f(a,a), and f(a+h,b) — f(a,b).
b. Show that f(2x,2y) =2 f(x, y) and, in general, f(tx,1y) =12 f(x, y)
for all z.
4. Let F(K.L)=10K'2L'3 K >0,L >0.
a. Find F(1.1), F(4.27), F,1/27), F(@3,v?2), F(100,1000), and
FQRK,2L). -
b. Find a constant a such that F(tK,:L) =t*F(K,L) forall: >0, K > 0,
and L > 0.

5. Some studies in agricultural economics employ production functions of the

form Y = F(K, L, T), where Y is the size of the harvest, X capital invested,

L labor, and T the area of agricultural land used to grow the crop.

a. Explain the meaning of F(K +1.L,T)—~ F(K,L,T).

b. Many studies assume that F is Cobb-Douglas. What form does F then
have?

c. If F is Cobb-Douglas, find F(tK,:L,:T) expressed in terms of ¢ and
F(K,L,T).

6. A study of milk production found that

y _290x0015 0.250 0350x2408 g030

where y is the output of milk, and x;, .. ., x5 are the quantities of five different
input factors. (For instance, x; is work effort and x3 is grass consumption.)
a. If all the factors of production were doubled, what would happen to y?
b. Write the relation in log-linear form.

7. Examine for which (x, y) the functions given by the following formulas are
defined and draw the domains in the xy-plane for (b) and (c).

x*+ y
Cy—x4+2
8. For which pairs of numbers (x, y) are the functions given by the following
formulas defined?

alnx+y) b V/x2—y+/x24+y2-1 ¢ y—x2-

9. On a drive to a neighboring city center, you spend 5 minutes stopped at traffic
lights at an average speed of 0 kilometers per hour, 10 minutes driving on
Tocal roads at an average speed of 30 kph, 20 minutes on an expressway at an
average speed of 60 kph, and 15 minutes on a freeway driving at an average

b. V- @+ @G-y +y - 1)
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speed of 80 kph. How far do you drive, and what is your average speed for
the whole journey?

Harder Problems

10. Suppose that n machines A, A, ..., A, produce the same product in the
time span 7 and that the production times per unit are respectively 1y, f,
..., I,. Show that if all the machines had been equally efficient and together
had produced exactly the same total amount in the time span 7, then each
machine’s production time per unit would have been precisely the harmonic
mean ty of £, 12, ..., In.

11. In this problem, we refer to Example 15.6 and the definitions given there.
Also, if f(x) is concave over an interval /, and x;, X2, ..., X, belong to [,
then by Jensen’s inequality ([9.18] in Section 9.6),

1 1 1 1
f(—(xx +xz+-~+xn)) >—fO)+-fx)+---+—=f(xn) [*]
n n n n

a. Show that if x; = x; = --- = x,,, then Xy = Xg = X4.

b. Let f(x) =Inx. Then f is concave on (0, 00). Show that xz < X4 by
using inequality [*].

c. In the inequality x; < x4, replace x; by 1/x;, x2 by 1/x2, ..., and x,
by 1/x,. Prove that xg < x5.

15.2 Geometric Representations of Functions
of Several Variables

This section considers how to visualize functions of several variables, in particular
functions of two variables.

Surfaces in Three-Dimensional Space

An equation such as f(x, y) = ¢ in two variables x and y can be represented by
a point set in the plane, called the graph of the equation. In a similar way, an
equation g(x, y,z) =cin three variables x, y, and z can be represented by a point
set in 3-space, also called the graph of the equation. (For a discussion of 3-space,
see Section 12.3.) This graph consists of all triples (x, y. z) satisfying the equaton,
and will usually form what can be called a surface in space. Three simple cases
are given by the equations

(a) x =a. (b) y=5b. c) z=c¢

where it is understood that there are no requirements on the variables other than
those mentioned. The points (x, y, z) in space satisfying x = a (with no require-
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(@) (b)

FIGURE 15.3

ment on y and z) lie in the plane indicated in Fig. 15.3(a); Figs. 15.3(b) and (c)
show pieces of the two others.

Some more interesting examples of equations in three variables x, y. and z
that represent surfaces in space are the following:

@ px+gy+rz=m, € XX+y*+72=4

Equation (d) can be given an economic interpretation. Suppose a person spends
an amount m on the purchase of three commodities, whose prices are respectively
D-» g, and r per unit. If the person buys x units of the first, y units of the second,
and z units of the third commodity, then the total cost is px + gy +rz. Hence, (d)
is the individual’s budget equation: Only triples (x, y, z) that satisfy (d) can be
bought if expenditure is m. As explained in Section 12.5, Equation (d) represents
a plane in space, the budget plane. Because in most cases one also has x > 0,
¥y >0, and z > 0, the interesting part of the plane described by (d) is the wriangle
with vertices at P = (m/p, 0,0), Q = (0, m/q,0), and R = (0,0, m/r), as shown
in Fig. 15.4.

Consider Equation (e) next. According to the discussion in Section 12.4 (see
[12.16)), the expression x>+ y? + 72 = (x — 0)2 4 (y — 0)*> + (z — 0)? is the square
of the distance from the origin (0, 0, 0) to the point (x, y, z). So the graph of (e)
consists of those points (x. y,z) whose distance from the origin is 2. Thus, it
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(0.m/g. 0)

x P = (m/P’ Ov O) '
FIGURE 15.4 ; FIGURE 15.5

represents a sphefe centered at (0, 0, 0) and with radius 2, as shown in Fig. 15.5.
If (e) were replaced by the inequality x* + y? + z> < 4, it would represent a solid
ball.

The Graph of a Function of Two Variables

Suppose that z = f(x, y) represents a function of two variables defined in a set A
in the xy-plane. By the graph of the function f, we understand the graph of the
equation z — f(x,y) = 0. If f is a sufficiently “nice” function, the graph of f is
a smooth surface in space, like the one shown in Fig. 15.6.

This method of representing a function of two variables helps us to visual-
ize its behavior in broad outline. However, it requires considerable artistic ability
to represent in only two dimensions the graph of z = f(x,y) that lies in three-
dimensional space. It is certainly difficult to use the resulting drawing for quanti-
tative measurements. (By using modern computer graphics, however, complicated
functions of two variables can be drawn fairly easily.) We now describe a second
method that often does better.

FIGURE 15.6 The graph of y = f(x, y).
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Level Curves for z = f(x, y)

Map makers can describe some topographical features of the earth’s surface such as
hills and valleys even on a plane map. To do so, they draw a set of level curves or
contours connecting points on the map that represent places on the earth’s surface
with the same elevation above sea level. For instance, there may be such contours
corresponding to 100 meters above sea level, others for 200, 300, and 400 meters
above sea level, and so on. Where the contours are close together, there is a steep
slope. Studying the contour map gives a good idea of altitude variations on the
ground.

The same idea can be used to give a geometric representation of an arbitrary
function z = f(x,y). The graph of the function in three-dimensional space is
visualized as being cut by horizontal planes parallel to the xy-plane. The resulting
intersections between the planes and the graph are then projected onto the xy-plane.
If the intersecting plane is z = c, then the projection of the intersection onto the
xy-plane is called the level curve at height ¢ for f. This level curve will consist
of points satisfying the equation

fx,y)=c

Figure 15.7 illustrates such a level curve.

Example 15.9
Consider the function of two variables defined by the equation

z=x 4y [1]

What are the level curves? Draw both a set of level curves and the graph of
the function.

Solution The variable z can only assume values > 0. The level curves
have the equation

x*+y’=c¢ (2]

FIGURE 15.7 The graph of z = f(x, y) and one of its level curves.
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where ¢ > 0. We see that these are circles in the xy-plane centered at the
origin and with radius ./c. See Fig. 15.8.

Concerning the graph of [1], all the level curves are circles. For y = 0,
we have z = x2. This shows that the graph of [1] cuts the xz-plane (where
y = 0) in a parabola. Similarly, we see that for x = O one has z = y>, which
is the graph of a parabola in the yz-plane. It follows that the graph of [1] is
obtained by rotating the parabola z = x? around the z-axis. The surface is
called a paraboloid (of revolution), as shown in Fig. 15.9, which also shows
the level curves in the xy-plane.

Example 15.10
Suppose F (K, L) denotes the number of units produced by a firn when the
input of capital is K and that of labor is L. A level curve for the function is
a curve in the K L-plane given by

F(K.LY=Y, (Y, is a constant)

This curve is called an isoquant (indicating “equal quantity”). For a Cobb-
Douglas function F(K, L) = AK°L? witha+b < 1 and A > 0, Figs. 15.10
and 15.11 show a part of:the graph and some of the isoquants. (Here it is
convenient to view the surface from a perspective other than that used for
most other figures in this section.)

Example 15.11
Show that all points (x, y) satisfying xy = 3 lie on a level curve for the
function

x .)_3(xy+1)2
g§x.y)= x"‘y"—l
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>
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FIGURE 15.10 FIGURE 15.11

Solution By substituting xy = 3 in the expression for g, we find

_3(y+1)? 33+12 48
T o(yr=1" 3%—-1 " 80

3
x,y -
g(x.y) 3
For all (x, y) where xy = 3, the value of g(x, y) is a constant 3/5. This
means that xy = 3 is on a level curve (at height 3/5) for g.
In fact, for any value of ¢ other than —1 or 1, xy = ¢ is the equation
of a level curve for g because g(x, y) = 3(c + 1)*/(c* ~ 1) when xy = c.

Some Other Surfaces in Three-Dimensional

Space

It is usually not at all simple to draw the graphs of equations in three vaniables. Yet,
in recent years, a number of powerful computer programs for drawing surfaces in

three-dimensional space have been developed. Two surfaces that can be drawn in
this way appear in Figs. 15.12 and 15.13. (Figure 15.12 looks like a rugby football.)

FIGURE 15.12 x2%/a% + y?/b? +2%/c% = 1. FIGURE 15.13 z =x* - 3x2y% + y*.
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Functions of n Variables and the Euclidean
n-Dimensional Space R"

No concrete geometric interpretation is possible for functions of n variables in
the general case when n > 3. Yet economists still use geometric language when
dealing with functions of n variables, even though they may not think of themselves
as doing geometry. It is usual to call the set of all possible n-tuples (x;, x2, ..., x,)
of real numbers the Euclidean n-dimensional space, or nn-space, and to denote
it by R*. For n = 1, 2, and 3, we have geometric interpretations of R" as a
line, a plane, and a 3-dimensional space, respectively. But for n > 4, there is no
geometric interpretation.

If z= f(x;,xa,...,X,) represents a function of n variables, we let the graph
of f be the set of all points (xj, X2, ....Xn, f(X1.X2,...,%,)) in R"*! for which
(xy, X2, ..., x,) belongs to the domain of f. We also call the graph a surface (or
sometimes a hypersurface) in R**!. For z = 7 (constant), the set of points in R"
satisfying f (xj, X3, ..., Xs) = 7o is called a level surface of f.

In production theory, it is usual to give level surfaces a different name.

If x = f(vy,v2,....,) is the amount produced when the input quantities of n
different factors of production are respectively v;, vs, ..., v,, the level surfaces
where f(v;, v, ..., v,) = Xg (constant) are called isoquants, as in Example 15.10.
Continuity

The concept of continuity for functions of one variable may be generalized to
functions of several variables. Roughly speaking, a function of n variables is
continuous if small changes in the independent variables give small changes in the
function value. Just as in the one-variable case, we have the following useful rule:

Any function of n variables that can be constructed from continuous functions
by combining the operations of addition, subtraction, multiplication, division,
and functional composition is continuous wherever it is defined.

If a function of one variable is.continuous, it will also be continuous when con-
sidered as a function of several variables. For example, f(x,y.z) = x*is a
continuous function of x, y, and z. (Small changes in x, y, and z give at most
small changes in x2.)

Example 15.12
Where are the functions given by the following formulas continuous?
@) f(x,y,2)=x>y +8x>y’z —xy +82

xy—3
X.¥y) = —/——5
®) g(x.) 4y —4
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Solution

(a) As the sum of products of powers. f is defined and continuous for all
x, ¥, and z.

(b) The function g is defined and continuous for all (x.y) except those
that lie on the circle x> + y> = 4. There the denominator is zero, and
so g(x, y) is not defined.

Problems

1. Draw the graphs of the following functions in three-dimensional space, and
draw a set of level curves for each of them:

z=3—-x—-y b. z=1+3—-x2-32

2. Show that x2+ y? = 6 is a level curve of f(x.y) = /x2 + y2 —x2—y2 42,
and that all the level curves of f must be circles centered at the origin.

3. Show that x> — y* = ¢, for all values of the constant c lies on a level curve
for f(x,y) =€ e +x* —2x%y* + y*.

4. Let f(x) represent a function of one variable. If we let g(x.y) = f(x),
then we have defined a function of two variables, but y is not present in
its formula. Explain how the graph of g is obtained from the graph of f.
Mlustrate with f(x) = —x°.

5. Explain why two level curves of z = f(x,y) corresponding to different
function values of z cannot intersect.

15.3 Partial Derivatives with Two Variables

When we study a function y = f(x) of one varniable, the derivative f’(x) measures
the function’s rate of change as x changes. For functions of two variables, such
as z = f(x,y), we also want to examine how quickly the value of the function
changes with respect to changes in the values of the independent variables. For
example, if f(x, y) is a firm’s profit when it uses quantities x and y of two different
inputs, we want to know whether and by how much profits increase as x and y are
varied. '
Consider the function

z=x +2y° [1]

Suppose, first, that y is held constant. Then 2y is constant, and the rate of change
of z with respect to x 1s given by
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On the other hand, we can keep x fixed in [1] and examine how z varies as y
varies. This involves taking the derivative of z with respect to y while keeping x
constant. The result is

d_,
dy
Of course, there are other variations we could study. For example, x and y could
vary simultaneously. But in this section, we restrict our attention to variations in
either x or y.

When we consider functions of two or more variables, we shall write 9z/3x
instead of dz/dx- for the derivative of z with respect to x. In the same way, we
write 9z/0y instead of dz/dy. Hence, we have

In general, we introduce the following definitions:

Suppose z = f(x,y). Let 9z/dx, called the partial derivative of z or f
with respect to x, be the derivative of f(x, y) with respect to x when y is
held constant. Also, let 3z/3y, called the partial derivative of z or f with [15.7]
respect to y, be the denivative of f(x, y) with respect to y when x is held
constant.

When z = f(x, y), we also denote the derivative 3z/0x by 0 f/dx. In the same
way, 0z/dy = 0 f/dy. Note that 3 f/0x is the rate of change of f(x,y) with
respect to x, when y is constant, and correspondingly for 9 f /9 y.

It is usually easy to find the partial derivatives of a function z = f(x.y).
To compute 9 f/dx, just think of y as a constant and differentiate f(x.y) with
respect to x as if f were a function only of x. All the rules for finding derivatives
of functions of one variable can be used when we want to compute 3 f /dx. The
same is true for 9 f /3 y. Let us look at some further examples.

Example 15.13
Compute the partial derivatives of the following:

@) fx,y)=x%y +x2y* 4+ x + y°
) f(x.y) =xy/(x* +y?)
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Solution
(a) We find
of 2 2 :
I 3x“y 4+ 2xy"+1 (holding y constant)
3f 3 2 .
5 =x" 4+ 2x"y + 2y (holding x constant)

(b) For this function, the quotient gives

3f  yx2+yH-—2xxy y -x%y 3f  x*—yx
ox (x2 +y?)° @2+y)*7 8y (x2+y?)

Observe that the function in (b) is symmetric in x and y, in the sense
that the function value is unchanged if we interchange x and y. By
interchanging x and y in the formula for 0 f/dx, therefore, we will
find the correct formula for 3 f /0 y. (Compute 3 f /3y in the usual way
and check that the foregoing answer is correct.)

Other forms of notation are often used to indicate the partial derivatives of
z= f(x,y). Some of the most common are

of 9z _ ., _ . ey Of(x,y)
sz_ax—~x_fx(x!y)_f](x7y)— ax

8f 8z, . 3f(x,y
By 3y & = (6,9 = filx,y) = oy

Among these, f{(x, y) and f;(x, y) are the most satisfactory. Here the numerical
subscripts refer to positions of the argument in the function. Thus, f{ indicates
the partial derivative w.r.t. the first variable, and f, w.r.t. the second variable. We
are also reminded that the partial derivatives themselves are functions of x and y.
Finally, f{(a,b) and f;(a, b) are suitable designations of the values of the partial
derivatives at point (a. b) instead of at (x, y). For example, for the function in
Example 15.13(a),

fx,y) =x3y +x2y2 +x -i-y2 £ f,’(x,y) = 3x2y -i—?..xy2 +1

Hence, £{(0,0) =1 and f/(—1,2) =3(-1)*2+2(-1)2*+1=-1.

The notations f,(x, y) and f;(x. y) are often used, but especially in connec-
tion with composite functions, these notations are sometimes too ambiguous. For
instance, what is the meaning of f/(x2y, x — y)?
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Higher-Order Partial Derivatives

z= f(x,y), then 3f/0x and 3 f /3y are called first-order partial derivatives.
These partial derivatives are themselves functions of two variables. From 0 f /9x,
we can generate two new functions by taking the partial derivatives with respect
to x and y. In the same way, we can take the partial derivatives of 3 f /3y with
respect to x and y. The four functions we obtain in this way are called second-
order partial derivatives of f(x, y). They are expressed as

s 565

ax\ dx / = ax?’ dy \ ox dydx
.3(3f>_ *f i<3f>_32f
ax \dy /)  oxdy’ day\ay/ ~ 8y

For brevity, we sometimes refer to the first- and second-order “partials,” suppress-
ing the word “derivatives.”

Example 15.14
For the function in Example 15.13(a), we obtain

32f , 32f , 32f aZf
= 6xy + 2y, =3x"+4xy= .
axz YT yox o TS50y 3y

w

= 2x

Several other kinds of notation are also frequently used for the second-order
partial derivatives. For example, 3 f /dx* is also denoted by f,](x, ) or f/.(x, ¥).
In the same way, 32 f/3ydx can also be written as f{3(x,y) or fl.(x,y). Note
that f/5(x, y) means that we differentiate f(x,y) first with respect to the first
argument x and then with respect to the second argument y. To find f3](x, y),
we must differentiate in the reverse order. In Example 15.14, these two “mixed”
second-order partial derivatives (or “cross-partials™) are equal. For most functions
z = f(x,y) used in practical applications, it will actually be the case that

2 32
vf _37 (15.8]
_dxdy  0dyox

Sufficient conditions for the equality in [15.8] are given in Theorem 15.1 of Sec-
tion 15.5.

It 1s very important to note the exact meaning of the different symbols that
have been introduced. If we consider [15.8), for example, it would be a serious
mistake to believe that the two expressions are equal because dxdy is the same as
dydx. Here the expresston on the left-hand side is in fact the derivative of 3 f /3y
with respect to x, and the right-hand side is the derivative of 3 f /0x with respect
to y. It is a remarkable fact. and not a triviality, that the two are usually equal. As
another example, we observe that §z/dx> is quite different from (3z/3x). For
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example, if z = x> + y?, then 3z/dx = 2x. Therefore, 3%z/0x> = 2, whereas
(9z/0x)* = 4x>.
Analogously, we define partial dernvatives of the third, fourth, and higher

W/

orders. For example, we obtain 3*z/8xdy° = Zypyx when we first differentiate
7 three times with respect to y and then differentiate the result once more with

respect to x.
Here is an additional example.

Example 15.15 .
If f(x,y) = x%¢*, find the first- and second-order partial derivatives at

(x,y) = (1,0).

Solution  To find f](x, y), we differentiate x>¢*" with respect to x while
treating y as a constant. When y 1s a constant, so is ¢¥ . Hence,

flx,y) =3x%" andso  f(1,0)=3-1%" =3

To find f,(x,y), we differentiate f(x, y) with respect to y while treating x
as a constant:

fix,y) =x°2y¢” =2x%ye”  andso  f£(1.0) =0

To find the second-order partial f}](x. y), we must differentiate f(x, y) with
respect to x once more, while treating y as a constant:

/' (x,y) =6xe”  and so (1,0 =6-1" =6
To find f35(x, y), we must differentiate f,(x,y) = 2x3ye>l with respect to
y once more, while treating x as a constant. Because ye’” is a product of
two functions, each involving y, we use the product rule to obtain

2, y) = (201 - e + y2ye’) = 253 +4x’yle”

Evaluating this at (1,0) gives f5(1,0) = 2. Moreover,

| @

(3x2e"'z) = 3x22ye"'2 = 6x2ye-":

(>3]

" . __3_ ' N
and

a ’ 3 2 y2 - v
31 5) = [0, 9)] = - (x'ye”) = 6xye

Hence, f{5(1.0) = £5;(1,0) =0.
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Approximations to Partial Derivatives

Recall how, when x is a single variable, we can often get a good approximation
to f'(x) by computing f(x + 1) — f(x) (see Example 4.5 in Section 4.3). Be-
cause f,(x, y) is simply the derivative of f(x, y) with respect to x when y is held
constant, we obtain the corresponding approximation

flx,y) = f(x+1,9) — f(x.y)

In words:

The partial derivative f(x, y) is approximately equal to the change in f(x, y) [15.9]
that results from increasing x by one unit while holding y constant. )

The partial derivative f)’,(x, y) is approximately equal to the change in f (x, y) [15.10]
that results from increasing y by one unit while holding x constant. '

The number f;(x,y) measures the rate of change of f with respect to x. If
fi(x,y) > 0, then a small increase in x will lead to an increase in f(x, y). When
the approximation in [15.9] is permissible, we can say that f (x,y) > O means
that a unit increase in x will lead an increase in f(x, y). Similarly, f/(x,y) <0
means that a unit increase in x will lead to a decrease in f(x, y).

Note: The approximations in [15.9] and [15.10] must be used with caution.
Roughly speaking. they will not be too inaccurate provided that the partial deriva-
tives do not vary too much over the actual intervals.

Example 15.16 -
In Example 15.2, we studied the function x = Ap~'°r?>%. Compute the
partial derivatives of x with respect to p and r, and discuss their signs.

Solution We find

% _1sap 52 B g ggapmis,ios
ap ar

Because A, p, and r are positive, dx/dp < 0 and dx/dr > 0. These signs
accord with the final remarks in Example 15.2.

Problems

1. Find 9z/3x and 9z/3y for the following:
a. z=x>+3y> b.z=xy c. z=5xy? —2xy° d.

X+y

&N
i
Q
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e. z=¢" f.z=¢€/y g z=Inx+y) h. z = In(xy)
2. Find f{(x.y), f,(x,y), and f5(x, y) for the following:

a. f.y)=x"—=y b flr, ) =x"lny ¢ f(x,y) =& —2y}H°
3. Find all first- and second-order partial derivatives of the following:

a. z=3x+4y b. z =x%y’ c. z=x° = 3x3y+y°
d. z=x/y e z=x—-y)/(x+y) L z=+x>+y?

4. Let F(S. E) =2.26 S**E%* (see Example 15.3).
a. Compute Fg(S, E) and F.(S. E).
b. Show that SF¢ + EF, = kF for a suitable constant k.

5. Prove that if z = (ax-+ by)?, then xz + yz|, = 2z.
6. Find all the first- and second-order partial derivatives of the following:
2 v 2 ;
a z=x"+e¢” b. z=ylnx C z=xy —ev
7. Let f(x,y) = xIny — y?2**. Find all the first- and second-order partial
denivatives at (x, y) = (1, 1).

1 2 2 2 2 2
8 Letz= 3 In(x® + y°). Show that 3°z/8x* + 3°z/3y* = 0.

Harder Problems

9. Compute 37*9z/3y99x” at (0, 0) for the following:
a. z=¢e"In(1+y) b. z=e&" Y xy+y—1)
10. Prove that if u = Ax°y?, then

19 (uy \ 18 [ u
U 0x \ My —u;. Oy \ upu,

15.4 Partial Derivatives and Tangent Planes

Partial derivatives of the first order have an interesting geometric interpretation.
Let z = f(x.y) be a function of two variables, with graph as shown in Fig. 15.14.
Let us keep the value of y fixed at yp. The points (x, y) on the graph of f that
have y = y, are those that lie on the curve X, indicated in the figure. The partial
derivative f,(xo. yo) is the derivative of z = f(x, yo) with respect to x at the point
x = xo, and is therefore the slope of the tangent line [, to the curve K at x = xo.
In the same way, f}’.(xo, o) is the slope of the tangent line [, to the curve K, at
Yy = Yo-

This geometric interpretation of the two partial derivatives can be explained
in another way. Imagine that the graph of f describes a mountain, and sup-
pose that we are standing at point P with coordinates (xo. Yo, f (X0, ¥0)) in three
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FIGURE 15.14

dimensions, where the height is f(xo, yo) units above the xy-plane. The slope
of the terrain at P depends on the direction in which we look. In particu-
lar, let us look in the direction parallel to the positive x-axis. Then f;(xq, yo)
is a measure of the “steepness” in this direction. In the figure, f;(xo.yo) is
negative, because moving from P in the direction given by the positive x-axis
will take us downwards. In the same way, we see that f(xo, yo) 1S a mea-
sure of the “steepness” in the direction parallel to the positive y-axis. We also
see that f/(xo,yo) is positive, meaning that the slope is upward in this
direction.

Let us now briefly consider the geometric interpretation of the “direct”
second-order derivatives f,, and f; . Consider the curve K, on the graph of
f in the figure. It seems that along this curve, f_ (x, yo) is negative, because
fi(x, yo) decreases as x increases. In particular, f (xo,Yo) < 0. In the same
way, we see that moving along K, makes f/(xo,y) decrease as y increases, so
£}, (%0, ¥) < 0 along K. In particular, f;;(x0, Yo) < O.

Example 15.17

Consider Fig. 15.15, showing some level curves of a function z = f(x, y).
On the basis of this figure, answer the following questions:

(a) What are the signs of f,(x,y) and f/(x,y) at P and Q?

(b) What are the solutions of the two equations: (i) f(3,y) = 4 and
i) f(x,4) =6?

(c) What is the largest value that f(x, y) can attain when x = 2, and for
which y value does this maximum occur?

Solution
(a) If you stand at P, you are on the level curve f(x, y) = 2. If you look

in the direction of the positive x-axis (along the line y = 4), then you
will see the terrain sloping upwards, because the (nearest) level curves
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correspond to larger z values. Hence, f; > 0. If you stand at P and
look in the direction of the positive y-axis (along x = 2), the terrain
will slope downwards. Thus, at P, we must have f; < 0. At O, we
find similarly that f] <0 and £, > 0. '

(b) Equation (i) has the solutions y = 1 and y = 4, because the line x = 3
cuts the level curve f(x,y) =4 at (3, 1) and at (3,4). Equation (ii)
has no solutions, because the line y = 4 does not meet the level curve
f(x.y)=6atall

(c) The highest value of ¢ for which the level curve f(x,y) = ¢ has a
point in common with the line x = 2 is ¢ = 6. The largest value of
f(x.y) when x = 2 is therefore 6, and we see that this maximum
value is attained when y =~ 2.2

Tangent Planes

Look back at Fig. 15.14. The two tangent lines /, and /, determine a unique plane
through the point P = (x9. o, f (x0, ¥0)). This plane is called the tangent plane
to the surface at P. From [12.23] in Section 12.5, the general equation for a
plane in three-dimensional space passing through a point (xg, yo. zg) is a(x — xo) +
b(y — yo) + ¢c(z — z0) = 0. If ¢ = 0, then this plane is parallel to the z-axis. If
¢ # 0 and we define A = —a/c, B = —b/c, then solving the equation for z — 2o
gives

z—20=A(x —x9) + B(y — yo) i

So the tangent plane to the surface at P must have this form. It remains to de-
termine A and B. Now, line /, lies in the plane. Because the slope of the line is
f1(x0, ¥0), the points (x, y, z) that lie on [, are characterized by the two equations
y = yo and z — 20 = £ (X0, yo)(x — Xo). All these points (x, y, z) lie in the plane
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Tangent plane

(x0. Yo)

X
FIGURE 15.16 The graph of a function z = f(x, y) and its tangent plane at P.

[1] only if A = f{(x0, ¥0). In a similar way, we see that B = f;(xo, o). The
conclusion is as follows:

The tangent plane to z = f(x,y) at the point (xg, o, 20), With zo =

f (x0, yo), has the equation

z2—20 = f](x0. y0)(x — x0) + f5(X0: Y0)(¥ — ¥o) (15.11]

The tangent plane is illustrated in Fig. 15.16.

Example 15.18
Find the tangent plane at (xo, Yo, z0) = (1, 1, 5) to the graph of

fx,y) = x>+ 2xy + 2y?

Solution Because f(1,1) = 5, the given point lies on the graph of f.
We find that

fie.y) =242y, [ y)=2+4y
Hence, f|/(1,1) =4 and f;(1, 1) = 6. Thus, [15.11] yields
z=5=4(x-1)+6(x—-1) or z=4x+6y -5
Problems

1. In Fig. 15.17, we have drawn some level curves for a function z = f(x, ¥)»
together with the line 2x + 3y = 12.
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a. What are the signs of f; and f at P and Q?

b. Find possible solutions of the two equations (i) f(1,y) =2 and (ii) f
(x.2) =2

c. What is the largest value of f(x,y) among those (x,y) that satisfy
2x + 3y = 12?

2. Suppose F(x, y) is a function about which all we know is that F(0,0) =0,
F{(x,y) >2forall (x,y), and F;(x, y) <1 for all (x, y). What can be said
about the relative sizes of F(0,0), F(1,0), F(2,0), F(0,1), and F(1,1)?
Write down the inequalities that have to hold between these numbers.

3. Find the tangent planes to the following surfaces at the indicated points:

a. z=x>+y> at (1,2,5) b.z=(-x3@y-2x3) a (1,3,2)

4. Prove that all tangent planes to z = xf(y/x) pass through the origin.

15.5 Partial Derivatives with Many Variables

The functions economists study usually have many variables, so we need to extend
the concept of partial derivatives to such functions.

If z = f(x1,x3....,x,), then 3f/dx; is the derivative of f(x;,xz,..., (15.12]
xn) with respect to x; when all the other variables x; (j # i) are held constant.

These n partial derivatives are of the first order. Other notation used for the first-
order partials of z = f(x, x2, ..., Xx,) includes

3 3z b g
—f _=3Z/3xi=2i=f,°(xl,xz,---,xn)
ax,' ax,'
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As in [15.9] and [15.10] in Section 15.3, we have the follqwing rough approxima-
tion:

The partial derivative 3z/3x; is approximately equal to the change in z =
f(x1, X2, -2 %n) caused by an increase in x; of one unit, while all the other [15.13)
xj (j #1)are held constant.

In symbols:

Fl G Xn)

R fxy, e Xicl, X+ L Xigs ooy Xn) = F(X1, o0y Xie1s Xiy Xigly < - - 5 Xn)

For each of the n first-order partials of f, we have n second-order partials:

2(6)- 2y

dx; \ ox; - 0x;0x; i

Here both i and j may take any value 1, 2, ..., n, so there are altogether n?
second-order partial derivatives. The n x n matrix of second-order partials

N fla® ... fi,®
X)) faX) ... [ (X
A aEE [15.14]
®  fia®x ... fi(®
is the Hessian (or Hessian matrix) of f evaluated at x = (x1, X2, ..., x,). Because

usually ,-’Jf x) = fj’,’ (x) for all i and j, the number of different partials is reduced
from n2 to at most %n(n + 1), and the Hessian is symmetric. (See Theorem 15.1,
which follows.)

Example 15.19
Find the first-order partials with respect to A, B, and T for the functuoB
a(A,B,T) = 122 +3A — 25T — 75B2 — A/B. Also find the Hessian of
a(A.B,T).

Solution

da/dA =3 ~-1/B, da/dB = —150B + A/B>, 3a/dT = =25
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and the Hessian 1s

9%a 8%a 8%a .
dA2 0AOB Q3A3T 0 5 0
9%a 8%a 9%a _| 1 4
dB3dA 3B 3B3T 5 —lSO—ZF 0
3%a 9%a 8%a ) 0 0 0
0T3A 098T3B  98T?
Young’s Theorem
We mentioned earlier that if z = f(x1,x2,...,x,), then z;’j and :;’, are usually

equal; this implies that the order of differentiation does not matter. The next
theorem makes precise a more general result.

Theorem 15.1 (Young’s Theorem) Suppose that two mth-order partial
derivatives of the function f(x;, x2,...,X,) involve the same number of
differentiations with respect to each of the variables, and are both continuous
in an open set S. Then the two partial derivatives are necessarily equal at all
points in S.

The content of this result can be explained as follows: Let m = m; + --- + m,,
and suppose that f(x;, x2, ..., x,) is differentiated m, times with respect to x,, m;
times with respect to xz, ..., and m, times with respect to x,. Suppose that the
continuity condition is satisfied for these mth-order partial derivatives. Then we
end up with the same result no matter what is the order of differentiation, because
each of the final partial derivatives is equal to

omf

Bx 9L - B

In particular, for the case when m = 2,

8%f

anax,- - axiax,-

if both these partials are continuous. An example where this equality is not sat-
isfied is presented in Problem 6. (A proof of Young's theorem is given in most
advanced calculus books.)
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Formal Definitions of Partial Derivatives

So far in this chapter, the functions have been given by explicit formulas and we
have found the partial derivatives by using the ordinary rules for differentiation. If
these rules of differentiation cannot be used, however, we must resort directly to the
formal definition of partial derivatives. This corresponds closely to the definition
for ordinary derivatives of functions of one vanable, because partial derivatives
are merely ordinary derivatives that are obtained by keeping all but one of the
variables constant.

If z= f(x1,...,xa), then with g(x;) = f(x1.....Xic1, Xiy Xig]s - = s Xn),
we have 9z/dx; = g'(x;). (Here we think of all the variables x; other than x; as
constants.) If we use the definition of g’'(x;) (see [4.3] of Section 4.2), we obtain

o N gl gpde S Y
1 DR s B Ao e T
e e S e E
e
Rl i b e e il A
B T By PR N T B o

az . f(xls-'-axi+hy---7xn)—f(x]7"'7xi$"'7xn)
— =lm

15.
ox; h—0 h 15.15]

(If we consider A = 1 as a number close to 0, we obtain the approximation in
[15.13].) If the limit in [15.15] does not exist, then we say that dz/dx; does not
exist, or that z is not differentiable with respect to x; at the point. For instance, if
a function describes the height of a pyramid, the partial derivatives will not exist
at the point corresponding to the top of the pyramid.

Almost all the functons we consider will have continuous partial derivatives
everywhere in their domains. If z = f(x;,x2,...,x,) has continuous partial
derivatives of the first order in a domain A, we call f continuously differentiable
in A3 In this case, f is called a C! function on A. If all partial derivatives up to
order k exist and are continuous, f is called a C* function.

Problems

1. Calculate all first-order partials of the following functions:

a. fl.y,)=x"+y +2° b. f(x,y,z)=5x>—3y° + 37
¢ f&xy.2) = xyz d. f(x.y.2) =x%/yz
e fry.d=E+y+ L fryd=eF
2. For F(x,y,z) = x*¢ + y3¢* calculate F/(1.1.1), F,1,1), and
F(1.1,1).

3. Let x and y be the populations of two cities and d the distance between them.
Suppose that the number of travelers 7 between the cities is given by

T = k% (k and n are positive constants)
Compute 07 /dx, 3T /0y, and 3T /0d, and discuss their signs.

3This seems appropriate. even though it is not quite standard mathematical terminology.
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4. Find all the first- and second-order partials of the function w(x.y.z) =
3xyz 4+ x%y — x5

5. Find all the first-order partial derivatives of the following:
a. E(p.q) = ap*e™ b. R(pi, p2) = ozp’,s + yel -

n
c. x(vy..... Up) = Za;vi
i=]

Harder Problems

6. Define the function f(x,y) = xy(x> — y?)/(x* + y2) when (x. y) # (0. 0),
and f(0,0) = 0. Show that Young’s theorem does not apply at (0. 0) by
finding f;(0.y) and f;(x.0), then showing that f;5(0.0) = 1 and that

51(0.0) = —1. Show that Young’s theorem is not contradicted because
both f|5 and f3) are discontinuous at (0, 0).

7. Find all the first-order partial derivatives of f(u, v. w) = u" .

15.6 Partial Derivatives in Economics

This section considers a number of economic examples of partial derivatives.

Example 15.20
Consider an agricultural production function Y = F(K, L, T), where Y is the
number of units produced, K capital invested, L labor input, and 7 the area
of agricultural land that is used. Then Y /6 K = Fj is called the marginal
product of capital. It is the rate of change of output Y with respect to K
when L and T are held fixed. Similarly, 3Y /8L = F; and 3Y /0T = F; are
the marginal products of labor and of land, respectively. For example, if K
is the value of capital equipment measured in dollars, and Y /0 K = 5. then
increasing capital input by 1 dollar would increase output by approximately

5 units.
Suppose, in particular, that F is the Cobb—Douglas function

F(K.L,T) = AK°L’T° (A, a. b, and c are positive constants)  []

Find the marginal products, and the second-order partials. Discuss their signs.
Solution  The marginal products are
Fx = AaK“7'L°T¢
F; = AbK°L>"'T¢ (2]
Fp = Ack°LPTe!
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Assuming K, L, and T are all positive, the marginal products are positive.
Thus, an increase in capital, labor, or land will increase the number of units

produced.
The mixed second-order partials (or cross-partials) are

Fg, = AabK*"'L*7'T®
Fyr = Aack®'LPT! [3]
F/r = AbcK“L"'T<"

Check for yourself that F;,, F7p. and Fy, give, respectively, the same
results as in [3]. Note that these partials are positive. We call each pair of
factors complementary, because more of one increases the marginal product
of the other.

The direct second-order partials are

Fix = Aala— DK“ LT
F/, = Ab(b — 1)K*LP*T¢
Ffr = Ac(c — DK“LbT 2

For instance, Fy is the partial derivative of the marginal product of capital
(Fg) with respect to K. If a < 1, then Fyy < 0, and there is a diminishing
marginal product of capital—that is, a small increase in the capital invested
will lead to a decrease in the marginal product of capital. We can interpret
this to mean that although small increases in capital cause output to rise
(Fg > 0), this rise occurs at a decreasing rate (Fg, < 0). Similarly for
labor (if b < 1), and for land (if ¢ < 1).

Example 15.21
Let x be an index of the total amount of goods produced and consumed in a
society, and let z be a measure of the level of pollution. If u(x. z) measures
the total well-being of the society (not a very easy function to estimate!),
what signs do you expect u, (x, z) and «.(x, z) to have? Can you guess what
economists usually assume about the sign of u}_(x, z)?

Solution It 1s reasonable to expect that well-being increases as the amount
of goods increases, but decreases as the level of pollution increases. Hence,
we will usually have ) (x,z) > 0 and u/(x. z) < 0. According to [15.13] of
Section 15.5, u”. = (3/3z)(u.) is approximately equal to the change in ;
when the level of pollution increases by one unit. Here u. & the increase n
welfare obtained by a unit increase in x. It is often assumed that u_. < 0.
This implies that the increase in welfare obtained by an extra unit of x will
decrease when the level of pollution increases. (An analogy: When I sit ip
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a smoke-filled room, my increase in satisfaction from getting an extra piece
of cake will decrease if the concentration of smoke increases too much.)

Example 15.22
The following modified version of the Cobb—Douglas function has been used

in some economic studies:

F(K,L) = AK“LbeK/E (A, a, b, and ¢ are positive constants)

Compute the marginal products F; and F; and discuss their signs.

Solution Differentiating with respect to K while keeping L constant,
AL? is also constant, so

Fy = AL”% (K2ekE)

We must now use the product rule for differentiation. According to the chain
rule, the derivative of eX/L with respect to K is (c/L)e ¥/t so

Fy = AL®[aK® e/t 4 K%(c/L)e X/t ]

a ¢
=—+—)FK,L
(Frg)ren
In the same way,

F{ = AK°[bL"7 e/t + LOo(—cK /LP)e /"]

b ¢k

If K and L are positive, then Fy is always positive, but F; is positive only
ifb>cK/L. If b <cK/L, then F; < 0, so an increase in labor leads to a
reduction of output. The function is, therefore, most suitable as a production
function in a domain where b > cK/L.)

Example 15.23
For the general Cobb—-Douglas function F in logarithmic form,

InF=lnA+aInx;+aInxs+---+a,Inx, [*]

(see [15.6] in Section 15.1), show that

n

dF
ina— =(a)+a+ "-+dn)F
i=1 i
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Solution Differentiating each side of [*] partially with respect to x; by
means of the chain rule gives
10F 1 oF

a;— or Xi—
ax,'

—_——=q; =a,'F
F 0x; X;

fori=1.2,....n. So

ix,-g; =ia,~F= (ia;)f‘ =(a+a+---+a,F

i=l =] i=1

Example 15.24

In Example 15.8 of Section 15.1 the function U (x). x3. .... x,) iS 2 measure
of the satisfaction or “utility” that an individual obtains by consuming the
respective quantities x;, x», ..., X, of n different goods. The partial deriva-
tive 0U /dx; is called the marginal utility of the ith good. Usually, all the
n marginal utilities are positive, because we expect utility to increase as the
individual obtains more of a commodity.

For the function U = a; In(x; —¢1)+a> In(xa —¢2)+- - -+a, In(x, —c,)
specified in that example, we find

8U a 8U as BU an
0x; x;—c¢; 0xy xa—c¢r T 8Xn Xy — Cn
If the parameters ay, ..., a, are all positive and x; > ¢y, ..., X, > ¢,, then

we see that all the marginal utilities are positve.
Problems

1. The demand for money M in the United States for the period 1929-1952 has
been estimated as

M =0.14Y +76.03(r — 2)~%% (r>2)

where Y is the annual national incoine, and r is the interest rate (in percent
per year). Compute M /3Y and dM /or and discuss their signs.

2. If a and b are constants, compute the expression K'Y+ LY] for the following:

K2L?
a. Y = AK%+ BL? b. Y = AK°L? Y = ————
+ - al’ + bK>
3. Let F(K.L.M) = AK°L®*M°. Show then that K Fy + LF, + MF;, =
(a+b+0o)F.

4. Let D(p.q) and E(p.q) be the demands for two commodities when the
prices per unit are p and g, respectively. Suppose the commodities aré
substitutes 1n consumption, such as butter and margarine. What are the
normal signs of the partial derivatives of D and E with respect to p and q?
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5. Compute 0U /ox; when U(x,x2,...,%,) =100 —¢™ —e™2 — ... — g2

Harder Problems

6. Compute the expression KYy + LY if Y = Ae¥ [BK"" + (1 —5)L_'°]—m/p.

15.7 Linear Models with Quadratic Objectives

In this section, we consider some simple optimization models that lead to the prob-
lem of maximizing or minimizing a quadratic objective function in two variables.

Example 15.25 (Discriminating Monopolist)

Consider a firm that sells a product in two isolated geographical areas. If it
wants to, it can then charge different prices in the two different areas because
what is sold in one area cannot easily be resold in the other. As an example,
it seems that express mail or courier services find it possible to charge much
higher prices in Europe than they can i North America. Suppose that such
a firm also has some monopoly power to influence the different prices it
faces in the two separate markets by adjusting the quantity it sells in each.
Economists generally use the term “discriminating monopolist” to describe a
firm having this power.

Faced with two such isolated markets, the discriminating monopolist
has two independent demand curves. Suppose that, in inverse form, these are

Pi=a —b Q. Pr=a;—b0> (1]

for market areas 1 and 2, respectively. Suppose, too, that the total cost
function is

CQ)=a(Q1+ 02

with total cost proportional to total production.*
As a function of Q) and Q», total profits are

7(Q1. Q2) = P11+ P, 02— C(Q) + 02)
=(a) —0101) 01 + (a2 = b202) 02 — ¢ (Q1 + 02)
= (a1 =)0 + (@2 — )0 — b1 0 — 203
It is true thar this cost function neglects transport costs. but the point to be made is that. even

though supplies to the two areas are perfect substitutes in production. the monopolist will generally
charge different prices. if allowed.
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We want to find the values of 0, and Q> that maximize profits. To solve
this problem as in Section 3.2 by completing the square is quite simple; we
just treat Q; and Q> as separate variables. Indeed,

T= —b [Ql—(i]———az]-—blez— (ag—a)}'

2'bl 2b2
(@ —a)?  (a—a)
So the solution involves the optimal quantities
Q] = (a1 — @) /2by, 0% = (ay — @) /2b,

The corresponding prices can be found by inserting these values in [1] to get
PP=a—bQl=i@ +a), P}=a-b05=3i@+a)
From [2], maximum profits must be

_ (- )’ N (a2 — )?
4b, 4b,

*

This solution is valid as long as a; > « and a; > «. In this case, P;" and P,
are both no less than «. This implies that there is no “cross subsidy” with
the price in one market less than cost, and the losses in that market being
subsidized by profits in the other market. Nor is there any “dumping,” with
price less than cost in one of the two markets. It is notable that the optimal
prices are independent of b, and b,. More important, note that the prices are
not the same in the two markets, except in the special case when a; = a».
Indeed, P > P3 iff a; > a,. This says that the price is higher in the market
where consumers are willing to pay a higher price for each unit when the
quantity 1s close to zero.

The foregoing analysis was simple because of the “separability” of the
quadratic function 7 (Q), 0), which took the form of the sum of a quadratic
function 7;(Qy) = (a1.— a — b; Q)0 of Q; and a quadratic functon
72(Q02) = (a3 —a—b>Q2) Q5 of Q1, without any term in Q; Q5. If we allowed
the discriminating monopolist to have a quadratic cost function C(Q) =
aQ + B0? where Q = Q, + Q> is total output, then the profit function
7(Q1, @2) could still be maximized by completing squares. However, the
analysis would become much more complicated, so we leave it out.

Example 15.26 (Discriminating Monopsonist)
A monopolist is a firm facing a downward sloping demand curve. A discrimi-
nating monopolist such as in Example 15.25 faces separate downward-sloping
demand curves in two or more isolated markets. A monopsonist, on the other
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hand, is a firm facing an upward-sloping supply curve for one or more of its
factors of production, and a discriminating monopsonist faces two or more
upward-sloping supply curves for different kinds of the same input—for ex-
ample, workers of different race or gender. Of course, discrimination by
race or gender is illegal in many countries. The following analysis, however,
suggests one possible reason why discrimination has had to be outlawed, and
why firms might wish to discriminate if they are allowed to.

Indeed, consider a firm using quantities L; and Ly of two types of
labor as its only input in order to produce output Q according to the simple
production function

Q=L,+L

Thus, both output and labor supply are measured so that each unit of labor
produces one unit of output. Note especially how the two types of labor
are essentially indistinguishable, because each unit of each type makes an
equal contribution to the firm’s output. Suppose, however, that there are two
segmented labor markets, with different inverse supply functions specifying
the wage that must be paid to attract a given labor supply. Specifically,
suppose that

w) =a; + B1Ly, wy =0+ 2L,

Assume that the firm is competitive in its output market, taking price P as
fixed. Then the firm’s profits are

a(Lly, L) =PQ—wiLy—wl,
=P(Ly+ L) —(ay + B1L))L — (a2 + B2L2)L>
=(P—a))Ly = BiLI+ (P —ap)Ls — B3

= -ﬂl(Ll - P—a])z—ﬂz(Lz- P —a2)2

2 26
_ 2 P - 2
4 (P—an)” n (P — o)
481 <482
It follows that the optimal labor demands are
P - (03] P—-ow
LY = . LY = -
1 2B 2 26>

These yield the maximum profit

_(Pw) | (P—a)?
=T T

*
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The corresponding wages are

wi=a+hLli=3(P+a), wi=ar+pli=3(P+a)

Hence, w] = w; only if a; = a,. Generally, the wage is higher for the type
of labor that demands a higher wage for very low levels of labor supply—
perhaps this is the type of labor with better job prospects elsewhere.

Example 15.27 (Econometrics: Linear Regression)
Most applied economics is concerned with analyzing data in order to try to
discern some pattern that helps in understanding the past, and possibly in pre-
dicting the future. For example, price and quantity data for a particular com-
modity such as natural gas may be used in order to try to estimate a demand
curve that can be used to predict how demand will respond to future price
changes. The most common technique for doing this is linear regression.
Suppose it is thought that variable y—say, the quantity demanded—
depends upon variable x—say, price or income. Suppose that we have obser-
vations (x;, y;) of both variables at timesz = 1,2, ..., T. Then the technique
of linear regression seeks to fit a linear function

y=oa+ px

to the data, as indicated in Fig. 15.18. Of course, an exact fit is possibie only
if there exist numbers o and S for which

Y=o+ Bx t=12,....7)
This is rarely possible. Generally, one has instead
yt=a+ﬂx!+et (t=1727---,T)

where ¢, is an error or disturbance term.

FIGURE 15.18

(x¢, ¥1)
}er =y, — (¢ + fx;)
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Obviously, one hopes that the errors will be small, on average. So the
parameters o and B are chosen somehow to make the errors as “small as
possible.” One idea would be to make the sum Z,_, (yr — a = Bx;) equal
to zero. However, in this case, large positive discrepancies would cancel
large negative discrepancies. Indeed, the sum of errors could be zero even
though the line is very far from giving a perfect or even a good fit. We must
somehow prevent large positive errors from canceling large negative errors.
Usually, this is done by minimizing the “loss” function

T

1 , 1< ,
L. p==7) =7 (n—a=-px) (1)
. =]

=]

that is the average of the squares of the errors. Expanding the square gives’

L. B)=T""Y (57 + o + B°x7 — 2ay, — 2Bx,y, + 2Bx,)
4

This is a quadratic function of o and 8. We shall show how to complete
the squares of this function, and so how to derive the ordinary least-squares
estimates of o and 8. Before doing so, however, it helps to introduce some
standard notation. Write

xbtxr +- _
R T‘Zx, py =27 T —T'Zh

for the statistical means of x, and y,, respect:fvely. And write
e =T (x — e)?
1
Oy =T7' Y (0 = uy)? [3]
'
Oy =T (5 — ) (3 — 1)
:

for the statistical variances of x;, and y, and for the covariance, respectively.
Also note how the foregoing definition of o, , implies that

s =T Z(x,2 —2ux + ) =T fo —2u, T Zx, + ul
I3 . I3 4

=T"Zx,2—2u§+uf =T"'Zx,2—p,§
I I

T
SFrom now on. we often use Y . to denote » . _,.



526  Chapter 15 / Functions of Several Variables
Similarly,

0}‘}=T—lzy[2_l‘l'§" ax_\=T-IZx!yI—MXI‘L_\
? 4
(You should check the last as an exercise.) Then the expression for L(x, B)
becomes
L(a. B) = (035 + 12) + &% + B*(0ex + 12) — 2010y — 2B(0ey + pxfty) + 20Bu,
=a’+ ﬂvi + 52#’3 —2apy — 2Bpxpy + 20 uy + ﬁzaxx = 2B0zy + oy,

Completing the squares then gives

2 o]

Oxy \ v

L@. )= (uy =& = Bitx)” + 0xs (5 - ——"‘) +opy ===
Oxx Oxx

From this, it follows that the “ordinary least-squares™ (or OLS) estimates that
minimize L(a, 8) with respect to « and 8 are given by

-

B=0i/orxs & =iy~ Blix = py — (Oxy/Orx)ix [4]
Note in particular that & is chosen to make the estimated straight line
y = a+ Ex
go through the mean (u,, i,) of the observed pairs (x;, y;), t=1,....T.
Problems

1. Suppose a monopolist is practicing price discrimination in the sale of a prod-
uct by charging different prices in two separate markets. Suppose the demand
curves are

P1=100—Q1,' P2=80—Q2

and suppose that the cost function is C = 6(Q0) + Q»). How much should be
sold in the two markets to maximize profits? What are the prices charged?
How much profit is lost if price discrimination is made illegal?

2. Calculate the loss of profit if the discriminating monopolist of Example 15.25
is not allowed to discriminate.

3. Calculate the loss of profit if the discriminating monopsonist of Exarm-
ple 15.26 is not allowed to discriminate.

4. With reference to Example 15.27, find an expression for L, the minimum
value of L(c, B).
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15.8 Quadratic Forms in Two Variables

Sections 3.1 and 3.2 presented some examples where quadratic functions in one
variable could be optimized by completing the square. Examples 15.25 to 15.27
illustrate how completing squares can also work for quadratic functions of several
variables. It must be admitted, however, that calculus techniques would save quite
a bit of algebra in many cases. Nevertheless, even the calculus techniques that
are presented in Chapter 17, especially the second-order conditions, at some stage
involve examining properties of particular quadratic functions called “quadratic

forms.”
A quadratic form of two variables is a function

f(x,y) =ax®+ 2bxy + cy? [15.16]

where a, b, and c¢ are three real constants. Using matrix notation, we can write

(see Problem 4)
f(x,y>=<x,y>(§ ’j) (’y‘)

The second-order partials of f are f|| = 2a, fi, = f3; = 2b, and f3, = 2c, s0
according to [15.14] of Section 15.5, the Hessian of f is

a b
(5 )

The quadraric form f (x. y) = ax>+2bxy+cy? is said to be positive definite
if f(x,y) > 0Oforall (x,y)# (0,0), and positive semidefinite if f(x,y) > O for
all (x,y).

Next, f(x. y) is negative definite if f(x,y) < 0 for all (x, y) # (0. 0), and
negative semidefinite if f(x,y) <O for all (x, y).

Finally, f(x,y) is indefinite if there are two different pairs (x™,y™) and
(x*,y*) such that f(x~,y~) <0Qand f(x*,y") > 0.

Example 15.28
Discuss the definiteness properties of the five quadratic forms:
@ 22+ ) x+y)? ©-x"-y @-Gx+y? (@x*—)

Solution

@) x*+ y* > 0 for all (x, y) # (0, 0), so x> + y? is positive definite.

(®) (x+y)? = 0 for all (x, y), but (x +y)*> = 0 when (x, y) = (1, =1), for
instance. So (x + y)? is positive semidefinite, but not positive definite.

(¢) and (d) are simply (a) and (b) with the signs reversed; the quadratic
forms are respectively negative definite and negative semidefinite.
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() x2 —y* > 0if (x,y) = (1,0), and x> — y*> < 0 if (x.y) = (0, 1).
Hence, the quadratic form is indefinite.

Note that f(0,0) = 0 whatever the constants a, b, and ¢ may be, so the
preceding definitions of positive and negative definiteness have to exclude the
point (0. 0).

These definitions evidently imply that (a) a positive definite or semidefinite
quadratic form has a minimum at (0, 0), (b) a negative definite or semidefinite
quadratic form has a maximum at (0,0), and (c) an indefinite quadratic form
has no maximum or minimum anywhere. When the form is definite (positive or
negative), the minimum or maximum is strict.

The definiteness of a quadratic form depends entirely on the values of the
coefficients a, b, and c. In fact, we shall prove the following very important results:

The quadratic form f(x. y) = ax? + 2bxy + cy” is
positive definite & a>0.¢c>0, and ‘; ~|>0 [15.17)
positive semidefinite <= a >0, ¢ >0, and ‘; ’Z >0 [15.18]
negative definite < a<0. ¢c<0, and Z ﬁ >0 [15.19]
negative semidefinite <<= a <0, ¢ <0, and Z g >0 [15.20]
indefinite — Z ’Z <0 [15.21]
(Recall that
‘ Z g } =ac — b’

by the definition of a 2 x 2 determinant (see [13.4] in Section 13.1).)

Proof We prove [15.18] first. Suppose that f(x. y) is positive semidefinite.
Then. in particular. f(1.0) =a > 0 and f(0.1) = ¢ > 0. If a = 0. then
f(x.1) = 2bx + ¢, which can only be > 0 for all x provided b = 0. (If
b > 0, choosing x as a large negative number makes f(x.1) negauve. If
b < 0, choosing x as a large positive number makes f(x. 1) negative.) Thus,
ac—b*=0. If a > 0. then f(=b.a) = ab> — 2ab> + ca® = a(ac — b?).
which must be nonnegative. so ac — b* > 0.
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To prove the reverse implication in [15.18]. suppose that a > 0. ¢ > 0,
and ac — b*> > 0. If a = 0. then ac — b> > 0 implies » = 0. and then
flx.y)= cy? > 0 for all (x.y). If a > 0. then we can write

f(x,y)=a(x+2y) +<c—z)y2 [x]
a a »

Because ¢ — bz/a > 0 and a > 0. we see that f(x,y) > 0 for all (x. y).

The equivalence in [15.20] is proved in the same way as [15.18] after
reversing signs.

To prove [15.17], suppose f(x.y) is positive definite. Then f(1,0) =
a > 0and f£(0,1) = ¢ > 0. But then [#] yields f(—b/a.1) = c — b*ja =
(ac—b?)/a > 0, so ac — b > 0. To prove the reverse implication in [15.17),
suppose @ > 0 and ac — b > 0. By [x], f(x,y) > 0 for all (x,y). If
f(x,y)=0,then x +by/a =0and y =0, so x =y =0. Hence, f(x.¥) is
positive definite. The equivalence in [15.19] is proved in the same way—just
Teverse signs.

Finally, we prove [15.21]. Suppose f(x.y) is indefinite. Because nei-
ther the inequalities in [15.18] nor those in [15.20] are satisfied. either a and
¢ have opposite signs or ac — b* < 0. But if a and ¢ do have opposite signs,
then ac < 0 < b2 anyway, so ac — b* < 0 in all cases.

To prove the reverse implication in [15.21], suppose ac b <0.Ifa#
0, then f(1.0) =a and f(~b.a) = a(ac—b?) have opposite signs, so f(x. y)
is indefinite. If @ = 0 and ¢ = 0, then f(1.1) = 2b and f(-1.1) = —-2b.
Because ac—b% < 0 implies b> > 0 in this case. one has b # 0 and so f(x, y)
is indefinite. If @ = 0 and ¢ # 0. then f(0.1) =¢ and f(c,—b) = —b*c have
different signs. so f(x. y) is indefinite.

General Quadratic Functions in Two Variables

Adding any linear function px + gy +r of x and y to the terms in [15.16] gives
fx.y) =ax*+2bxy+cy* +px+gqy+r [15.22]
This is the general quadratic function of x and y. It can be expressed as
fx,y)=alx + £ +2bx +E G +n) +c(y +n)* +d [15.23)
provided that we arrange to have
2af +2bn=p, 2bE+2cn=gq, at*+2bEn+cenP+d=r

so that the coefficients of x and y match, as well as the constant term. This involves
choosing

————-Cp — bq aq — bp 2 2
= . N=g——=, d=r—(a§"+2bén+c [15.24]
§ 2(ac - b?) 1 2(ac — b?) r — (a&” 4 2bén+cn’)
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which is possible provided that ac s b*. If ac = b*> # 0, then

f(x,y)=a<x+\/§y> + px+qy+r

and it is easy to study the quadratic function directly. A similar transformation
works if ac = b*> = 0 and either a or ¢ is # 0. If a = b = ¢ = 0, the function is
not even quadratic.

Thus, the only interesting cases arise when, after changing variables if nec-
essary by replacing x with x + § and y with y + 7, the function f can be written
in the form

flx,y) =ax*+2bxy +cy* +d

Of course, the constant d does not change the essential behavior of f(x, y). Thus,
in all interesting cases, the general quadratic function [15.22] is reduced to the
quadratic form [15.16] that was studied in detail earlier.

Quadratic Forms with Linear Constraints

Consider the quadratic form Q = ax? 4 2bxy + cy> and assume that the variables
are subject to thé linear constraint px + qy = 0. where ¢ # 0. Solving the
constraint for y, we have y = —px /g, and substituting this value for y into the
expression for Q@ yields

2 1

Q = ax? + 2bx (—Ef> + C(_p_x> = —;(aq2 — 2bpq + cp?)x* [*]
q q q-

We say that Q(x.y) is positive (negative) definite subject to the constraint

px+qy = 0 provided Q is positive (negative) for all (x, y) 3£ (0, O) satisfying the

constraint px + gy = 0. By expanding the determinant, it is easy to verify that

, , 0 p g
ag*—2bpg+cp°=~—|p a b (]
g b c

Combining this result with [x] gives
Q = ax? + 2bxy + cy? is positive deﬁnite} — <0 [15.25]

q
subject to the constraint px + gy =0 i

0 p
p a
qg b

Problems

1. Use [15.17] to [15.2]] to determine the definiteness of the following quadratic
forms:

a. 4x” + 8xy + 5y° b. —x + xy — 3y> c. x* —6xy + 9y’
d. 4x* —y? e 3x2—xy+ 3y f. 6xy— 9y — x?
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2. Show that the following quadratic functions can be expressed in the form
[15.23] by using [15.24]:
a. f(x,y)=2x>—4xy+y> —3x +4y
b. fx.y)=—x"—xy+y*—x—y+5
3. Examine the definiteness of the following quadratic forms subject to the given
linear constraint:
a. x> — 2xy + y* subject to x + y = 0.
b. 2x> — 4xy + y* subject to 3x + 4y = 0.
c. —x>+xy — y* subject to 5x — 2y = 0.
4. Verify the matrix equation that was displayed following Equation [15.16].

15.9 Quadratic Forms in Many Variables

We often encounter quadratic forms in more than two variables, such as that in
three variables with Q(x). xa, x3) = 2x? +4x;x2 — x1x3 + X3 + 5x3 — x3. The sum
of the exponents of the variables in each term is 2.

A general quadratic form in n variables is a function Q = Q(x), ..., Xn)
given by the double sum

n n
0-3"3 asns

i=1 j=I [15.26]

2 . 2
=anXy +aQpXiX2+ 0+ QX Xy + -+ QppXy,

Suppose we put

X] an ap ... ajn

X2 an Qa»x ... 4Qzg
X = A= .

Xp Qn Gp2 ... Gpp

Then it follows from the definition of matrix multiplication that

Qx1, ..., %) = O(x) = x'Ax [15.27]
Of course, XiXj = XjX;, SO We can write a;jxixj + ajixjx; = (aij + aji)XiX;. If we
replace g;; and a;; by %(a,-j +aj;), then g;; and a;; become equal without changing
Q(xy.....x,). Thus, we can assume in [15.26] that

a;; = aj; (for all i and j) [15.28]

which means that matrix A is symmetric.
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Example 15.29
Write

Q(x1, x2,x3) = 5x,2 + x1x2 — 3x1x3 + 3x2x7 + xzz — 2x2x3 + Sx3x) + 2X3X2 + x32

in the form [15.27], both with A not symmetric and A symmetric.

Solution
5 1 =3 X1
Q(xy, x2. x3) = (X3, X2, X3) (3 1 —2) (X2>
5 2 1 X3
5 2 1 Xy
=(x1,x2,x3) [ 2 1 0) <x2>
1 01 X3

The Sign of a Quadratic Form

We are particularly interested in conditions ensuring that Q is always positive or
always negative, thus generalizing some of the results from the previous section.
In general, a symmetric n x n matrix A and its associated quadratic form Q
are both said to be positive definite if
O(x1,...,x) =XAx >0 forall (x;,...,x,) #(0,...,0) [15.29]

They are said to be negative definite if

O(xy,...,x,) =XAx <0 for all (xy,...,x,) # (0,...,0) [15.30]

If we replace > in [15.29] with > 0, then A is positive semidefinite, and A 1is
negative semidefinite if we replace < in [15.30] with <. Finally, A is indefinite if
it is neither positive semidefinite nor negative semidefinite. (In this case, there must
exist a vector Xp and a vector yp such that x;Axy < 0 and y,Ayo > 0.) Note that
Q(0,...,0) = 0 whatever the constants g;; may be, so the foregoing definitions
of positive and negative definiteness have to exclude tht point (0. ..., 0).

Example 15.30
Let D = diag (&;. ..., A,) be an n x n diagonal matrix. When is the matrix
D: (a) negative definite, (b) positive semidefinite, and (c) indefinite?

Solution D is a symmetric matrix whose associated quadratic form is

)\.1 0 0 X1
0 lg ... 0O X2

Q= (x1.x2,...,%n)

0 0 ... A Xn
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A,x;
A.zXz d
= (XL x) | L | =) hx
i i=1
AnXn
(a) This quadratic form is obviously negative definite if A; < O for ; =
1.2.....n. Conversely, if A; > 0 for any i, then Q0 > 0 when X is the
unit vector ¢; whose ith component is 1, but all other components are
zero. So if D is negative definite, then 4; <O fori =1,2,....n.
(b) D is evidently posituve semidefinite iff A; >0 fori=1.2,....n.

(c) D is evidently indefinite iff there is at least one positive diagonal ele-
ment as well as at least one negative diagonal element.

By Example 14.13 of Section 14.4, the diagonal elements of a diagonal
matrix are its eigenvalues. So Example 15.30 shows that the definiteness
properties of a quadratic form depends upon those eigenvalues. The same is
true for the general 2 x 2 symmetric matrix

a b
= 2)
By Example 14.14, the eigenvalues A; and A, of A are real, with A; + Ay =
a +c and A x> = det (A). By [15.18], A is positive semidefinite iff a > 0,
¢ >0, and det (A) > 0. But because det (A) > 0 ensures that a and ¢ cannot
have opposite signs, A is positive semidefinite iff A, + Ay = a+ ¢ > 0 and
det (A) = AAy > 0. It follows that A is positive semidefinite iff A; and
A> are both nonnegative. The cases of negative semidefinite, of positive or
negative definite, and of indefinite matrices, are entirely similar. Indeed, the

sign of any quadratic form in n variables is determined by the signs of the
eigenvalues of the associated matrix, because of the following:

Theorem 15.2 Suppose A is a symmetric matrix. Then:

(a) A is positive definite <= all eigenvalues of A are positive.

(b) A is positive semidefinite <> all eigenvalues of A are > 0.

(¢) A is negative definite <> all eigenvalues of A are negative.

(d) A is negative semidefinite <= all eigenvalues of A are < 0.

(e) Aisindefinite <= A has at least two eigenvalues with opposite signs.

Proof  Let 4 be any eigenvalue of A. Then there is a corresponding eigen-
vector x; 3 0 such that Ax; = Ax;. So Q(X:) = X;AX; = X, Ax; = AX X;o
which has the same sign as A. Now. if A is positive definite, then Q(Xi) =
X,Ax; = Axix; > 0 for all eigenvectors x; # 0 and so for all eigenvalues
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A. Thus, A can have only positive eigenvalues. This also holds for negative
definite, for positive or negative semidefinite, and for indefinite matrices.

Conversely. by Theorem 14.8 in Section 14.6, there exists an orthogonal
matrix U (with U~! = U’) such that

U'AU = diag (A;. .... A)=D

where Ay, .... A, are the eigenvalues of A. Hence,

A=)l waAnu~! = W)~'pu-! = UDU’

But now, for any x in R”", it must be true that
n
X' Ax = xX'UDU'x = (U'x)’D(Ux) = yDy = Zkk yg
k=1

where y = U'x. Moreover. if x # 0, then y # 0 because x = Uy. So now, in
case (a), when all eigenvalues of A are positive, then y'Dy > 0 for all y # 0,
and so x’Ax > O for all x # 0, implying that A is positive definite. The proofs
for the cases (b) to (¢) are entirely similar.

Example 15.31
Check the sign of the quadratic form in Example 15.29.

Solution The characteristic equation of the corresponding symmetric ma-
trix is
S~x 2 1
2 1-» O
1 0 1— A

[
o

Thus, (5= A)(1 = A)% —4(1 = 1) — (1 = 1) =0, which reduces to A(1 — 1)
(A —6) = 0. So the eigenvalues are 0, 1, and 6. From (b) in Theorem 15.2,
the quadratic form is positive semidefinite.

In order to apply Theorem 15.2, we have to compute the eigenvalues of the
associated matrix. The next theorem makes it possible to decide the definiteness
of a matrix A by checking the signs of certain minors of A.

Let A = (a@;;) be any n x'n matrix. The leading principal minors of A are
the n determinants:

an ap ... au
ar; a» ... Qax

Di=|_ . _ k=1,....n) [15.31]
G Q2 ... ik

Note that Dy is obtained from |A| by crossing out the last n — k columns and the
corresponding last n — k rows. Thus, for k =1,2,3,..., n, the leading principal
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minors are. respectively,

aiy ap ... ap,
a ap a;| 9 72 ... 5
ay, |21 9 ’ as) i ' . “ [15.32
a an» - - A B : .. : 32]
asz; as ass
any Qp2 ... 4Qpp
One can prove the following result:®
—
Theorem 15.3 Let A = (a;j)nxn be 2 symmetric matrix, with leading
principal minors Dy (k =1, 2, .. . n) defined by [15.31]. Then:
(a) A is positive definite <= D; >0fork=1.2,...,n.
(b) A is negative definite <= (—1)*D; >0fork=1,2,...,n.

Though the proof of Theorem 15.3 is too advanced for this book, it can easily be
illustrated for the case when A is a diagonal matrix with A = diag (A1, ..., Ap)-
For then Example 14.13 of Section 14.4 and Theorem 15.2 imply that A is positive
definite iff A; > O fori = 1.2, ..., n. However, the leading principal minors of A
are A, )\.1)\.2, )\.])\.2)\.3, RN k]/\g)\s .. .)\.,, , which are all pOSi[iVC iff A > Ofori =
1.2,...,n. So case (a) of Theorem 15.3 is verified. On the other hand, A is neg-
ative definite iff A; < O fori =1,2...., n. However, the leading principal minors
alternate in sign iff A; <O fori =1,2,...,n, which is case (b) of Theorem 15.3.

Also, when A is a 2 x2 matrix, conditions [15.17] and [15.19] of Section 15.8
are the appropriate versions of Theorem 15.3. This is because

a b
b ¢

implies that ac > b* > 0, soac > 0, implying that a and ¢ must have the same sign.

Example 15.32
Prove that the following matrix is negative definite:

-3 2 0
A=( 2 -3 o>
0 0 -5

Solution In this case,

P -3 2 0
-3<0,. ’ 5 ')=5>0, ’ 2 =3 0l==-25<0
2 =3
0 0 =35

6See. for example. Hadley (1973).
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By Theorem 15.3 (b), we see that A is negative definite. As an exercise, you
should also apply the eigenvalue test, Theorem 15.2.

The Semidefinite Case

It is tempting to conjecture that a matrix will be positive semidefinite iff all the
strict inequalities in Theorem 15.3(a) are replaced by weak inequalities. This is
wrong. The quadratic form Q(x;, x») = 0x? + 0 - x;x» — x3 = —x3 is negative
semidefinite, not positive semidefinite. Yet the leading principal minors of the

associated matrix
0 0
0 -1
are both > O (in fact, both = 0).

In order to check semidefiniteness by calculating minors, one has to consider
the signs of all the principal minors of A, not only the leading principal minors.
An arbitrary principal minor of order (n —r) x (n —r) in A is obtained by crossing
out any r rows and the corresponding r columns—not necessarily the last r rows
and columns. One can prove that a quadratic form X' AX is positive semidefinite iff
all the principal minors in A are > 0. For the 2 x 2 case, [15.18] of Section 15.8
confirms this result. Also, one can prove thar X Ax is negative semidefinite iff all
the principal minors of order k in A have the same sign as (—1)*. For the 2 x 2
case, [15.20] confirms this.

Another case in which it is easy to confirm these two results occurs when
A is diagonal. For then A is positive semidefinite iff all its diagonal elements
are nonnegative; the principal minors of A, which are products of its diagonal
elements, will also be nonnegative iff all its diagonal elements are nonnegative.
There is an obvious corresponding argument when A is negative semidefinite.

Problems

1. Wnite the quadratic form [15.26] in full when n = 3.

2. Wnite the following quadratic forms in the matrix form [15.27] with A sym-
metric:
a. x2+2xy+y2 b. 3x12 — 2x1x3 + 3xyx3 +x22—4x3x3+3x32

3. Use Theorem 15.3 to classify the following quadratic forms in the three
vanables x;, x», and x3:

2 2 2 2 2 2 2 2

a xy+2x3+8x; b, x5 +8x; ¢ —3x7 4+ 2x1x2 — x5 + 4xox; — 8x3

4. Suppose A is positive semidefinite and symmetric. Prove that A is positive
definite if |A| 5 0.

V)



—

1

m S e

. e e o nAEC
P ﬁ\: ERERNPC OIS & S0 < g PR o A

Elementary Algebra

Is it right I ask; is it even prudence;

to bore thyself and bore the students?
—Mephistopheles to Faust (from Goethe’s
“Faust”)

This appendix is for students who need to review elementary algebra. To save
tme, you should quickly glance through the sections, and do some of the problems.
(Answers to all the problems in this appendix are given in the back of the book.)
If you have difficulties with any of these problems, read the preceding theory
carefully and then redo the problems. If you have considerable difficulties with
this appendix, turn to a more elementary book on algebra.

A.1 Powers

You probably recall that instead of the product 3 - 3 - 3 - 3, we often write 3%, that
11111 canbe written as (1), and that (—10)* = (=10)(—~10)(=10) = —1000.

If @ is any number and 7 is any natural number. then a” is defined by

ad"=a-a---a (a occurs as a factor » times) [A.1]

numes

In fact. a" is called the nth power of a; a is the base. and n is the exponent. We
have, for example, ' =a,a>=a-a,x* =x-x-x-x, and

803
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where a = p/q. and n = 5. A further example:

C+D)P=0¢+D-C+1)-(+1 (where a=r+ 1, and n = 3)
The product (r + 1) - (r + 1) - (r + 1) can be expanded further. See Example A.5
in Section A.3. We usually drop the multiplication sign if this is unlikely to create
misunderstanding. For example, we write abc instead of a - b - c.

We define further

a®=1 fora#0 [A.2]

Thus, 3 =1, (=16.2)° =1, and (x - ¥)? = | (if x - y £ 0). But if a = 0, we do
not assign a numerical value to a’; the expression 0° is undefined.

We also need to define powers with negative exponents. What do we mean

by 3722 It turns out that the sensible definition is to set 372 equal to 1/3% = 1/9.
In general, we define

a"=— [A.3]

whenever n is a natural number and a # 0. For example,

|

1
(x2 +5)16

1 N 1
-1 -3 2 \—16
a = —. 8 === X~ 4+ =
- e ( )

o

31

Note: Students often make serious mistakes by misplacing parentheses or by inter-

preting them incorrectly. The following examples highlight some common sources
of confusion over the use of parentheses.

1. There is an important difference between (—10 2 = (~10)(~10) = 100. and
~10° = —(10 - 10) = —100. The square of minus 10 is not equal to minus
the square of 10.

Note that (2x)~! = 1/2x, whereas 2x~' = 2. (1/x) = 2/x.

3. As we shall see in what follows, 1000 - (1.08)° is the amount you will have
1n your account after 5 years if you invest $1000 at 8% interest per year. Us-
ing a calculator, you quickly find that you will have approximately $1469.33.
One student put 1000-(1.08)> = (1000- 1.08)° = (1080)°, which is a horrible
mistake pecause it is 10'? (or a trillion) times the right answer.

4. The area of a square with sides of length x is x>. What is the area if the
sides are doubled? Solution: The area expands to (2x)° = (2x)(2x) = 4x>,
so it grows four times. If (2x)* is incorrectly replaced by 2x2. the result

would only be a doubling of the area. (Use a drawing to prove that the latter
1s wrong.)

[

yl

The volume of a ball with radius r is %rer_ What is the volume if the radius
1s doubled? Solution: The new volume is %n’(Zr)S = %n’(2r)(2r)(2r} =
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178r® = 8(37r°), so the volume is eight times as large. (If we make the
mistake of “simplifying” (2r)* to 2r3, the result would imply only a doubling
of the volume: this should be contrary to common sense.)

Properties of Exponents

The following properties of exponents are very important and must be memorized.

General Properties of Exponents
a'-a" = an—:—m (a)
an/-am =g (b)
nym n-m [A4)]
(@")" =a (©
(@a-b)"=a"-b" (d)
& -5
b/ b

Here a" - a™ = a"™™ and (¢")™ = a™™ are the fundamental rules, because all the
others follow from these two and from the definitions of powers. Here are some
examples indicating why the rules in [A 4] are valid:

S.a?=(-a-a)-(@-a)=a-a-a-a-a=a =a+

(a2)3 — (a2)(a2)(a2) —_ a2+2+2 — a6 - a2.3

(@-b’=(a-b)a-b)a-b)y=a-a-a-b-b-b=a’b
6 =666 6)-%
b/ \b/) \b/ \b/ \b/ = b
Property [A.4](a) says that exponents with the same base are multiplied by adding
the exponents. Try to formulate the other properties in words as well. Study the
examples carefully.
The properties in [A.4] hold also if m and/or n are negative integers. For
example,

a3 .5 = a5 = g2, -y t=x2t.y2

‘e

Also, using the rules for fractions (see Section A.S5), we get

(g)—" _ a™" _ 1/a"  (1/a")-a" - b" _ g
T bt T 1t (1/b7)-am - bt an

b
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This result can be applied whenever a fraction is raised to a negative power. For
example,
5\7 4 o4
4) T $ 125
Example A.1
If ab® = 2, compute the following:
@ a’* ) a*b™? () B +aMb?

Solution '

(@ a*b*=(@b>)*=2>=4
®) a*bF=(b)*=2"=1/2* =1/16
© @b +a b P=@h + @) ' =22+2"=8+12=17)2

Note: An important motivation for introducing definitions [A.2] and [A.3] is that
we would like the properties in [A.4] to be valid for all exponents For example,
consider t.he consequences of requmno [A.4](a) to be valid for a’ - a®. We obtain

a>™0 = &>, so that @° - a® = 4°, and hence we must choose a® = 1. If [A.4](a)
is to bc vahd for m = —n, we must have a” -a™" = a"*" = q° = 1. Because
a"-(1/a") =1, we must define a=" by [A.3].

Compound Interest

Powers are used in practcally every branch of applied mathematcs. including
economics. To illustrate their use, consider how they are needed to calculate
compound interest.

Suppose you deposit $1000 in a bank at 8% interest per year.! After one
year you will have earned $1000 - 0.08 = $80 in interest, so the amount in your
bank account at the end of the'year will be S1080. This can be rewritten as

1000 - 8 8
1000 + = 1000 1+ — | =1000-1.08
100 ( N 100)

If this new amount of $1000 - 1.08 is left in the bank for another year at an interest

*Remember that 1% means one in a hundred. or 0.01. To calculate. say. 23% of $4000. we write

20035 =920 or  4000-0.23 =920
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rate of 8%, after a second year, the amount will have grown to a total of

(1000 -1.08) - 8
100

1000 - 1.08 +

8 5

=1000-1.08 | 1 + — | = 1000 - (1.08)"

( T 100) (1.08)
Each year the amount will increase by the factor 1.08, and we see that at the end
of r years, it will have grown to $1000 - (1.08)'. If the original amount is $K
and the interest rate 1s p% per year, by the end of the first year, the amount will
be K+ K- p/100 = K(1 = p/100) dollars. The growth factor per year is thus

1 + p/100. In general, after 1 (whole) years, the oniginal investment of $K will
have grown to an amount
p I
K (1 + —)

100

when the interest rate 1S p% per year (and interest is added to the capital every
year—that is, compound interest).

If you see an expression like (1.08)', you should immediately be able to
recognize it as the amount to which $1 has grown after r years when the interest
rate is 8% per year. What would be the interpretation of (1.08)°? You deposit $1 at
8% per year, and leave the amount for O years. Then you still have only $1, because
there has been no time to accumulate any interest, so that (1.08)° must equal 1.

Are Negative Exponents Useful?

How much money should you have deposited in the bank 5 years ago in order to
have $1000 today, given that the interest rate has been 8% per year over this period?
If we call this amount x, the requirement is that x-(1.08)° must equal $1000, or that

x - (1.08)° = 1000
The solution for x is
1000 .
—_— —_— 1 - R -3
X (1.08)° 000 - (1.08)

(which is approximately $681). It turns out that $(1.08) > is what you should have

deposited 5 years ago in order to have $1 today, given the constant interest rate
of 8%.

In general, $P (1 + p/100)™" is what you should have deposited ¢ years ago
in order to have $P today if the interest rate has been p% every year.

Problems

1. Compute the following:

a. 6 b (3)° c. (-1)° d. (0.3)
e. (4.5-25)* f. 2%.2° g 22.3%. h. (2%-3%3

S
9
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2. Express the following as powers:

a.15-15-15 b (=) (-1 (<)) e &
d. 0.0000001 e. trtrtt f. (a—b)(a—Db)a—-D>b)
g. aabbbb h. (—a)(—a)(-a)
3. Simplify:
- b’
a. a*-a’ b. (a*)? c x%+x° d. 5
5 3.3 x" . x 2?2 3%.372
e. (x7y°) L —5 & 5.4 h 35
4. Compute the following:
4\’ 42 . 62
0 Al 52 3
a.2°-2".2-.2 b. (5) C.'3—3—_'2'§
d. xx* e. yy'y? f. (2xy)®
102-107% - 103 (DK L G D+ D
& 100102105 ) "G+ DRx LD
5. Which of the following expressions are defined and what are their values?
0 2—x ,
— . — 0-0 d. 0°
a. 2% b 5 c.
(10)° 0+1)°
e. (0+2)° f. 072 . — . —
©O+2 & 0rno (0+2)°
6. Find the solution x of the following equations:
a. 5-5=5 b. 10 =1 c. 10F =10°=107?
d. (25 =5 e. 210 -22.2" =0 f. (x+37=x>+3
7. Which of the following equalities are correct?
a. 3’=5 b. 3’ =5 ¢ 3 =@3"
d. 0°-4°=0 e. 07)(=2)°=1 f. 5+7D*=5+7
2x +4 .
g — =x+4 h2x-y)=x-2-y-2 1L —x+y=y—x

8. Which of the following equalities are true and which are false? Justify your
answer. (Note: a and b are positive, m and n are integers.)
a.a"=0 b. (a+b)"=1/(a+b)" «c a"-a" =a™"
d. a” -b" = (ab)*" e (a+b)"=a"+b" f. a"-b" = (ab)"™™
9. Complete the following:
a xy=3=x'y’=-..
b. ab=—2:=> (ab)4=

c. a2=4:(a20)0=_“
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d. n integer = (=1)*' = - .-

e x 'y =3=rxv=.-.

f x' =2 — (x_3)6(x2)2 — ...

g <5;v)-2=3_—_:» (;)6=

h. a~'p7 ¢! = 1/4 = (abc)? = - --
10. Compute the following:

24 3 ,223
a. (2x)* b, 2~ —4H)"' . 4x2“f_2
X=¥Z
- .3 a’-a*-a> x\3 8 -3
d [~(-a) @] e =t [(3) =
[—(—ab)) ™ (a°h%)’] — 5) =
a3 b 5P9+p52p
& a¥-1 © 59+3p5pg

11. Compute the following:
a. 13% of 150 b. 6% of 2400 ¢. 5.5% of 200

12. A box containing 5 balls costs $8.50. If the balls are bought individually,
they cost $2.00 each. How much cheaper is it, in percentage terms, to buy
the box as opposed to buying 5 individual balls?

13. Give economic interpretations for each of the following expressions and then
use a calculator to find the approximate values:

a. 50-(1.11)8 b. 10000 - (1.12)% ¢. 5000 (1.07)7'°

14. Compute 2'0. Is 2'0 bigger than 10°? Explain on the basis of your answer
why 2% is bigger than 10°. Check by using a calculator.

A.2 Square Roots

So far the power a* has been defined for integer exponents—that is, when x =0,
+1, £2, 43, .... If a > 0 and x = 1/2, then we define a* = a'/> as equal
to ./a, the square root of a. Thus. a!'/? = /a is defined as the nonnegative
number that when multiplied by itself gives a. This definition makes sense because
a'?.a'? = a'?*'2 = g' = a. Note that a real number multiplied by itself must
always be > 0, whether that number is positive, negative, or zero. Therefore, we
do not define square roots of negative numbers. For example, (16)'/* = V16 =4
because 4 - 4 = 16, and (1/9)!” = /T/9 = 1/3 because (1/3)(1/3) = 1/9. while
(=25)!7 = /=25 is not defined. Usually, the square root of a natural number is an
irrational number. For example. V2 = 1.414, /3 & 1.732 are irrational numbers.
Properties {A.4](d) and (e) are also valid for square roots. For instance,

V1625 = V/16-4/25 = 4 -5 = 20, @:l@:i
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These can be formulated alternatively as

9\'? 9n
(16-25)'" = (16)'7 - 25)'2 = 4.5 =20, (Z> =qE=

3
4 2

In general, if a and b are nonnegative numbers with b # 0, then

@) Va-b=+a/b () \/_%_-_— % [A.6]

Note that the formulas in [A.6] are not valid if @ or b or both are negative. For
example, o/ (=1)(=1) = /1 = 1, whereas /=1 - /=1 is not defined.

By using a calculator, we find that ~/2 < +/3 & 0.816. Without a calculator.
the division +/2 + +/3 = 1.414 = 1.732 would be tedious. It becomes easier
if we rationalize the denominator—that is, if we multiply both numerator and

denominator by the same term in order to remove expressions with roots in the
denominator. Thus,

V2_ 2.3 253 V6 2448
S3V3-3 0 3 3 3 7

Example A.2
Rationalize the denominators: (a) % (b) %.
Solution
5 5.5 5.5
_—= = =-\/§
@ BTHEBT S
®) (a—H)-\/E_ @+1)-Va-Ja+1 _ (@+1)-Ja-Ja+1
Va+1 = Ja+l-Jax1 a+1

=\/a_-\/a+l=,/a(a+l)

Note: One of the most common errors committed in elementary algebra is to

replace v/a + b by Ja + /b. For example. /O + 16 = /25 = 5. whereas
V9 + /16 =3 +4 = 7. Thus. we have

JaTb 2 Ja+ b

The following statistics illustrate just how frequently this error occurs. During
an examination for a basic course in mathematics for economists. 43 out of 190
students simplified +/1/16 = 1,25 incorrectly and claimed that it was equal to
1/4 +1/5 = 9/20. (The correct answer is /417400 = ~/41/20.)
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Problems

1. Compute the following:

a. V9 b. V1600 c. (100)172 d. V9+16
=y
e. (36)"17 f. (0.49)!7 g. /001 h. V =
2. Solve for x:
a Jx=9 b. Vx -V4=4 c. Vx+2=25
d. V3-/5=1/x e. 227% =8 £ 25 -2l =4
3. Rationalize the denominator and simplify:
R 6 i) V32 . V3 N V54— 24
NG V2 42 V6
2 4 x x{v/x +1)
e. —— f. — g — h, ——
V38 2y V2x VX

4. Decide whether each “?” should be replaced by = or #. Justify your answer.
(Note: a and b are positive.)

a. v25-16 ? V25.-J16 b. V25+16 ? 25+ /16
e @+b)\? 1 P47 d a@a+b"2 2 Va+b)!

A.3 Rules of Algebra

You are probably already familiar with the most common rules of algebra. Never-
theless. it may be useful at this stage to recall those that are most important. If a,
b, and c are arbitrary real numbers, then:

@ a+b=b+a (g 1

g a=a
) (@+b)+c=a+ (b+c) th) aa'=1fora#0
) a+0=a (1) (=a)b =a(=b) = —ab
) [A.7]
d a+(—a)=0 ' @ (=a)(=b)=ab
() ab=ba k) ab+c)=ab+ac
® (ab)c = a(bc) O (@+b)c=ac+bc

These rules are used in the following examples:

54+x2=x*+5

X

Gif—
wI—

x (x¥)y
(-3)5=3(-5=~-(3-5)=-15
3x(y +2z) = 3xy + 6xz

(@a+2b)+3b=a+Rb+3b)=a+5b
T=x(y ) =x
(—=6)(=20) =120

(12 + 21)4r3 = 12413 + 2141° = 41° + 8¢*
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Rules [A.7](k) and (1) can be combined with the others in several ways to give:

m) ab-c¢)=alb+(~c)]=ab+a(—c)=ab-ac
(n) x@@a+b—c+d)=xa+xb—xc+xd [A.8]
(a+b)(c+d)=ac+ad +bc+bd

A geometric argument for [A.8] (0) requires considering areas in Fig. A.1.

c+d

T !
a ac I ad
U I N
1 ; a+b
b be i bd

“« [« > < d
FIGURE A.1

We often encounter parentheses with a minus sign in front. Because (—1)x =
—X, using (n) gives

~(a+b—c+d)=—a—-b+c—-d [A.9]

In words: When removing a pair of parentheses with a minus in front, change the
signs of all the terms within the parentheses—do not leave any out.

Some Important Identities

Three special cases of equation [A.8] are so important that you should memorize

them.
(@a+b)* =a’*+2ab+ b’ [A.10]
(@ — b)* =a*® = 2ab + b* [A.11]
(@ + b)(a —b) =a* - b* [A.12]

Formula [A.12] is often called the difference-of-squares formula. (Proof of [A.10]:
(a + b)* means (a + b)(a + b). which according to {A.8] is equal to aa + ab +
ba < bb = a* +2ab + b*>. Prove [A.11] and [A.12] yourself.)

Example A.3
Use [A.10] to [A.12] to expand each of the following:

@ x+3)7 ) (1-1) (© (V3+v6)(v3-6)
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Solution

(@) x+3y)? = (2x) +2-2x -3y + (3y)> = 4x* + 12xy + 9y

® (1-1’=1r-2-1-de+ () =124 12

© (V3+v8)(V3-v6)=(V3) - (+6)=3-6==3

Example A4

Expand (/X +1— m>z

Solution Seta = /X +1and b = +/x + 1. Then using [A.11] and

[A.10] gives

[(VZ+1D)—vaF+1) = (a—b)}=a>—2ab + b’

=X+ 1D =2+ DVx+ 1+ Wx+1)?
=x+2/x +1=2/xx + 1 =2Vx+ 1+ x+1
=2(x+1+Vx-Vavx+1=Vx+1)

Alternatively, set (X + 1 — ~/x+1)° = (a + b)?, where a = /X and
b=1~4+/x+1; then use [A.10] and [A.12]). Do you get the same solution?

In [A.8], we multiplied two factors, (a+b) and (c+d). How do we compute
such products when there are several factors? Consider the following:
(a+b)c+d)e+ f) = [(a+b)c+ D]+ f)

= (ac+ad + bc +bd)(e + f)

= (ac +ad + bc + bd)e + (ac + ad + bc + bd) f

=ace + ade + bce + bde + acf +adf + bcf + bdf
Alternatively, write (@ + b)(c +d)(e+ f) = (a+ b) [(c +d)(e+ f)] , then expand
and show that you get the same answer.

Example AS
Compute (r + 1)°.

Solution

r+1’={C+Dr+D]c+D=*+2+ D+ =r+32+3r+1
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Let us illustrate this last result with an example. A ball with radius r meters has
a volume of 77>, By how much does the volume expand if the radius increases
by 1 meter? The solution is

4 4 4 - 4 4
-3-7r(r +1) - gn'r3 = grr(r" +3r+3r+1)~ -gjrr’ = -3—7t(3r2 +3r+1)

Algebraic Expressions

Expressions such as 3xy — 5x2y® + 2xy + 6y°x*> — 3x + Syx are called algebraic
expressions. We call 3xy, —5x%y3, 2xy, 6y3x*, —3x, and 5yx the terms in the
expression that is formed by adding all the terms together. The numbers 3, —5, 2,
6, —3, and 5 are the numerical coefficients of the terms. Two terms where only the
numerical coefficients are different, such as —5x%y> and 6y°x>, are called terms
of the same type. In order to simplify expressions, we usually collect terms of the
same type. Then within each term, we usually put numerical coefficients first and
place the letters in alphabetical order. Thus,

3xy — 5x%y° 4+ 2xy + 6y°x* = 3x + 5yx = x*y> + 10xy — 3x

Example A.6
Expand and simplify:

(@ (2pg —3p*)(p +29) ~ (4> ~2p9)(2p = q)
() (xy —3yH)(x?y — x> +3xy?)
Solution
@ pg—3pH(p+29) —(q*-2pg)2p —q)
= 2pqp +2pg2q —3p° — 6p*q — (g°2p — ¢° — 4pgp + 2pg*)
=2p’q +4pg’ = 3p’ —6p’q —2pq® + ¢’ +4p’q — 2pg’
__3p3 +q3
(b) (xy —3y)(x?y — x* + 3xy?)

xyx’y — xyx> + xy3xy* — 3y2x%y + 3y°x° — 3y?3xy?
= x3y2 ¢ty 13223 — 3635 135532 — 9y
=-x'y+ -’lxsy2 - 9xy4
Problems
1. Simplify the following:

a. =3+ (—4) — (-8 b. (-3)(2-4) c. (=3)(-12) (—3)
d. 3[4 — (-2)] e. =3(—x —4) f. (5x —3y)9
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3 2
o 2x [ — h. 0-(1— i —Tx———
g. 2x <2x> ( x) i. —7x Tix
In Problems 2-6, expand and collect terms.
2. a. 5a>—-3b—(-a*~-b)—3(a*+b)
b. - x2x —y)+y(l —x)+3(x+y)
c. 1202 — 3t + 16 = 2(61> — 2t + 8)
d. PP —3r3s +3rs> + 57 — (=53 =3 4+ 3r3)
3. a. —3(rz2 —-2n+3) b. x2(1 -+—x3)
c. (4n—=3)(n-2) d. 6a>b(5ab — 3ab?)
e. (a*b—ab*)(a +b) f. (x — y)(x — 2y)(x — 3y)
4. a. a(a-1) b. (x-3)x+7) ¢ —=v/3(v3-+6)
d. (1-v2) e. (x —1) £ (1-p)(1+b)
g (I+x+x>+x)(1-x) h (1+x)?*
5. a. 3(x —y)+ By —x) b. (a ~ 2b)*
¢ (3x—1y) (3x+1y) d. 2x%y —3x — (2 + 3x2y)
e. (x +a)(x+b) f. (x—2y)

6. a. (2t —=1D(E>*=2r+1) b. @+ 1) +@-1Y=2@+D@-1)
c. x+y+2)7 d c+y+27-@x—y-2)?

7. Use [A.10] to [A.12] to expand each of the following:

a. (3x +2y)° b. (v3++2)°

c. (—3u+8v)? d. (u—5v)(u +5v)
8. Compute (1000)3/[(252)* — (248)?] without using a calculator.
9. Expand and collect terms:

- 7
AT GAA] C@tbD
d (Va-vb' e [(V2+1)2-1]"7 £ (-1

10. Expand and collect terms:

a. (x2—y?)? b.
(

a. (ax + b)(cx +d) b. 2 -2 +13)
c. @+b+c)’ d. @ -b) +b°)
e. (V3+/5+VN3+5-VT) f. (u—v)2(u+v)°
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11. Use the diagrams in Fig. A.2 to give a geometric interpretation of [A.10] and

[A.11].
p a
“«— b —»
, 1
b ba b
(a — by
a
a a2 ab T
b b?
A
a b
FIGURE A2
Harder Problems

12. Show that
(a — b)(a + b) =a> — b
(@a—b)@®+ab+b*) =d° b
(a—b)(d® +a*b +ab* + b)) =a* - b*

(@a—b)a*+a°b+a*b*+ab’ + b =a° - b

Guess the result of the division (a'® — 5'%)/(a — b), and try to verify your
quess.

A.4 Factors

When we write 49 = 7 -7, 125 =5-5-5,0r 672 =2-3-4-4 .7, we say that
we have factored these numbers. Algebraic expressions can often be factored in a
similar way. For example,

6x2y=2.3.x.x-)’ and 5x2y3—l5xy2=5'x')")'(xy-3)

Example A.7
Factor each of the following:

(@) 5x>+15x (b) — 186>+ 9ab
© KQ+rN=KQ+rr @ SL3+0~-8L"
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Solution
(@) 5x%+15x = 5x(x + 3)
(b) —18b% +9ab =9ab — 18b* = 3-3b(a — 2b)
© KAQ+r)+KA+rr=KQ+r)(+r) =K1 +7r)?
(d SL3+Q-8L*=L3[+1-8)L)

t Formulas [A.10] 1o [A.12] can often be used “in reverse” for factorization.

They sometimes enable us to factor expressions that otherwise appear to have no
factors.

Example A.8 )
Factor each of the following:

@ 16a*—1 () x*y* =25z (c) 4* +8u+4 (d) x*~x+1
Solution

(@ 16a>—1=(@a+1@da-1) (apply [A.12])
(b) x%y? —25z% = (xy + 52)(xy — 52) (apply [A.12])
( )

() 4> +8u+4=Qu+2P2=4u+1)* apply [A.10]

)? (apply [A.11])

Usually, it is easy to verify that an algebraic expression has been factored
correctly by simply multiplying the factors. For example, we check that

@ xX*—x+i=(x-

(8] e

x> = (a+bx+ab=(x—a)x —b) [A.13]

by expanding (x — a)(x — b). Formula [A.13] itself is important because it can
often be used to factor quadratic expressions.

Example A.9
Factor (if possible) the following:

(@ x> —8x+15 () x*+5x+6 (c) x*>’+2x+2

Solution

(a) Comparing this with [A.13], we see that making x> — 8x + 15 equal
to (x — a)(x — b) requires that a + b = 8 and ab = 15. We need to
find two numbers, a and b, whose sum is 8 and whose product is 15.
Such numbers are a = 3 and b = 5 (or a = 5 and b = 3), so the
factonization 1s

=8 +15=(x—-3)(x-5)

i
"
“r
Iy
ie
VG
B
.
£
5
E
¥
¥
¥
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(b) In a similar way, we find that x + 5x + 6 = (x + 2)(x + 3).

(c) In this case, we need two numbers, a and b, whose sum is —2 and
whose product is 2. Because there is no pair of real numbers with
these properties, factorization is not possible.

Section A.8 will investigate factorization of expressions like ax? + bx + ¢
more systematically.

We conclude this section with some examples where a suitable grouping of
terms 1s the crucial point.

Example A.10
Try to factor the following:

@) x>+ 2xy* + xy + 2y3 (d) a® — 4b° — 4ab* + a’b

Solution
(@) This is quite simple:

x? + 2ch2 +xy+ 2y3 = (Jc2 + 2xy2) + (xy + 2y3)
=(x+ 2y2)x + (x + 2y2)y
=x+2y)x+y)

(b) This demands some careful rearrangement of terms:

a® — 4b° — 4ab® + a*b = a® — 4ab® + a’b — 4b°
= a(a* — 4b%) + b(a®> — 4b%)
= (a + b)(a® — 4b*)
= (a + b)(a +2b)(a — 2b)

Note: If we write 15+25 = 3-5+5-5, then we have factored 15 and 25, but nor the
sum 15425. Correspondingly, 9x*>—25y> = 3.3-x-x—5-5-y-y is not a factorization
of 9x? — 25y2. (The correct factorization is 9x% — 25y? = (3x — 5y)(3x + 5y).)

Problems

In Problems 1 to 3, factor the given expressions.

1. a. 284°b° b. 4x + 8y — 24z c. 2x* — 6xy
d. 4a°b + 6a°p? e. 7x> — 49xy f. 5xy* — 45x3y2
g 16 — b’ h. 3x? - 12
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2. a. x> —4x +4 b. 4125 — 815°
c. 16a*> + 16ab + 4p* d. 5x* — 10x%y?
3. a. K’ -K°L b. KL> + KL ¢ L*-K?
d. K* —2KL+L* e K’L-4K’L*+4KL* f KP°—-K %
4. Use the method in Example A.9 to factor the following:
a. x> +5x+6 b. x? +2x - 15 c. pP=3p+2
d. 24% + 169 — 66 e. 3x2 —12x — 15 f. —p>—p+20
5. Factor (see Example A.10) the following:
a. S(x 4+ 2y) +a{x + 2y) b. (a4 b)c —d(a+b)
C. ax +ay +2x+ 2y d. 2x? — 5yz + 10xz — xy
e. pP—qg*+p—gq f. u®+ v —utv =1
6. Factor the following:
1 1
a. p+ prt b. 7r* + 2nrh C. —mnr — —mn
7 1 1
d. PR>— PQR e. (1+r)+1+r)? f. Egh“ - —8-g3h2
Harder Problems
7. Factor the following:
a. a* - 25 b. (@+b)*—¢? ¢ (@+b+c)—(a+b)?

d. x* —y* e. 81 - ¢* f. xS —y¢
(Hint for (d): x* — y* = (x? + y*)(x?> — y?) and so on.)

A.5 Fractions

Recall that

. a < numerator
a=b=- .

b < denominator

For example, 5+ 8 = 3. For typographical reasons, we often write 5/8 instead

of 2. Of course, 5+ 8 = 0.625, and 5/8 = 0.625. In this case, we have written

the fraction as a decimal number. Fraction 5/8 is called a proper fraction because

S is less than 8. Fraction 19/8 is an improper fraction because the numerator is

larger than (or equal to) the denominator. An improper fraction can be written as
a mixed number:

19 _ 3
'8——2+§—2

ool

Note: 23 means 2 plus 3/8. On the other hand, 2 - 2 =22 = 3 (by the rules

reviewed in what follows). Note, however, that 2§ means 2 - §; the notation %
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or 2x /8 is obviously preferable in this case. Indeed, % is probably better than 2%
because 1t also helps avoid ambiguity.

Note that 0 —~5 = 0. In general, 0 = b = 0 whatever the number b, except
if 5 = 0. On the other hand, b <+ 0 is not defined for any number b.

b
7= 0 (b£0). ) is not defined

Reducing and Extending Fractions
You should know that

222 (p#£0andc#0) [A.14]
b-c b
In general, we reduce fractions by factoring the numerator and the denominator and
canceling common factors (that is, dividing both the numerator and denominator
by the same nonzero quantity). Thus:

189 §-3-3-7 7
@ 35 333553
5x%yz®  §-X-x-¥-Y-z-z  xZ®

x2-+-xy_ x(x+y) X

2=y @=»E+y) x—y

4—4a+a> (a-@-2) a-2
a2—4  (@-Da+2) a+2

(c)

(d)

When we use property [A.14] in reverse, we are expanding the fraction:

5_5-125_ 625 _ .
8§ 8-125 1000
1 V5-3 V5-3

1
S+v3 (BB -VB) 5-3 =3(¥5-3)

Note the trick we used in the last example to make the denominator rational.
When we simplify fractions, only common factors can be removed. Two
frequently occurring errors are illustrated in the following examples:

2X+3y  243%  2+3
xy %1

Wrong! — 5

and
x -1 x —1 0

Wrong! — — = = =
x-—1 x-1Dx+1) x+1
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In the first case, we cannot simplify the expression because the numerator and the
denominator do not have common factors. In the second case, the correct way of
reducing the fraction gives the answer 1/(x + 1).

Sign Rules

The following sign rules are important:
—-a (—a)- (-1 a a a (=1Da —a
—_—=—— = = d ——=(-)-=——=—[A.I5
-b (=b)-(-1) b b ( )b b b [ )

These equalities are derived from [A.14], the equation —x = (—1)x, and property
[A.19], which follows.

Addition of Fractions

Here are three basic rules for adding fractions:

b +b
.a_+_=a [A.16]
c ¢ c
a ¢ a-d+b-c
pta "bad (A-17]
c a-d+c¢
a+t- 7 [ ]

Because a/1 = a, [A.18] follows from [A.17] by letting b = 1. Formula [A.17]
follows from [A.14] and [A.16]:

a+c_a-d+c-b_a d+b-c
b d b-d d-b  b-d
Example A.11
5 13 18
S+ =—-=6
(3)3 3
3 3.6+5-1 23
O 3+5="55 %
-1 a 1 a—-1+a+1 2a 2-a 1
(c) —_—_—— = — = —— =~

c
e adf cbf ~ebd adf —cbf +ebd
b d f bdf bdf bdf bdf
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If the numbers b, d, and f have common factors, the computation carried
out in (e) involves unnecessarily large numbers. We can simplify the process by
first finding the least common denominator (LCD) of the fractons. To do so, factor
each denominator completely; the LCD is the product of all the distinct factors that
appear in any denominator, each raised to the highest power to which it gets raised
in any denominator. The use of the LCD is demonstrated in the following example.

Example A.12
Simplify the following:

1 1 1 24+a 1-b 2b
(@) 2 —§+E ®) a2b ab>  a?b?
x - x 3x
() —2 - +
x+y x-—-y x-—y°

Solution
(a) The LCD is 6 and so

1 1,1 1.3 1.2 1 _3-2+41_2 |1
2 3 6 23 2.3 2.3 6 6 3
(b) The LCD is a®b* and so
2+a+1-—b 2b_(2+a)b (1 =">d)a 2b
azb ab®  a?b? a2b? atb? a?b?
_2b+ab+a—ba—2b_ a 1
- a2b? T a2 ab?
(c) The LCD is (x + y)(x — y) and so
Ty _ X 3xy _G-»G=-y  x(&x+y) 3xy
x+y x-y x2=y (@-yx+y x-Nx+y) @x-yx+y)
XX =2xy+y*—x*—xy+3xy  y?
(x = y)(x+y) x? —y?

An Important Note

What do we mean by 1 — %? It means that from the number 1, we subtract the
number 5%’ = % = 1. Therefore, 1 — 352 = 0. Alternatively,

l_5—3_2 (5-3) 2-(5-3) 2-5+3
2 2 2 2 B 2

0
Z =0
2
In the same way,
2+b a-2
ab? a’b
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means that we subtract

a-—?2 24+b

ab from ab?
2+b a—2_(2+b)a (a-—2)b_(2+b)a—(a—2)b__2(a+b)
ab? ab ~ a?b? ah? a’b? T a2p?

It is a good idea first to enclose in parentheses the numerators of the fractions that
are being subtracted.

Example A.13
Simplify the expression

x—1 1—x —1+4+4x
x+1 x-1 2x+1)

Solution

x -1 1—x —1+4x_(x—1) 1-=x) (—1+44x)
x+1 x—1 2(x+1) x+1 x—1 2(x + 1)

_ 2x - D=2 —x)x +1) = (=1 +4x)(x — 1)
- 2(x + D(x = 1)
2(x* —2x + 1) =21 — x?) — (4x> = 5x + 1)
- 2 + D(x - 1)
_ x-1 _ 1
T2x+Dx =1 2(x+1)

Multiplication and Division of Fractions

Here are three basic rules for multiplication and division of fractions:

b .
.0 -a? [A.19]
¢ ¢
a ¢ a-c
- = A2
b d b-d [A.20)
a ¢ _a dua-d (A21]
b d b ¢ b-c -
Example of [A.19]:
b b b b b+b+b 3b
3ot -t - = = —
c ¢ ¢ ¢ c c
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We prove [A.21] by writing (a/b) = (c/d) as a ratio of fractions:

|
,z_r’
o || AL
A %

A
S~
S~
o

(sl
Q

o oI
o>

-

Example A.14
Simplify the following:

13

5 4 5 36 R
@ 6-— (b 73 () 3T (d) 2xy

14

1-36x*  (2-12x)(1+ 6x)

© 18x +9y 16x2 — 4y?

Solution

(@)

(b)

(c)

(d)

(e)

®

oW &

14 8 6 2

» X+2y 2 +2y) 2 +2y)
3xy3 3x 8 T 3y

1-36x>  (2—12x)(1+ 6x)

18x +9y 16x2 — 4y2

_(1-36xh)  (16x7 —4yY)

T (18x +9y) (2 - 12x)(1 + 6x)

_ (1 — 36x2) - 4(4x% — y?)

T 9Qx +y)-2- (1 —6x)(1+6x)

2xy

SN
oA

_ (1 —6x)(1+6x)-42x — y)2x + v) _ 22x — y)

9(2x +y)-2-(1 =6x)(1 +6x)
Sa 2a 3a 3a

XL 22 223
_10 10 _10_1i0 "~ _9%
6a Sa a — a a

30 30 30 30

|

W R R
o YIRSV NN

9

T T k8 - TR

iq.qjm! P




Sec. A.5 / Fractions 825

When we deal with fractions of fractions. we should be sure to emphasize
which is the fraction line of the dominant fraction. For example,

a
a b) ac b a a
— means a=> |- | = — whereas — means — ~-¢ = —
b ¢ b ¢ b bc
c
However. the first should be written as ;‘;— and the second as #.
Problems
In Problems 1 to 3, simplify the various expressions.
3 4 5 3 4 3 1 1 2 3
1 —4+=== b.—-4+-=--1 C. — — — d - - — - —
a7t573 173 224 5725 75
3 4 35 32\ 1 241
3-—-1- f. - - —+=—}.- h —2
“°57°3 5% & (5 15> 9 i3
5 x 3x+17x b %a a+a c.b+2 3b b
a — - — + — T - —
10 10 10 10 2 5 10 15 10
d x+2+1-3x . 3 5 f3a—.’2 2b—1+4b+3a
T3 4 "2 3b " 3a 2b 6ab
1 1 6x+25 6x°+x—2
3. a — b. - >
x—2 x+2 4x +2 4x-—1
1857 1 1 1
c. ) d.

200 a+3b 8ab_8b(a+2)+b(a2—4)

.. 2[—t2.<5t _ 2z> ¢ o a(l-s5)

t+2 t—2 =2 0.25
4. If x =3/7 and y = 1/14, find the simplest forms of these fractions:
-y 13(2x -3
a x+y b. X . 122 a P&
y X4y 2x +1
5. Reduce the following expressions by making the denominators rational:
1 b NEESNK) c. X
a. —— . —_—
VI++/3 V5443 V3-2
a* Y — yJx N h ¢ 1-Vx+1
N N Vx+h-Jx T l4+x+1
6. Simplify the following:
2 1 . t t 3x 4x 2x -1
a. —+ -3 - -

. — C.
X x=1 " u+1 21 T+3 3z F-a

=
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1 1 1 1 10x?
x y (x +h)?  x? x2—1

d. i e. . f. 55
Xy x+1

7. Prove that x? + 2xy — 3y? = (x + 3y)(x — ¥), and then simplify:

xX—y 2 7

x2 4+ 2xy — 3y? x—y x+3y

8. Simplify the following expressions:

1 1
: x—1 x*-
a.n— ki b.
1 2
l - X —
n x+1
9. Simplify the following expressions:
N (l 1>—2 b 1 . 1 . a2 —p2
4 5 T 14xP 9 14x97P T gl = b}
10. Reduce the following fractions:
25a°b? x? —y? . 4a* — 12ab + 9 d 4x — x*
125ab T x4y 4a? — 9b? T 4—4x+x2

A.6 Simple Equations and How to Solve Them

Some equations can be solved easily. Consider, for example, the equation 3x+10 =
28. To solve this, we ask: What number must be added to 10 to get 287 Answer:
18. Hence, 3x = 18. Because 3 umes x is 18, x must be 6. There are no other
solutions.

In more complicated cases, we need a more systematic procedure for solving
equations. Two equations that have exactly the same solutions are called equivalent.
The main principles used in solving equations are summarized as follows:

We get equivalent equations if on both sides of the equality sign we do the
following:

(a) add the same number [A.22]
(b) subtract the same number

(c) multiply by the same number = (
(d) divide by the same number # 0
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In order to solve simple equations, we can use [A.22] as follows. First, apply rules
(a) and (b) to 1solate all terms containing the unknown on the same side of the
equality sign. Next, combine all the terms containing the unknown. Finally, use
rules (c) and (d) to find the unknown.

The principle 1s illustrated by the following examples.

Example A.15
Solve the equation 3x + 10 = x + 4.

Solution By using the rules in [A.22] systematically, we obtain:

x4+ 10=x+4
. 3x+4+10-10=x+4+4-10

Ix=x-6
Ix—x=x—x—-6
2x = -6
2 _ =6
2 2
x=-3

With experience, it is possible to shorten the number of steps involved:
Ix+10=x4+4 <= 3x—-x=4-10 = 2x=-6 & x=-3
Here the equivalence arrow <> means: “has the same solutions as.”

When faced with more complicated equations involving parentheses and frac-
tions, we usually begin by multiplying out the parentheses, and then we multiply
both sides of the equation by the common denominator for all the fractions. We
illustrate the procedure in the following example.

Example A.16
Solve the equation 6p — %(2p -3 =3(1-p)— -76-(p + 2).

Solution

6p—p+3=3-3p—

[e Y BN ]
[VIIEN ]

p——
36p-6p+9=18—-18p—Tp-—14

55p=—5
_ 5 _ 1
P==5 =1

The next two examples show that at times great care is needed to find the
right solutions.
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Example A.17
Solve the equation

x+2 8 _2
x—2 x2=2x «x

Solution The equation is equivalent to

x+2 8
x—2 x(x-2)

2
T x
We see that x = 2 and x = 0 both make the equation absurd, because at least

one of the denominators becomes 0. If x % 0 and x # 2, we can muluply
both sides of the equation by the common denominator x(x — 2) to obtain

8 2
x_z-x(x—-2)—m-x(x—2)=;-x(x—2)

x+2x—-—8=2(x-2)
x> +2x-8=2x—4

x>=4

Because 2° = 4 and (—2)* = (—=2)(-2) = 4, both x = 2 and x = —2 satisfy
the last equation. But because x = 2 makes the original equation absurd,

only x = —2 is a solution.
Example A.18
Solve the equation
z 4 1 _ -5
z—=5 3 35—z
Solution We see that z cannot be 5. In order to remember this, we often
write
z 1 -5
—<tx= (2#3)

z=5 3 5-z
We continue by multiplying both sides by 3(z — 5). This gives

3z4+7z-5=135

which has the unique solution z = 5. Because we had to assume z # 5, we
must conclude that no solution exists for this equation.

It 1s often the case that in order to solve a problem. especially in economics,
you must first formulate an appropriate algebraic equation.
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Example A.19

A firm manufactures a commodity that costs $20 per unit to produce. In
addition, the firm has fixed costs of $2000. Each unit is sold for $75. How
many units must be sold if the firm is to have a profit of $14,500?

Solution If the number of units produced and sold is denoted by Q, then
the revenue of the firm is 75Q and the total cost of production is 200 + 2000.

Because profit is the difference between total revenue and total cost, it can
be written as

750 — (20Q + 2000)
Because we want the profit to be 14,500, the equation
750 — (20Q + 2000) = 14,500

must be satisfied. It is easy to find the solution Q = 16,500/55 = 300 units.

Problems

In Problems 1 to 3, solve the equations.

1. a. 5x—10=15
b. 2x—-(5+x)=16—-3x+9)
c. ~5@x —2) = 16(1 —x)
d 4x+2(x—4)—-3=23x-5) -1
e. %x=—8
f. 8x —7)5—3(6x —4) +5x> = (x + )(5x + 2)
g. x>+10x+25=0
h. Gx =12+ @x+1)2=0GBx=DGx+1)+1
2. a. 3x+2=11 b. —3x =21
1 —
. 3x=x -7 A 273 103
1 1
. = f. 4=16
& xt1 x+2 2x+1
- —4 2
3, 9 FT3_Z b —— 2 _ X
x+3 x+4 x-3 x+3 x=-9

C.

6x S 2x—-3 8«

5x—3+B

4. Solve the following problems by first formulating an equation:
a. The sum of twice a number and 5 is equal to the difference between the
number and 3. Find the number.

b. The sum of three successive natural numbers is 10 more than twice the

smallest of them.
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¢. Ann receives double pay for every hour she works over and above 38
hours per week. Last week, she worked 48 hours and earned a total of
$812. What is Ann’s regular hourly wage?

d. John has invested $15,000 at an annual interest rate of 10%. How much
additional money should he invest at the interest rate of 12% if he wants
the total interest income earned by the end of the year to equal $2100?

e. When Mr. Bame passed away, his estate was divided in the following
manner: 2/3 of the estate was left to his wife, 1/4 to his children, and
the remainder, $1000, was donated to a charitable organization. How big
was Mr. Barne’s estate?

5. Solve the following equations:

3y—-1 1-y
a. T3 +2 =3y

4 3 2x +2 7
b. — = — +

x x+2 x*+2x 2x+4

o %

1-z 6
C. =

1+z 2z +1

1{p 3 1 p 1 1
o 2(2-3) Loyl 2t
2(2 4) 4 3) 3Pt =-3

6. A swimming pooling can be filled by any one of three different hosepipes in
20, 30, and 60 minutes, respectively. How long will it take to fill the pool if
all three hosepipes are used at the same time?

A.7 Inequalities

The real numbers consist of the positive numbers, 0, and the negative numbers. If
a 1s a positive number, we write a > 0 (or 0 < a), and we say that a 1s greater
than zero. A fundamental property of the set of positive numbers is

a>0andb>0implya+b>0anda-b>0 [A.23]

If the number c is negative, we write ¢ < 0 (or 0 > ¢).
In general, we say that the number a is greater than the number b, and we
write a > b (or b < a), if a — b is positive:

a>b means that a—b>0 [A.24]
Thus, 4.11 > 3.12 because 4.11 — 3.12 = 099 > 0, and —3 > —35 because

~3 — (—5) =2 > 0. On the number line (see Fig. A.3), a > b means that a lies
to right of b.
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When a > b, we often say that a is strictly greater than b in order to
emphasize that a = b 1s ruled out. If a > b or a = b, then we write a > b (or
b < a) and say that a is greater than or equal 10 b.

a>b means that a—b>0 [A.25]

For example, 4 > 4 and 4 > 2. Note in particular that it is correct to write 4 > 2,
because 4 — 2 is positive or 0.

One can prove a number of important properties of > and >. For example,
a > b and c arbitrary implies a +¢ > b +¢ [A.26]

The argument is simple: Forall a, b, and ¢, (a+¢)—(b+¢c) =a+c—b—c =a—b.
Hence, if a —b > 0, then a+ ¢ — (b +¢) > 0. So [A.26] follows from [A.24].
On the number line in Fig. A.3, [A.26] is:

b+c¢ b a+c a

1 ) I 1
1 1 t L)

FIGURE A.3

/

At the risk of being trivial, here is another interpretation of [A.26]. If one
day the temperature in Paris is higher than that in London, and the temperature at
both places then increases (or decreases) by the same number of degrees, then the
ensuing Paris temperature is still higher than that in London.

In order to find when a given inequality is satisfied, property [A.26] is basic.

Example A.20
Find the values of x satisfying 2x — 5 > x — 3.

Solution Adding 5 to both sides of the inequality yields
2x —54+5>x—-3+5 or 2x>x+2

Adding (—x) to both sides yields 2x — x > x — x + 2, so the solution is
x > 2.

Further Properties of Inequalities

To deal with more complicated inequalities involves using the following further
properties:

a>b and b>c = a>c [A.27]
a>b and ¢>0 — ac> bc [A.28]
a>b and ¢ <0 = ac<bc [A.29]

a>b and ¢>d = a+c>b+d [A.30]
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The corresponding properties are valid when each > is replaced by >. These four
properties all follow easily from [A.23]. For example, [A.29] is proved in this
way. Suppose a > b and ¢ < 0. Then a — b > 0 and —c > 0, so according
to [A.23], (@ — b)(—c¢) > 0. Hence, —ac + bc > 0 and, therefore, ac < bc.
According to [A.28], if an inequality is multiplied by a positive number, the
direction of the inequality is preserved. On the other hand, according to [A.29],
if we mulriply an inequality by a negative number, the direction of the inequality
is reversed. It is important that you understand these rules, and realize that they
correspond to everyday experience. For instance, [A.28] can be interpreted this

way: given two rectangles with the same base, the one with the larger height has
the larger area.

Sign Diagrams

We often need to find the values of a variable for which a given inequality is
satisfied.

Example A.21
Check whether the inequality (x — 1)(3 — x) > 0 is satisfied for x = -3,
x =2, and x = 5. Then find all the values x that satisfy the same inequality.

Solution Forx=-3, wehave (x —1)3~-x)=(—4)-6 = -24 < (;
forx =2, wehave (x —1)3—-x)=1-1=1>0; and for x = 5, we
have (x — 1)(3 — x) = 4- (-2) = —8 < 0. Hence, the inequality is satisfied
for x = 2, but not for x = =3 or x = 5.

To find the entre solution set, we use a sign diagram. The sign varia-
tion for each factor in the product is determined. For example, the factor x—1
1s negative when x < 1, is 0 when x = 1, and is positive when x > 1. This
sign variation is represented in the diagram below. The dashed line to the left
of the vertical line x = 1 indicates that x — 1 < 0 if x < 1; the small circle
indicates that x — 1 = O when x = 1; and the solid line to the right of x =1
indicates that x — 1 > 0 if x > 1. In a similar way, we represent the sign
variation for 3 — x. The sign variation of the product is obtained as follows.
When x < 1, then x — 1 is negative and 3 — x is positive, so the product is
negative. When 1 < x < 3, both factors are positive, so the product is posi-
tive. When x > 3, then x — 1 is positive and 3 —x is negative, so the product
is negative. Conclusion: The solution set consists of those x’s that are greater
than 1, but less than 3. So (x - 1)(3—x) >0 ifandonlyif 1 <x < 3.
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Example A.22
Find the solution set of

2p -3
p—1

>3-p

Solution It is tempting to begin by multiplying each side of the inequality
by p—1. However, then we must distinguish between the two cases, p—1 > 0
and p—1 < 0. If we multiply through by p—1 when p —1 < 0, we have to
reverse the inequality sign. There is an alternative method that can be used,
which makes it unnecessary to distinguish between two different cases. We
begin by adding p — 3 to both sides. This yields

2p =3
p—1

+p—3>0

Making p — 1 the common denominator gives

2p=3+(-3(p-1 20 o P2,
p—1 p—1
because 2p—3+(p=3)(p—1) = 2p—3+p>—4p+3 = p*—2p = p(p-2).
To find the solution set of this inequality, we again use a sign diagram. On
the basis of the sign variations for p, p — 2, and p — 1, the sign variation
for p(p — 2)/(p — 1) is determined. For example, if 0 < p < 1, then p is
positive and (p — 2) is negative, so p(p — 2) is negative. But p — 1 is also
negative on this interval, so p(p —2)/(p — 1) is positive. Arguing this way
for all the relevant intervals leads to the following conclusion: The fraction
p(p—2)/(p—1)is positive if and only if 0 < p < 1 or p > 2. (The original

a inequality has no meaning when p = 1. This is symbolized by a cross in the
diagram.) So the original inequality is satisfied if and only if 0 < p < 1 or
::," D> 2.

; -1 0 1 2 3

Warning 1: The most common error committed in solving inequalities is precisely
the one that was indicated in Example A.22: If we muluply by p—1, the inequality
is only preserved if p — 1 is positive, that is, if p > 1.
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Warning 2: It is vital that you really understand the method of sign diagrams.
A standard error is illustrated by the following example. Find the solution set
for

x=2)+3(x+1) <

0
x+3 -

“Solution”: We construct the sign diagram:

-3 -2 ~1 0 1 2 \
. l ,
x—2 - L ————————————————————————————— o
CTCEE o ) I S ——— ¢ > Wrong!
x+3)  --——- T
e ! ommmmmon e — |

According to this diagram, the inequality should be satisfied for x < —3 and
for —1 < x < 2. However, for x = —4 (< —3), the fraction reduces to 15,
which is positive. What went wrong? Suppose x < —3. Then x —2 < O
and 3(x + 1) < O and, therefore, the numerator (x — 2) + 3(x + 1) is nega-
tive. Because the denominator x + 3 is also negative for x < —3, the fraction is
positive. The sign variation for the fraction in the diagram above is, therefore, com-
pletely wrong. We obtain a correct solution to the given problem by first collecting
terms in the numerator so that the inequality becomes (4x + 1)/(x + 3) < O.

A sign diagram for this inequality reveals the correct answer, which is —3 <
x < -—1/4.

Double Inequalities

Two inequalities that are valid simultaneously are often written as a double inequal-
ity. If, for example, a < z and moreover z < b, it is natural to write @ < z < b.
(On the other hand, if @ < z and 7 > b, but we do not know which is the larger
of a and b, then we cannot write a < b <z or b < a < z, and we do not write
a<z>b)

Example A.23
One day, the lowest temperature in a certain city is 50°F, and the highest 1s
77°F. What is the corresponding temperature variation in degrees Celsius?
(If F denotes degrees Fahrenheit and C denotes degrees Celsius, then F =
3C+32)
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Solution

SO< F <77

50<3C+32<77
50-32<3C<77-32

18 < 2C <45

90 <9C <225

10<C <25

The temperature varied between 10 and 25°C.

Problems

1. Decide which of the following inequalities are true:
a. —6.15>-7.16 b. 626 ¢ (-57<0 d —ir<-

i
4 6 < 1 2 1 1
e. - > = f.22<3? 22%<3? h--Z<-—-
5 7 2 3 4 3
Find the solution sets for the inequalities in Problems 2 to 5.
2. a. 3x+5<x—-13 b.3x-x-1)>x—-(1—-x)
2x —4
(N 3 <7 d. %(l—x)z_Z(x—3)
t 3t 5 7 x+2
s — =+ D+ —=—<—=0+1)—- f. <3
&g Uty <ptsh-g x+a-
2 2 1 .
3.8 252 o b. =12 51 ¢ 5% < 125
x—=1 x=3
3x +1 120 N
d. 2 e. —+1.1<18 f go—2¢g<0
<2.x-i-4 n - & &=
: —-n -2
g. : + = 3 >0 h ="Zs2 i ox* < x®
p—2 p-—4p+4 n+4
4. a. (x-1D(x+4)>0 b. (x = D*(x+4) >0
¢ —-DEx-2x—-3)<0 d. 5x-Dx-1)<0
3x—1
e. 5x—-DMx-1)<0 f. xx >x+3
g.x_3<2x——1 h. x> 4+4x-5<0
x+3

i. —%x3—x2+6x50
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1
~-1

1
5. al<3x-1D+¥1-x)<16 b -5<=-<0 ¢ ’l‘ > 1
* —+1
X
6. Decide whether the following inequalities are valid for all x and y:

ax+1>x b. x> > x C.xX+x>x d. x>+ y* > 2xy

7. In 1993, there was a fixed charge of approximately $120 per year for having
a telephone in Zimbabwe, and an additional $0.167 per call unit used.
a. What was the total cost for 1 year in which x call units are used?
b. What were the smallest and largest numbers of call units one could use
if the annual telephone bill were to be between $170.10 and $186.80?

8. a. The temperature for storing potatoes should be between 4 and 6°C. What
are the corresponding temperatures in degrees Fahrenheit?
b. The freshness of a bottle of milk is guaranteed for 7 days if it is kept
at between 36 and 40°F. Find the corresponding temperature variation in
degrees Celsius.

A.8 Quadratic Equations

This section reviews the method for solving quadratic equations. An example of
such an equation is 12x> — 16x —3 = 0. We could, of course, try to find the values
of x that satisfy the equation by trial and error. However, then it is not easy to
find the only two solutions, which are x = 3/2 and x = —1/6.

Note: The methods for solving equations we have used so far are based on [A.22]
in Section A.6. Many students try to use similar ideas to solve quadratic equa-
tions like 12x> — 16x — 3 = 0. One attempt is this: 12x> — 16x — 3 = 0, so
12x% — 16x = 3, and 2x(6x — 8) = 3. Thus, the product of 2x and 6x — 8 must
be 3. But there are infinitely many pairs of numbers whose product is 3, so this is
of very little help in finding x.

Some others first try to divide each term by x. Then 12x> — 16x —3 =0
yields 12x — 16 = 3/x. Because the unknown x now occurs on both sides of the
equation, we are stuck. Evidently, we need a completely new idea in order to find
the solution. .

The general quadratic equation has the form

ax>+bx+c=0 (as0) [A31]
where a. b. and ¢ are given constants, and x is the unknown. Some simple exam-
ples:
(@ x*-4=0 (@a=1.b=0.and c = —4)
(d) 5x°—8x=0 (a=5b=-8, and c =0)
(©) x*+3=0 (@a=1,b=0.and c = 3)
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In each case, we are interested in finding the solutions (if there are any).

(a) The equation yields x> = 4, and, hence, x = ++/4 = +2, which means that
x is either 2 or —2. (Alternatively: x> -4 =(x +2)(x —=2) =0, s0 x =2
orx = —2.)

(b) Here x is a common factor on the left-hand side, so x(5x — 8) = 0. But the
product of two numbers 1s 0 if and only if at least one of the factors is O.
Hence, there are two possibilities: either x =0 or 5x -8 =0, so x =0 or
x = 8/5.

(¢) Because x? is always > 0, the equation x> + 3 = 0 has no solution.

Now we turn to two examples of equations that are more difficult to solve.

Example A.24
> +8x—-9=0 (1]
It is natural to begin by moving 9 to the right-hand side:
x> +8x =9 2]

However, because x occurs in two terms, it 1S not obvious how to proceed. A
method called completing the square, one of the oldest tricks in mathematics,
turns out to work. To see how, recall from [A.10] that

(x + a)* = x> + 2ax + a* Y

where x2 4+ 2ax +a° is called a complete square. Now look at the expression
x* 4+ 8x on the left-hand side of [2]. What must be added to this expression
to make it a complete square? Comparing the left-hand side of [2] with the
right-hand side of [*], we see that we should have 2a = § and, hence, a = 4.
Thus, @ = 4%, and by adding 4* to the left-hand side of [2], we complete
the square of x> + 8x to get

x? 4+ 8x + 4% = (x + 4)*
Let us now add 4? to both sides of Equation [2]. We then obtain an equation
that has precisely the same solutions as {2] and where, moreover, the left-hand
side 1s a complete square:
x*+8x +4* =9 +47
Thus, [2] is equivalent to
(x+4)?2 =25 [3]

Now, the equation z*> = 25 has two solutions, z = +/25 = 5 and z =
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- = —5. Thus, from [3], either x +4 =5 or x +4 = —35. The solutions
to Equanon [1] are, therefore, x = 1 and x = 9.

Equation {3] can be written as
(x +4)*=5=0 [4]
Then, using the difference of squares formula [A.12] yields
(x+4-5x+4+5=0 or x=Dx+9 =
So we have the following factorization of the left-hand side of [1]:
>+8x—9=(x—-Dx=+9)

Example A.25
Solve

12x> = 16x —3=0
and factor the left-hand side.

Solution  The given equation is equivalent to
12(x*—%x—3)=0 (1]

This equation clearly has the same solutions as
*—ix=1 2]
Now complete the square for x> — 3x = x? + (=%) x. One-half of the

coefficient of x is —%, and, therefore, we add the square of —% to each side
of [2], thus obtaining

2 272 1 N2 _ 1, 4
—txt(=3) =g+ (-3 =3+3
2\2 _ 25
k=% =% (3]
_2_ fs_s _2__ [Bs__s
Hence. x 3_ T=zO0rx—3= Vi = "6 The two solutions are,
=2 __2_§ —2_5__1
therefore. x = £ + t=sandx=3—:=—¢.

As demonstrated in Example A.24, we see that [3] can be written as
(=3-He-1+D=0 o (-H+}=0

Hence. we obtain the factorization

(PRI NN ]

R2(x*—$x-3)=12(x-2) (x+}) (4]

Check that this 1s correct by expanding the nght-hand side.

ES

.
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The General Case

We will now apply the method of completing the square to the general quadratc
equation [A.31]. We begin by taking the nonzero coefficient of x* outside the
parentheses so that [A.31] becomes

b c
a (f +—x+ —> =0 [A.32]
a a
Because a # 0 this equation has the same solutions as

, b c
X+ —x=-——
a a

One-half of the coefficient of x is b/2a. Adding the square of this number to each
side of the equation yields

b (b 2 c (b 2
x -X —_—] === —
a 2a a 2a

2

or

b\~ b*—dac »
X+ Z = T [A.33]

Note that a> > 0 and, if 4> — 4ac < 0, then the right-hand side of [A.33] is
negative. Because (x + b/2a)? is nonnegative for all choices of x, we conclude
that if > — 4ac < 0, then equation [A.33] has no solutions. On the other hand, if
b* —4ac > 0, then [A.33] yields two possibilities:

+b b? — 4ac o +b b? —4dac
— T — T — T e ——
* T 2 T 22

Then the values of x are easily found. In conclusion:

For b%> —4ac >0, a #0,

~bxtb*—4da
ax*+bx+c=0 < x= > ¢ [A.34]

It is a good idea to spend 10 minutes to memorize this formula thoroughly. Once
you have done so, you can immediately write the solutions of any quadratic equa-
tion. Only if 4> — 4ac > 0 are the solutions real numbers. If we use the formula
when b* — 4ac < 0, the square root of a negative number appears and no real
solution exists.
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Example A.26
Use [A.34] to find the solutions of

2x>—4x—-7=0

Solution  Write the equation as 2x> 4+ (—4)x +(~7) = 0. Because a = 2,
b= -4, and ¢ = -7, formula [A.34] yields

e —(—) /(=42 —4-2.(-7) _4=./16+56

2-2 4
4+72 4642 3

The solutions are, therefore, x = 1 + %\/5 andx=1- %«/5

Suppose b> —4ac > 0. By using the square of the difference formula as we did in
Examples A.24 and A.25, it follows that [A.33] is equivalent to

<x+b m)(x b m):o

2a 2a

P ” [A.35]

Denoting the two solutions in [A.34] by x; and x,, Equation [A.35] can be written
as (x — x;)(x — x2) = 0. Therefore, x>+ (b/a)x +c/a = (x —x;)(x — x»). Hence:

Provided that b*> — 4ac > 0 and a # 0, we have

ax2+bx+c=a(x-—x|)(x—x2) [A.36]
where
. —-b+ Vb2 —4ac
1.2 =
2 >

This is a very important result,.because it shows how to factor a general quadratic
function. If b* — 4ac < 0, there is no factorization of ax® + bx + c.

Expanding the right-hand side of the identity x> + (b/a)x + c/a =
(x — x1)(x — x) yields x+ (b/a)x + c/a = x* — (x; + x2)x + x1x2. Equat-
ing like powers of x gives x; + x» = —b/a and x;x, = c¢/a. Thus:

If x; and x, are the roots of ax? + bx + ¢ = 0, then

x1+Xy=—bj/a and x,x» =c/a [A.37]
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Example A.27
Factor (if possible) the following second-degree polynomials:

@ 3x?+3x—% () —2x? +40x — 600

Solution
(@ For sx* +3x — ¥ =0, wehavea =1, b =2 and c = -, so
[A.34] gives
R A RO R Ll Sk VA
X2 = - P = 5
2-(3) 3
-2+£4J60/3 —2+J60 -2+2J15

2 2

WD

The solutions are, therefore, x; = —1 + +/15 and x» = —1 — V/15, so
[A.36] yields
R

x = (=14 /15)] [x = (=1 = V/15)]

Yo

(b) For —2x? +40x — 600 = 0, a = =2, b = 40, and ¢ = —600, so
b* — dac = 1600 — 4800 = —3200. Therefore, no factorization like
that in [A.36] exists in this case.

Note: The general formula for the solution of a second-degree equation is very
useful. However, if b or ¢ is 0, then it is unnecessary to use the formula.

1. If ax*®+ bx = 0 (the quadratic equation lacks the constant term), then factor-
ization yields x(ax + b) = 0, which gives the solutions x = 0 and x = —b/a
directly.

2. If ax?4+c =0 (the equation lacks the term involving x), then a(x*+c/a) = 0
and there are two possibilites. If ¢/a > O, then the equation x> +c/a=0
has no solutions. If ¢/a < 0. then.the solutions are x = £./—c/a.

Problems

1. Solve the following quadratic equations (if they have solutions):
a. 15x—x>=0 b. p*—16=0 c. (g-3)g+4=0
d. 2x2+9=0 e. x(x+D=2x(x-1) f x*—4x+4=0

2. Solve the following quadratic equations by using the method of completing
the square, and factor (if possible) the left-hand side:

a. x>-5x+6=0 b. ’—v—12=0
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¢. 2x* +60x +800 =0 d —ix*+4x+3=0
e. m(m—5—-3=0 f.0.1p>°+p—-24=0
3. Solve the following quadratic equations:
ar’+1lr-26=0 b. 3p> +45p =48
c. 20000 = 300K — K d. r’+ (V3-V2r=+6
, I, 1
e. 0.03x~ — 0.009x = 0.012 f. i p- - EP
4. Solve the following equations by using formula [A.34]:
a. x?=3x+2=0 b. 512 —r=3 c. 6x =4x>—1
d 9x*+42x+44=0 e 30000=x(x+200) f 3x>=5x-1
5. a. Find the rectangle whose circumference is 40 cm and area is 75 cm?.
b. Find two successive natural numbers whose sum of squares is 13.
c.

In a right-angled triangle, the hypotenuse is 34 cm. One of the short

sides is 14 cm longer than the other. Find the lengths of the two short
sides.

d. A motonst drove 80 km. In order to save 16 minutes, he had to drive
10 kmv/h faster than usual. What was his usual driving speed?

6. Solve the following equations:
a. x> —4x=0 b. x*—5x*+4=0 c.z2-2:7"1-15=0
7. Prove formula [A.34] using the following approach. Multiply Equation [A.31]

by 4a; after rearranging, this yields 4a®x? + 4abx = —4ac. Now add > to
both sides. Notice that the left-hand side is then a complete square.

A.9 Two Equations with Two Unknowns

This section reviews some methods for solving equations with two unknowns.

Example A.28
Find the values of x and y that satisfy the two equations

2x +3y =18

[1]
3x —4y =-7

We need to find the values of x and y that satisfy both equations. Suppose
we start by trying x = 0 in the first equation; this implies y = 6. Given
x=0and y =6, 2x+3y = 18 and 3x — 4y = —24. Thus. the first equation
in [1] is satsfied, but not the second. Hence, x = 0 and y = 6 is not 2

solution to [1]. Only if we are very lucky will we find the solution to [1] by
such trial and error.
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Fortunately, there exist more systematic methods for solving [1].
Method I: First, solve one of the equations for one of the variables in terms
of the other and then substitute the result into the other equation. This leaves
only one equation in one unknown, which is easily solved.

Applying this method to [1], we solve the first equation for y in
terms of x: 2x + 3y = 18 implies that 3y = 18 — 2x and, hence. y =

6 — %x. Substituting this expression for y into the second equation in [1]
gives

3x—-4(6—-§-x) =-7
3x =244 3x=-7

9x =724 8x = =21
17x =51

Hence, x = 3. Then we find y by using y = 6— %x once again, thus implying
that y = 6~ 3 -3 = 4. The solution of [1] is, hence, x = 3 and y = 4. (Such
a solution should always be checked by direct substitution.)

Method 2: This method is based on eliminating one of the variables by adding
or subtracting a multiple of one equation from the other. For system [1],
suppose we want to eliminate y; a similar method could be used to eliminate
x instead. If we multiply the first equation in (1] by 4 and the second by
3, then the coefficients of the y terms in both equations will be the same

except for the sign. If we then add the transformed equations together,
we obtain

8x+ 12y = 72
9x — 12y = =21 (2]
17x = 5l

Hence, x = 3. To find the value for y, substitute 3 for x in either of the
original equations and solve for y. This gives y = 4, which agrees with the
earlier result. )
Some prefer to find both x and y by using the following setup:
2x+3y= 18 4 3
ol 3

3x — 4y = 7 3 2

The first column on the right-hand side of [3] suggests that we multiply
the first equation by 4 and the second by 3. This leads to the arrange-
ment in [2]. The second column on the right-hand side of [3] suggests
that we multiply the first equation by 3 and the second by —2. Doing this
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yields
6x + 9y =54
—-6x+ 8y=14
17y = 68
y=4

We end this section by using the elimination method to solve a general linear
system of equations with two equations and two unknowns:

ax+by=c [A.38)
dx+ey=f .

Here a, b, ¢, d, e, and f are arbitrary given numbers, whereas x and y are
the unknowns. If weleta=2,b=3,c=18,d =3, e = —~4,and f = -7,
then [A.38] reduces to system [1]. Using the elimination method for the
general case, we obtain

ax+by=c \ e } d \
dx+ey=f —b —a
aex + bey = ce adx + bdy = cd
—bdx — bey = —bf —adx —aey = —af
(ae — bd)x = ce — bf (bd — ae)y = cd — af
which gives
- - —cd
xzce bf y___cd af=af c (A.39)
ae — bd bd —ae ae—bd

We have found expressions for both x and y.
The formulas in [A.39] break down if the denominator ae — bd in both
fractions is equal to 0. This case requires special attention—see Section 14.3.

Problems
1. Solve each of the following systems of two simultaneous equations:
@ x—y=35 (b) 4x —3v =1 (c) 3x+4y=2.1
x+y=11 2x+9y =4 Sx —6y=17.3
2. Solve each of the following systems of two simultaneous equations:

@ 2K +L =11.35  (b) 230p +450q = 1810
K+4L =258 100p + 150g = 650
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(¢) 001r+021is= 0.042
—0.25r +0.55s = —0.47

. Find two numbers whose sum is 52 and whose difference is 26.

. Five tables and 20 chairs cost $1800, whereas 2 tables and 3 chairs cost
$420. What is the price of each table and each chair?

. A firm produces a good in two qualities, A and B. The estimate for the
coming year’s sales of A is 50% higher than the esumate of the sales of
B. The profit per unit sold of the two qualities is S300 for A and $200
for B. If the goal is a profit of $13,000 over the next vear, how much
of each of the two qualities must be produced?

. A person has saved a total of $10,000 in two accounts. The interest rates
are 5 and 7.2% per year, respectively. If the person earns $676 interest
in 1 year, what was the balance in each of the two accounts?



Sums, Products,
and Induction

—Mathematicians are like lovers ...
consent to the most innocent principle
—the mathematician draws from it a
conclusion that you also must accept,
and from this conclusion another ...

—Fontenelle (1657-1757)

B.1 Summation Notation

Suppose we are interested in the population of a country that is divided into six
regions. Let N; denote the population in region i. Then

Ny + N>+ N3+ Ny+ Ns+ Ng

is the total population. It is often convenient to have an abbreviated notation for
such lengthy sums. The capital Greek letter sigma ¥ is used as a summation
symbol, and the previous sum is written as

Sw
=]

This expression means the “sum from i = 1 to i = 6 of N;.” Suppose, in general,
that there are n regions. Then

846
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is one possible notation for the total population. Here - - - indicates that the obvious
pattern continues. In summation notation, we write

>
i=]

This notation tells us to form the sum of all the terms that result when we substitute
successive integers for i, starting with i = 1 and ending with i = n. The symbol i
is called the index of summation. It is a “dummy variable” that can be replaced
by any other letter (provided that the letter has not already been used for something
else). That is, both 2;3:1 N; and >_7_| N; represent the same sum [1].

The upper and lower limits of summation can both vary. For example,

35

ZNi = N3p + N3; + N33 + N33 + N33 + Ns;
i=30

is the total population in the six regions numbered from 30 to 35.
More generally, if p and g are integers with g > p, then

9
E ai=ap+apy1 +---t+a,
i=p

denotes the sum of the terms that result when we substitute successive integers for
I, starting with i = p and ending with i = gq. If the upper and lower limits of
summation are the same, then the “sum” reduces to one term. For example,

! 011 1
LN=N ) E=5=3

And if the upper limit is less than the lower limit, then there are no terms at all,
so the “sum” reduces to zero.

Example B.1
Compute the following sums:

6 2
, 1
Y i > (k-3 S
@@ ) i ®) > ( ) (c) 2 TSR

i=] k=3

(38

2 +32 442452 =14+44+94+164+25=55

(@) Zi2= 1+
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6
(b) Z(Sk—3)=(5-3—3)+(5-4—3)+(5-5—3)+(5-6—3)=78

k=3
2 1 1 1 1 40+15+8 63
~Z(G+DG+3) 13724735 120 120
21
40

Sums and summation notation occur frequently in books and papers on eco-
nomics. Often, there are several variables or parameters in addition to the sum-
mation index. It is important to be able to read such sums. In each case, the
summation symbol tells you that there is a sum of terms. The sum resuits from
substituting successive integers for the summation index, starting with the lower
limit and ending with the upper limit.

Example B.2
Expand the following sums:

n 1 N
@ > pPg®  m) Y Py (© D k- E)
i=l i=!

j==2

Solution

@ > piq" = p"g" +pPq® + ... + pg™
=1

!
(b) z xS—jyj — x5‘("2)y'2 +x5-(-1)y-1 +x5'°y° +x5‘1y1
j==2

=x"y 2+ x87 X0+ 1ty

2

N
© > (xij =) = (xyj — 52+ (raj — 57 + -+ (xwj — K)
=] )

Note that r is not an index of summation in (a), and j is nor an index of
summation in (c).

Example B.3
Write the following sums using summation notation:

@@ 1+3+32+3%4...438
(b) af +a’b; + a}b? + a’b} + a?b} + a;b; + b
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Solution

(a) This is easy if we note that the first two terms of the sum can be written
as 3° = 1 and 3! = 3. The general term is 3‘, and we have

1+3+32 43+ 438 =)"3

(b) This is more difficult. Note, however, that the indices i and j never
change. Also the exponent for a; decreases step by step from 6 to 0,
whereas that for b; increases from 0 to 6. The general term has the
form af~*b%, where k varies from 0 to 6. Thus,

6
af +a}b; + afb? + @b} + a?bt +aib] + 65 = > at b

Example B.4

To measure vaniations in the cost of living, a number of different price indices
have been suggested.

Consider a “basket” of n commodities. Fori = 1, ..., n, define

g = number of units of good i in the basket
pg) = price per unit of good i in year 0
pY) = price per unit of good i in year ¢
Then

Zp(:)q(,) _ p(l)q(l) p(7)q(2) Foe g pPg® 1]
is the cost of the basket in year 0, and
ZP Dg® = pVgM 4 p@g® 4. . 4 pmgm 2]

is the cost of the basket in year r. A price index for year ¢, with year O as
the base year, is defined as

}:p(l) @)
Zp(t) @) |

100 (B.1]
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If the cost of the basket is 1032 in year O and the price of the same basket
in year  is 1548, then the price index is (1548/1032) - 100 = 150.

In case the quantities ¢ are levels of consumption in the base year 0, this
index is called the Laspeyres price index. But if the quantities g are levels of
consumption in the year z, this index is called the Paasche price index.

Problems

1. Evaluate the following:

10 6
a. Zi . b. Z(s 352 ) c Z(2m+l)
i=] (=2

m=0
2 10 P
/ J -+ 1
d > 22 e » 2 £y —
=0 i=1 j=1 J
2. Expand the following sums:
2 3
a. > 2vk+2 b. > (x+2i)
k=2 i=0
c. Zak,-bk+1 d. Zf(xj) Ax;
k=1 j=0

3. Write these sums by using summation notation:
448412416+ ---+4n
l—s4+<—c+--+ (="

3 5 7 (=D 2n +1
ai1byj + ainbaj + - -+ + Qinby;

3x 4+ 9x 4+ 27x> + 81x* 4+ 243x° + 729x®

a?biss + albiva+ -+ albisp

a}biss + @l biss+ - +all bivpss

81.297 + 81,495 + 81,693 + 81,891

4. Compute the price index [B.1]if n = 3, p{’ = 1. p¥ =2, p§’ = 3,
p"=2pP =3, pP =440 =3¢P=5and ¢g®=7.

a. Expand Zle (x; — Xx), and prove that it 1s equal to ZL, x;j — 5X.
b. Prove in general that

Fae oo & T

134

n n
Z(x,- —-X) = Zx,— - nx
i=] i=]

6. Consider a country divided into 100 regions. For a certain year, let ¢;; be
the number of persons who move from region i to region j. If, say, i = 25

SR 7
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and j = 10, then we write ¢»s o for ¢;;. Explain the meaning of the sums:

100
a. E Cij b. E Cij
j=1

a. ick2=czn:k2 b. (iai>-=ia?
7 4 )
c. Zb + Z by _Zb d. > 5= 5

Jj=n+1 k=3 k=0

e‘ZlJ Zal.lj -' (;(_ng,’— aj

lat)

B.2 Rules for Sums

The following algebraic properties of the sigma notation are helpful when manip-
ulating sums:

i(a; -+ b,) = i a; + i b,’ (addlﬁVlty property) [B2]

Z cai =c¢ Z a; (homogeneity property) [B.3]

The proofs of these properties are straightforward. For example, [B.3] is proved
by noting that

ani=ca1+ca2+---+ca,,»=c(a1+ag—1—---+an)=cZa,~

=l

Property [B.3] states that a constant factor can be moved across the summation
sign. If a; = 1 for all ; in [B.3]. then

ic = nc [B.4]
i=1

which just states that a constant ¢ summed » times 1s equal to n times c.
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Properties [B.2] to [B.4] are also valid if the lower index of summation is an
integer other than 1. For example,

6
‘ 2:7=7+7+7+7=28
k=3

because the number 7 is summed 4 times.
Rules [B.2}] to [B.4] can be applied in combination to give formulas like

i(ai +b—c+d)= iai +ib[ —anci + nd
i=] i=] i=]

i=]

Example B.5
Evaluate the sum

n

Z 1 __1+1+1+ . 1
(m—1m 1.2 2.3 3.4 (n~Dn

m=2

by using the identity

Solution

m=2 m=2 m=2
_1+ +“_ 1 1+1+ +1 +%
T\l 23 n-1 2 3 n—-1 n
=1--—

n

To derive the last equality, note that all the terms cancel pairwise, except
the first term within the first parentheses and the last term within the last
parentheses. This 1s a commonly used and powerful trick for calcujating
certain kinds of sums.
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Example B.6
The arithmetic mean x of n numbers x;, x>, ....x, 1s the sum of all the
numbers divided by the number of terms, n:

Prove that

di—-%=0 ad > (x-5?=) x'—ni
=] i=]

=]

Solution The difference x; — x is the deviation between x; and the mean.
We prove first that the sum of these deviations is 0, using the foregoing
definition of x:

n n n n
E (xi—f)=2 xi-E f=E xi—nx=nx—-—nx=90
i=} i=1 i=1 i=1

Furthermore,

n n n n n
Z(X; - x_)2 = Z(x,z - ZEX[ +f2) = le?' - ZEZX[ + Zfz
i=] i=I i=] i=1 i=l

n n
=Zx‘-2—22nf+nf2= xiz—rzf2

=1 =1

Note: We have considered some useful algebraic properties of sums. A frequent
error 1s a failure to observe that, in general,

n

$is(5)

=]

It is important to note that the sum of the squares is not generally equal to the square
of the sum. For example, ¥ -, x2 = x? + x3 whereas (3, x,)? = (x; + x2)? =
Jc]2 +2x1x5 +x22, so the two are equal iff x;x» = 0—that is, x; or x> (or both) must
be zero. More generally,

gxm - (;x> (};)

so the sum of the cross products is not equal to the products of the individual sums.



854 Appendix B / Sums, Products, and Induction

Useful Formulas

If you asked a group of 10-12-year-old students to sum all the numbers from 1
to 100, would you expect to have a correct answer within 1 hour? According to
reliable sources, Carl F. Gauss solved a similar problem 1in his tenth year. His
teacher asked his students to sum 81,297 + 81,495 + 81,693 + --- + 100, 899.
There are 100 terms and the difference between successive terms is constant and
equal to 198. Obviously, the teacher chose this sum knowing that a tnck could
yield the answer quickly. Thus, the laboriously derived answers of the students
could easily be checked. But Gauss, who later became one of the world’s lead-
ing mathematicians, gave the right answer, which is 9,109,800, in only a few
minutes.

Applied to the easier problem of finding the sum 1 + 2 + --- + n, Gauss’
argument was probably as follows: First, write the sum x in two ways

x=142+---+(n—1+n
x=n+n~-1+.--+2+1

Summing vertically gives

2=1+n+2+0-D]+-+[r-D+2]+@n+1)
=10+n+d+n+---+d+n)+{14+n)
=n(l +n)
Thus, we have the result:
Yi=1+2+--+n=1inn+1) [B.5]
=l

The following two summation formulas are sometimes useful:

n

Zi2=12+22+32+...+n2=én(n+1)(2n+l) (B.6]
=]
DT I I S [C’_(_";_ﬂ [B.7]
i=]

Check to see if these formulas are true for n = 1, 2, and 3. One way of proving

that they are valid generally is to use mathematical induction, as discussed in
Section B.5.
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Newton’s Binomial Formula
We all know that (a + b)! = a + b and (a + b)?> = a’® + 2ab + b*. Using the latter

equality and writing (a + b)*> = (a + b)*(a + b) and (a + b)* = (a + b)*(a + b)?,
we find that

(@a+b) =a+b

(a+ b)* =a> +2ab+b*

(a+ b)Y’ =a® +3a’b + 3ab® + b°

(@ +b)* = a* +4a°b + 6a°b* + 4ab’ + b*

What is the corresponding formula for (a + b)™, where m is an arbitrary positive
integer? The answer is given by the Newton binomial formula:

(a+b)"=a" + (T)a’"'lb + <’;>a"‘"2b2 + .-

+( m >ab’"“1+ (”’)b
m-—1 m

(B.8]

Here the binomial coefficient

<m> _mm—=1)---(m—k+1)

k)~ k!

as explained in Section 7.4. Formula [B.8] is proved in Section 7.4. In general,
(") =m and (7) = 1. For m =5, we have

|
5\ 5-4 5 5-4-3 5 5-4.3-2
=—=1 = = s = ———— O
(2> 1-2 0 <3> 1-2-3 10 (4> 1-2-3-4 >

So [B.8] yields

(@ + b)Y =a’ + 5a*b + 10a°b* + 10a*b> + Sab* + b’

If we study the coefficients in the expansions for the successive powers of (a + b),
we have the following pattern, called Pascal’s triangle (though it was actually



856 Appendix B / Sums, Products, and Induction

known in China by around 1100, long before Blaise Pascal was born):

1 9 36 8 126 126 8 36 9 1
This table can be continued indefinitely. The numbers in this triangle are the

binomial coefficients. For instance, the numbers in row 6 (when the first row is
numbered 0) are

0 ) @) GGG 6

Note, first, that the numbers are symmetric about the middle line. This symmetry

can be expressed as
m m
= B.9
(£)= (") s
6

For example, (§) = 15 = (§). Second, the sum of two adjacent numbers in any
row 1S equal to the number between the two in the row below. For instance, the
sum of 21 and 35 in the seventh row 1s equal to 56 in the eighth row. In terms of

symbols,
m m m—+ 1
<k>+(k+l>=<k+l> (B-10)

In Problem 4, you are asked to prove [B.9] and [B.10].

Problems

1. Use the results in [B.5] and [B.6] to find $_;_, (k* + 3k + 2).
2. Use Newton’s binomial formula [B.8] to find (a + b)°.
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3. a. Prove that Zf=l(ak+, — ar) = ay9 — a), and, more generally, that

ZZ:l(ak-H — Q) = Qpyy — ai.
b. Use the result in (a) to compute the following:

' 50 1 1 . 12 -

0E () wEe-s
k=1 k=1

i) Y (ar**! —ar¥)
k=1

4. a. Verify that
2 2 2 8 8+1
@: <8—3> and that (3>+<3+1) =<3+1>

b. Verify [B.9] and [B.10] by using the definition of ('Z )

Sr(e)y

k=0

5. Find the sum

6. Prove the summation forrmula for an arithmetic series,

n—1

Z(a+id) =na+ Ln-—l_)d
| =0

2

by using the idea in the proof of [B.5]. Then verify the summation result of
Gauss mentioned earlier.

B.3 Double Sums

Often one has to combine several summation signs. Consider, for example, the
following rectangular array of numbers:

ajy ay .- Qn
Gy 4»n - Q2

[B.11]
am1 Qm2 ... Qpp

A typical number here is of the form a;;, where 1 <i <mand 1 < j <n. (For
example, a;; may indicate the total revenue of a firm from its sales in region i in
month j.) There are n - m numbers in all. Let us find the sum of all the numbers
in the array by first finding the sum of the numbers in each of the m rows and then
adding all these row sums. The m row sums can be written in the form }_, a);,
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D i=1@2js s 2 i) @mj. (In our example, these row sums are the total revenues in

each region summed over all the » months.) The sum of these m sums is equal to

D=1 @i+ iy azj+- -+ 3 _) amj, Which can be written as 3, (Z;-’:, a,-j).
If we add the numbers in each of the n columns first and then take the sum
of these columns, we get instead

ia” +ian—- +Za,n —Xn: (Zm:a,,)

i=l i=] Jj=1 i=]

(How do you interpr