MAT 0334 - Análise Funcional 3^a Prova - 27 de junho de 2017

Questão 1) (2,5 pts) Seja X um espaço de Banach e considere $S_n, T_n \in B(X), n \in \mathbb{N}$. Suponha que, para todo $x \in X$, as sequências $(S_n x)_{n \in \mathbb{N}}$ e $(T_n x)_{n \in \mathbb{N}}$ sejam convergentes. Mostre que existe $P \in B(X)$ tal que, para todo $x \in X$, $\lim_{n \to \infty} S_n(T_n x) = Px$.

Questão 2) (2,5 pts) Seja H um espaço de Hilbert e seja $T \in B(X)$ tal que $T = T^*$ e $\langle Tx, x \rangle \geq 0$, para todo $x \in H$. Mostre que $T + I : H \to H$ é uma bijeção e $(T + I)^{-1} \in B(H)$.

Sugestão: Mostre primeiro que $||(T+I)x|| \ge ||x||$ para todo $x \in H$.

Questão 3) (2,5 pts)

- (a) Mostre que existe $\Lambda \in (\ell^{\infty})^*$, $\|\Lambda\| = 1$, tal que $\Lambda((x_n)_{n \in \mathbb{N}}) = \lim_{n \to \infty} \frac{x_1 + x_2 + \dots + x_n}{n}$ sempre que $(x_n)_{n \in \mathbb{N}} \in \ell^{\infty}$ for tal que este limite exista.
- (b) Mostre não existe $(a_n)_{n\in\mathbb{N}}\in\ell^1$ tal que $\Lambda\left((x_n)_{n\in\mathbb{N}}\right)=\sum_{n=1}^\infty a_nx_n$ para todo $(x_n)_{n\in\mathbb{N}}\in\ell^\infty$.

Questão 4) (2,5 pts) Considere $C^{\infty}(\mathbb{R})$ munido da estrutura de espaço de Fréchet induzida pelas seminormas $p_j(f) = \sup\{|f^{(k)}(x)|; 0 \le k \le j, |x| \le j\}, j \in \mathbb{N}$. Defina $L: C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R}),$ $(Lf)(x) = xf'(x) + f(x), f \in C^{\infty}(\mathbb{R}), x \in \mathbb{R}.$

- (a) Mostre que, para todos $l \in \mathbb{N}, f \in C^{\infty}(\mathbb{R})$ e $x \in \mathbb{R}$, tem-se $(Lf)^{(l)}(x) = xf^{(l+1)}(x) + (l+1)f^{(l)}(x)$.
- (b) Mostre que, para todos $k \in \mathbb{N}$ e $f \in C^{\infty}(\mathbb{R})$, tem-se $p_k(Lf) \leq k \, p_{k+1}(f) + (k+1) \, p_k(f)$.
- (c) Conclua que L é contínuo.

Informação útil: Se X é um espaço de Fréchet com as seminormas $\{p_j; j \in \mathbb{N}\}$, Y é um espaço de Fréchet com as seminormas $\{q_j; j \in \mathbb{N}\}$ e $T: X \to Y$ é uma aplicação linear tal que, para todo $k \in N$, existem C > 0 e $j \in \mathbb{N}$ tais que $q_k(Tx) \leq C[p_1(x) + \cdots + p_j(x)]$ para todo $x \in X$, então T é contínua. Este é o resultado do Problema 66b da Lista e pode ser aqui usado sem demonstração.