Online First version

Operators with analytic orbit for the torus action

by

Rodrigo A. H. M. Cabral and Severino T. Melo (São Paulo)

Abstract. The class of bounded operators on $L^2(\mathbb{T}^n)$ which have an analytic orbit under the action of \mathbb{T}^n by conjugation with the translation operators is shown to coincide with the class of zero-order pseudodifferential operators whose discrete symbol $(a_j)_{j\in\mathbb{Z}^n}$ is uniformly analytic, in the sense that there exists C>1 such that the derivatives of a_j satisfy $|\partial^{\alpha}a_j(x)| \leq C^{1+|\alpha|}\alpha!$ for all $x\in\mathbb{T}^n$, all $j\in\mathbb{Z}^n$ and all $\alpha\in\mathbb{N}^n$. It then follows that this class of analytic pseudodifferential operators is a spectrally invariant *-subalgebra of the algebra of bounded operators on $L^2(\mathbb{T}^n)$, dense (in norm topology) in the algebra of $\rho=\delta=0$ Hörmander-type operators.

Introduction. Let us consider the unitary representations $y \mapsto T_y$ and $\eta \mapsto M_{\eta}$ of \mathbb{R}^n on $L^2(\mathbb{R}^n)$ defined by $T_y u(x) = u(x-y)$ and $M_{\eta} u(x) = e^{ix\cdot\eta}u(x), \ x \in \mathbb{R}$. Cordes [3] proved that a bounded linear operator A on $L^2(\mathbb{R}^n)$ is such that

(1)
$$\mathbb{R}^{2n} \ni (y,\eta) \mapsto M_n T_u A T_{-u} M_{-n} \in \mathcal{L}(L^2(\mathbb{R}^n))$$

is a smooth function with values in the Banach space of all bounded operators on $L^2(\mathbb{R}^n)$ if and only if there is a $p \in C^{\infty}(\mathbb{R}^{2n})$, bounded and with all its partial derivatives also bounded, such that, for all smooth and rapidly decreasing u and all $x \in \mathbb{R}^n$, one has

$$(2) \qquad Au(x)=\frac{1}{(2\pi)^n}\int_{\mathbb{R}^n}e^{ix\cdot\xi}p(x,\xi)\widehat{u}(\xi)\,d\xi, \qquad \widehat{u}(\xi)=\int_{\mathbb{R}^n}e^{-is\cdot\xi}u(s)\,ds.$$

This class of operators is often denoted by $\mathrm{OPS}^0_{0,0}(\mathbb{R}^n)$, they are the pseudodifferential operators of order zero with symbols satisfying $\rho = \delta = 0$ Hörmander-type global estimates. Cordes' result can thus be regarded as the characterization of $\mathrm{OPS}^0_{0,0}(\mathbb{R}^n)$ as the operators with smooth orbit under the canonical (not everywhere strongly continuous) action of the Heisenberg

²⁰¹⁰ Mathematics Subject Classification: Primary 47G30; Secondary 35S05, 58G15. Key words and phrases: pseudodifferential operators, smooth vectors, analytic vectors. Received 30 November 2016; revised 2 September 2017. Published online *.

group on the C*-algebra $\mathcal{L}(L^2(\mathbb{R}^n))$. It implies, in particular, that this class is a spectrally invariant *-subalgebra of $\mathcal{L}(L^2(\mathbb{R}^n))$.

The class $OPS_{0,0}^0(\mathbb{R}^n)$ is not invariant under diffeomorphisms. Hence, in general, it does not make sense to define it on manifolds. But since $OPS_{0,0}^0(\mathbb{R}^n)$ is invariant under translations, it does make sense to define $OPS_{0,0}^0(\mathbb{T}^n)$ as the class of operators acting on functions defined on the torus \mathbb{T}^n which are "locally" (the quotation marks indicate that only the canonical charts of the torus are considered) given by operators in $OPS_{0,0}^0(\mathbb{R}^n)$. It follows from Cordes' result on \mathbb{R}^n that $OPS_{0,0}^0(\mathbb{T}^n)$ can be characterized as those bounded operators on $L^2(\mathbb{T}^n)$ which have smooth orbits when acted on by the group \mathbb{T}^n via conjugation with translations. This is stated, using the discrete symbol representation of pseudodifferential operators on \mathbb{T}^n , in [6, Theorem 2] for n = 1 and here in our Theorem 2.

The main purpose of this paper is to address the question of which bounded operators on $L^2(\mathbb{T}^n)$ have real-analytic orbits. We prove in Theorem 3 that these are precisely the operators in $\mathrm{OPS}^0_{0,0}(\mathbb{T}^n)$ whose discrete symbols, which are sequences (a_j) , are "uniformly analytic", meaning that each a_j is analytic and the coefficients of their Taylor series satisfy estimates uniform in j. Following [2], we denote by $\mathfrak{Op}_0(\mathbb{T}^n)$ this class of pseudodifferential operators.

The global representation of pseudodifferential operators on the torus, in which the discrete Fourier transform and discrete symbols replace, respectively, the Fourier transform on \mathbb{R}^n and localization, goes back to Volevich in the 1970s [1]. A complete treatment of this subject, including analogues of the Fourier transform for noncommutative Lie groups, is given in [11].

It is an easy corollary of our Theorem 3 that $\mathfrak{Op}_0(\mathbb{T}^n)$ is a spectrally invariant *-subalgebra of $\mathcal{L}(L^2(\mathbb{T}^n))$. Chinni and Cordaro [2] give a more concrete proof that it is a *-algebra, but we do not know if there is a proof of the spectral invariance directly using local or discrete symbols. It also follows that $\mathfrak{Op}_0(\mathbb{T}^n)$ is dense in $\mathrm{OPS}_{0,0}^0(\mathbb{T}^n)$.

Characterizations of classes of pseudodifferential operators as the smooth operators for actions of Lie groups on C*-algebras have also been considered [7, 8, 10, 12], in connection with questions arising from deformation quantization and nonlinear PDEs.

1. Smoothness result. Let \mathbb{T}^n denote the torus $\mathbb{R}^n/(2\pi\mathbb{Z})^n$. For each $j \in \mathbb{Z}^n$, let $e_j \in C^{\infty}(\mathbb{T}^n)$ be defined by $e_j(x) = e^{ij \cdot x}$. We have just denoted, as we often will, by the same letter x both an element x of \mathbb{R}^n and its class $[x] \in \mathbb{T}^n$. We equip \mathbb{T}^n with the measure induced by the Lebesgue measure of \mathbb{R}^n . If $g \in L^1(]-\pi,\pi]^n$) and f([x]) = g(x), then

$$\int_{\mathbb{T}^n} f = \int_{]-\pi,\pi]^n} g(x) \, dx.$$

Given a linear map $A: C^{\infty}(\mathbb{T}^n) \to C^{\infty}(\mathbb{T}^n)$, the sequence $(a_j)_{j \in \mathbb{Z}^n}$, $a_j = e_{-j}(Ae_j) \in C^{\infty}(\mathbb{T}^n)$, is called the *discrete symbol* of A. Using Fourier series, one may then write

(3)
$$Au(x) = \frac{1}{(2\pi)^n} \sum_{j \in \mathbb{Z}^n} a_j(x) e_j(x) \widehat{u}_j, \quad \widehat{u}_j = \int_{\mathbb{T}^n} e_{-j} u,$$

for all $u \in C^{\infty}(\mathbb{T}^n)$ and $x \in \mathbb{T}^n$.

We say that $(a_j)_{j\in\mathbb{Z}^n}$, $a_j\in C^{\infty}(\mathbb{T}^n)$, is a symbol of order $m\in\mathbb{R}$ if, for every multiindex $\alpha\in\mathbb{N}^n$,

$$\sup\{(1+|j|)^{-m}|\partial^{\alpha}a_{j}(x)|;\ j\in\mathbb{Z}^{n},\ x\in\mathbb{T}^{n}\}<\infty,$$

where $|j| = (j_1^2 + \cdots + j_n^2)^{1/2}$, $j = (j_1, \dots, j_n)$. For n = 1, the following theorem is [6, Proposition 1]. To adapt that proof to the case n > 1, one uses $e^{ij \cdot x} = (1 + |j|^2)^{-p} |(1 - \Delta)^p e^{ij \cdot x}|$, $j \in \mathbb{Z}^n$, $p \in \mathbb{N}$, where Δ denotes the Laplace operator. See also [2, Theorem 3.4].

THEOREM 1. If $(a_j)_{j\in\mathbb{Z}^n}$ is a symbol of order m, then (3) defines a linear operator $A: C^{\infty}(\mathbb{T}^n) \to C^{\infty}(\mathbb{T}^n)$. If $m \leq 0$, then A extends to a bounded linear operator $A: L^2(\mathbb{T}^n) \to L^2(\mathbb{T}^n)$, whose norm satisfies, for any integer p > n/2,

(4)
$$||A|| \le C_p \sup\{|(1-\Delta)^p a_j(x)|; j \in \mathbb{Z}^n, x \in \mathbb{T}^n\}, \quad C_p = \sum_{l \in \mathbb{Z}^n} (1+|l|^2)^{-p}.$$

We then write $A = \operatorname{Op}((a_i)_{i \in \mathbb{Z}^n})$, or simply $A = \operatorname{Op}(a_i)$.

For each $y \in \mathbb{T}^n$, let T_y denote the operator, unitary on $L^2(\mathbb{T}^n)$, defined by $(T_y u)(x) = u(x-y)$. For $A = \operatorname{Op}(a_j)$, one has $T_y A T_{-y} = \operatorname{Op}((T_y a_j)_{j \in \mathbb{Z}^n})$. For each $\alpha \in \mathbb{N}^n$, denote $A^{\alpha} = \operatorname{Op}((\partial^{\alpha} a_j)_{j \in \mathbb{Z}^n})$. It follows from the group property $T_y T_z = T_{y+z}$ and from (4) that $y \mapsto T_y A T_{-y}$ is a smooth function on \mathbb{T}^n with values in the Banach space $\mathcal{L}(L^2(\mathbb{T}^n))$, and moreover $\partial_y^{\alpha}(T_y A T_{-y}) = T_y A^{\alpha} T_{-y}$. This proves the "if" statement in the following theorem.

THEOREM 2. Let $A \in \mathcal{L}(L^2(\mathbb{T}^n))$ be a bounded operator. The map

$$\mathbb{T}^n \ni y \mapsto T_y A T_{-y}$$

is smooth with respect to the norm topology of $\mathcal{L}(L^2(\mathbb{T}^n))$ if and only if $A = \operatorname{Op}(a_j)$ for some symbol $(a_j)_{j \in \mathbb{Z}^n}$ of order zero.

Proof. If a bounded operator A on $L^2(\mathbb{R}^n)$ is such that the map (1) is smooth, we call it a *Heisenberg smooth* operator. Analogously, if $A \in \mathcal{L}(L^2(\mathbb{T}^n))$ is such that (5) is smooth, we say that it is *translation smooth*.

For each $\theta = (\theta_1, \dots, \theta_n) \in \mathbb{R}^n$, let $\tilde{U}_{\theta} \subset \mathbb{R}^n$ denote the open rectangle

$$\tilde{U}_{\theta} =]\theta_1 - \pi, \theta_1 + \pi[\times \cdots \times]\theta_n - \pi, \theta_n + \pi[,$$

let $U_{\theta} \subset \mathbb{R}^n/(2\pi\mathbb{Z})^n = \mathbb{T}^n$ denote the set of the equivalence classes of all $x \in \tilde{U}_{\theta}$ and let $\chi_{\theta} : U_{\theta} \to \tilde{U}_{\theta}$ be the chart that sends a class in U_{θ} to its unique

representative in \tilde{U}_{θ} . Let then $I_{\theta}: L^{2}(\mathbb{T}^{n}) \to L^{2}(\tilde{U}_{\theta})$ denote the unitary map $I_{\theta}u = u \circ \chi_{\theta}^{-1}$, $E_{\theta}: L^{2}(\tilde{U}_{\theta}) \to L^{2}(\mathbb{R}^{n})$ denote the extension-by-zero embedding and $R_{\theta}: L^{2}(\mathbb{R}^{n}) \to L^{2}(\tilde{U}_{\theta})$ denote the restriction map. Finally, let $\Xi_{\theta}: \mathcal{L}(L^{2}(\mathbb{T}^{n})) \to \mathcal{L}(L^{2}(\mathbb{R}^{n}))$ denote the isometric *-homomorphism $\Xi_{\theta}(A) = E_{\theta}I_{\theta}AI_{\theta}^{-1}R_{\theta}$.

There exists a finite collection $\{\phi_1,\ldots,\phi_q\}$ of smooth functions (we may choose $q=3^n$) such that $\sum_{r=1}^q \phi_r \equiv 1$ and, for each pair of integers $1 \leq m, p \leq q$, there is a $\theta_{mp} \in \mathbb{R}^n$ such that the union of the supports of ϕ_m and ϕ_p is contained in $U_{\theta_{mp}}$. A translation smooth operator $A \in \mathcal{L}(L^2(\mathbb{T}^n))$ can thus be written as a finite sum of operators of the form $\phi(M)A\psi(M)$, where $\phi(M)$ and $\psi(M)$ are the operators of multiplication by, respectively, the smooth functions ϕ and ψ , whose supports are both contained in U_{θ} for some $\theta \in \mathbb{R}^n$. It is then enough to show that such a $\phi(M)A\psi(M)$ equals $Op(a_j)$ for some symbol $(a_j)_{j\in\mathbb{Z}^n}$ of order zero.

Noting that $T_y\phi(M)T_{-y}=\phi_y(M)$, where $\phi_y=T_y\phi$, we see that the operators $\phi(M)$ and $\psi(M)$ are translation smooth, and hence so is $\phi(M)A\psi(M)$. Next we prove that $\tilde{A}=\Xi_{\theta}[\phi(M)A\psi(M)]$ is Heisenberg smooth. For that it suffices to show (see [4, Section 8.1]) that both maps

(6)
$$\mathbb{R}^n \ni y \mapsto T_y \tilde{A} T_{-y} \text{ and } \mathbb{R}^n \ni \eta \mapsto M_\eta \tilde{A} M_{-\eta}$$

are smooth (abusing notation, we are denoting by T_y translation operators both on $L^2(\mathbb{T}^n)$ and on $L^2(\mathbb{R}^n)$). It suffices to prove that the partial derivatives exist at y=0 and at $\eta=0$, respectively, because $y\mapsto T_y$ and $\eta\mapsto M_\eta$ are representations.

For i = 1, ..., n, let A_i denote the partial derivative with respect to y_i at y = 0 of $y \mapsto T_y A T_{-y}$,

(7)
$$A_i = \lim_{h \to 0} \frac{T_{(0,\dots,0,h,0,\dots,0)}\phi(M)A\psi(M)T_{(0,\dots,0,-h,0,\dots,0)} - \phi(M)A\psi(M)}{h}.$$

Since

$$\varXi_{\theta}[T_y\phi(M)A\psi(M)T_{-y}] = T_y \varXi_{\theta}[\phi(M)A\psi(M)]T_{-y}$$

for all sufficiently small y, we conclude from (7) that the derivative with respect to y_i at y = 0 of $y \mapsto T_y \tilde{A} T_{-y}$ equals $\Xi_{\theta}(A_i)$.

Let $\bar{\phi}$ and $\bar{\psi}$ be smooth functions with support contained in U_{θ} such that, for all sufficiently small y, $\bar{\phi}_y \phi \equiv \phi$ and $\bar{\psi}_y \psi \equiv \psi$, and hence

$$\bar{\phi}(M)[T_y\phi(M)A\psi(M)T_{-y}]\bar{\psi}(M) = T_y\phi(M)A\psi(M)T_{-y}.$$

Multiplying both sides of (7) on the left by $\bar{\phi}(M)$ and on the right by $\bar{\psi}(M)$, we then conclude that $\bar{\phi}(M)A_i\bar{\psi}(M)=A_i$. The argument we have used to find the first-order derivatives can next be used to find the second-order derivatives, and successively to prove that $\mathbb{R}^n \ni y \mapsto T_y \tilde{A} T_{-y}$ is C^{∞} .

Take $\rho \in C_c^{\infty}(\tilde{U}_{\theta})$ such that $\rho(M)\tilde{A}\rho(M) = \tilde{A}$. The second map in (6) is smooth because

$$M_{\eta}\tilde{A}M_{-\eta} = [M_{\eta}\rho(M)]\,\tilde{A}\left[\rho(M)M_{-\eta}\right]$$

and the maps $\eta \mapsto M_{\eta} \rho(M)$ and $\eta \mapsto \rho(M) M_{-\eta}$ are smooth.

By Cordes's result [3] (see also [4, Theorem 8.2.1] and [8, Theorem 1]), there exists $p \in C^{\infty}(\mathbb{R}^{2n})$, bounded and with all its partial derivatives also bounded, such that (2) holds for \tilde{A} . The discrete symbol (a_j) of $\phi(M)A\psi(M)$ can then be expressed in terms of p by the iterated integral

$$a_j(x) = e_{-j}(x)\phi(x)A(\psi e_j)(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} p(x,\xi) \int_{\tilde{U}_\theta} e^{i(x-s)\cdot(\xi-j)} \rho(s) \, ds \, d\xi.$$

Using a standard technique of pseudodifferential calculus (for n = 1, what we need is [6, estimate (10) for l = 0]), it follows that (a_j) is a zero-order discrete symbol. \blacksquare

2. Analytic operators. As in the case of complex-valued functions (see, for example, [5, Section II.3] or [13, Section V.1]), a smooth function $f: \mathbb{T}^n \to \mathcal{L}(L^2(\mathbb{T}^n))$ is analytic, in the sense that at each point its Taylor series converges to f, if and only if there is C > 1 such that, for every multiindex $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n$,

(8)
$$\sup\{\|\partial^{\alpha} f(x)\|; x \in \mathbb{T}^n\} \le C^{1+|\alpha|} \alpha!$$

(as usual, we denote $|\alpha| = \alpha_1 + \cdots + \alpha_n$ and $\alpha! = \alpha_1! \dots \alpha_n!$).

We say that $A \in \mathcal{L}(L^2(\mathbb{T}^n))$ is translation analytic if the function $f(y) = T_y A T_{-y}$, $y \in \mathbb{T}^n$, is analytic. Being translation smooth, a translation analytic operator is, by Theorem 2, necessarily of the form $A = \operatorname{Op}(a_j)$ for some symbol $(a_j)_{j \in \mathbb{Z}^n}$ of order zero. The following theorem gives a necessary and sufficient condition on (a_j) for $A = \operatorname{Op}(a_j)$ to be translation analytic.

For each multiindex $\beta = (\beta_1, \dots, \beta_n)$, $L^{\beta} = (1 + \partial_1)^{\beta_1} \dots (1 + \partial_n)^{\beta_n}$ defines an invertible operator $L^{\beta} : C^{\infty}(\mathbb{T}^n) \to C^{\infty}(\mathbb{T}^n)$. Its inverse can be expressed using Fourier series:

(9)
$$(L^{\beta})^{-1}u(x) = \frac{1}{(2\pi)^n} \sum_{l \in \mathbb{Z}^n} \frac{e^{il \cdot x} \widehat{u}_l}{(1+il_1)^{\beta_1} \dots (1+il_n)^{\beta_n}}.$$

For each positive integer m, define a seminorm ρ_m on $C^{\infty}(\mathbb{T}^n)$ by

$$\rho_m(a) = \sup\{|\partial^{\beta} a(x)|; |\beta| \le m, x \in \mathbb{T}^n\}.$$

THEOREM 3. Let $A \in \mathcal{L}(L^2(\mathbb{T}^n))$ be a bounded operator. Then A is translation analytic if and only if $A = \operatorname{Op}(a_j)$ for some symbol $(a_j)_{j \in \mathbb{Z}^n}$ of order zero satisfying, for some constant C > 1 and for every multiindex α ,

(10)
$$\sup\{|\partial^{\alpha} a_{j}(x)|; x \in \mathbb{T}^{n}, j \in \mathbb{Z}^{n}\} \leq C^{1+|\alpha|}\alpha!.$$

Proof. Suppose first that $A = \operatorname{Op}(a_j)$ for some (a_j) satisfying (10), and consider $f(y) = T_y A T_{-y}$, $y \in \mathbb{T}^n$. Using the remarks and notation of the paragraph right after Theorem 1, and by the norm estimate (4), for p > n/2 we have

$$\sup\{\|\partial^{\alpha} f(x)\|; x \in \mathbb{T}^n\} \le \|A^{\alpha}\| \le 2^p C_p \sup_{j \in \mathbb{Z}^n} \rho_{2p}(\partial^{\alpha} a_j).$$

It then follows from (10) that

$$\sup\{\|\partial^{\alpha} f(x)\|; x \in \mathbb{T}^n\} \le 2^p C_p C^{1+2p+|\alpha|} [(\alpha_1 + 2p)! \dots (\alpha_n + 2p)!]$$

$$\le \mu^n 2^p C_p C^{2p+1} (2C)^{|\alpha|} \alpha!,$$

where $\mu = \sup_{t>0} 2^{-t}(t+2p)(t+2p-1)\dots(t+1)$. Therefore A is translation analytic.

Conversely, let A be translation analytic. By Theorem 2, $A = \text{Op}(a_j)$ for some zero-order discrete symbol (a_i) . For each nonzero multiindex β , define

$$B^{\beta} = \operatorname{Op}[(L^{\beta}a_j)_{j \in \mathbb{Z}^n}].$$

Then $T_y B^{\beta} T_{-y} = L^{\beta} f(y)$, where $f(y) = T_y A T_{-y}$, $y \in \mathbb{T}^n$, is analytic by hypothesis. Since C > 1, from (8) we get

$$||B^{\beta}|| \le 2^{|\beta|} C^{1+|\beta|} \beta!.$$

On the other hand, the discrete symbol of A can be recovered from the discrete symbol $(b_j^{\beta})_{j\in\mathbb{Z}^n}$ of B^{β} , $b_j^{\beta}=e_j(B^{\beta}e_{-j})=L^{\beta}a_j$, using (9):

$$a_j(x) = \frac{1}{(2\pi)^n} \sum_{l \in \mathbb{Z}^n} \frac{e^{ilx} [e_j(B^{\beta} e_{-j})]_l^{\hat{}}}{(1+il_1)^{\beta_1} \dots (1+il_n)^{\beta_n}}.$$

Given now a multiindex α , let $\beta = \alpha + (2, ..., 2)$. Using $|[e_j(B^{\beta}e_{-j})]_i^{\hat{}}| \leq (2\pi)^n ||B^{\beta}||$ for all j and l, we get

$$\begin{aligned} |\partial^{\alpha} a_{j}(x)| &= \frac{1}{(2\pi)^{n}} \left| \sum_{l \in \mathbb{Z}^{n}} \frac{(il)^{\alpha} e^{il \cdot x} [e_{j}(B^{\beta} e_{-j})]_{l}^{\wedge}}{(1 + il_{1})^{\beta_{1}} \dots (1 + il_{n})^{\beta_{n}}} \right| \\ &\leq \|B^{\beta}\| \sum_{l \in \mathbb{Z}^{n}} \frac{|l_{1}|^{\alpha_{1}} \dots |l_{n}|^{\alpha_{n}}}{(1 + l_{1}^{2})^{\beta_{1}/2} \dots (1 + l_{n}^{2})^{\beta_{n}/2}} \\ &\leq \left(\sum_{p = -\infty}^{\infty} \frac{1}{1 + p^{2}}\right)^{n} 2^{|\alpha| + 2n} C^{1 + 2n + |\alpha|} \beta!. \end{aligned}$$

We may now bound $\beta!$ by a constant times $\alpha!$, much as we did in the first part of this proof, which will then prove (10).

As in [2], we denote by $\mathfrak{Op}_0(\mathbb{T}^n)$ the class of all $A = \operatorname{Op}(a_j)$ with $(a_j)_{j \in \mathbb{Z}^n}$ satisfying (10).

COROLLARY 1. The class $\mathfrak{Op}_0(\mathbb{T}^n)$ is a *-subalgebra of $\mathcal{L}(L^2(\mathbb{T}^n))$ which is spectrally invariant in the sense that if an $A \in \mathfrak{Op}_0(\mathbb{T}^n)$ is invertible in $\mathcal{L}(L^2(\mathbb{T}^n))$, then its inverse A^{-1} belongs to $\mathfrak{Op}_0(\mathbb{T}^n)$.

Proof. If $f: \mathbb{T}^n \to \mathcal{L}(L^2(\mathbb{T}^n))$ and $g: \mathbb{T}^n \to \mathcal{L}(L^2(\mathbb{T}^n))$ are real-analytic, their pointwise product is analytic. It follows that the product of two translation analytic operators is translation analytic. The map $y \mapsto f(y)^*$ is also analytic. Hence, the adjoint of a translation analytic operator is translation analytic. Moreover if f(y) is invertible for every $y \in \mathbb{T}^n$, then $y \mapsto f(y)^{-1}$ is also analytic (because $T_{-y} = T_y^{-1}$ and a pointwise invertible analytic function has an analytic inverse). Then, if $A \in \mathcal{L}(L^2(\mathbb{T}^n))$ is invertible and translation analytic, so is A^{-1} .

COROLLARY 2. $\mathfrak{Op}_0(\mathbb{T}^n)$ is L^2 -operator-norm dense in $\mathrm{OPS}^0_{0,0}(\mathbb{T}^n)$.

Proof. It is the content of Nelson's [9, Theorem 4] that the set of analytic vectors of a strongly continuous representation of a Lie group on a Banach space \mathfrak{X} is dense in \mathfrak{X} . We apply that theorem to the representation $y \mapsto T_y A T_{-y}$ of \mathbb{T}^n on the Banach space $\mathfrak{X} = \{A \in \mathcal{L}(L^2(\mathbb{T}^n)); y \mapsto T_y A T_{-y} \text{ is continuous}\}$. By our Theorem 3, the set of analytic vectors for this representation is equal to $\mathfrak{Op}_0(\mathbb{T}^n)$, which is dense in \mathfrak{X} by Nelson's result. On the other hand, \mathfrak{X} contains the set of smooth vectors, which is equal to $OPS_{0.0}^0(\mathbb{T}^n)$ by our Theorem 2. \blacksquare

References

- [1] M. S. Agranovich, Spectral properties of elliptic pseudodifferential operators on a closed curve, Funct. Anal. Appl. 13 (1979), 279–281.
- [2] G. Chinni and P. D. Cordaro, On global analytic and Gevrey hypoellipticity on the torus and the Métivier inequality, Comm. Partial Differential Equations 42 (2017), 121–141.
- [3] H. O. Cordes, On pseudodifferential operators and smoothness of special Lie-group representations, Manuscripta Math. 28 (1979), 51–69.
- [4] H. O. Cordes, The Technique of Pseudodifferential Operators, Cambridge Univ. Press, 1995.
- [5] F. John, Partial Differential Equations, Springer, 1982.
- [6] S. T. Melo, Characterizations of pseudodifferential operators on the circle, Proc. Amer. Math. Soc. 125 (1997), 1407–1412.
- [7] S. T. Melo and M. I. Merklen, On a conjectured noncommutative Beals-Cordes-type characterization, Proc. Amer. Math. Soc. 130 (2002), 1997–2000.
- [8] S. T. Melo and M. I. Merklen, Pseudodifferential operators with C*-algebra-valued symbols: abstract characterizations, Proc. Amer. Math. Soc. 136 (2008), 219–227.
- [9] E. Nelson, Analytic vectors, Ann. of Math. (2) 70 (1959), 572–615.
- [10] K. R. Payne, Smooth tame Fréchet algebras and Lie groups of pseudodifferential operators, Comm. Pure Appl. Math. 44 (1991), 309–337.
- [11] M. Ruzhansky and V. Turunen, Pseudo-Differential Operators and Symmetries, Birkhäuser, 2010.

- [12] M. E. Taylor, Beals-Cordes-type characterizations of pseudodifferential operators, Proc. Amer. Math. Soc. 125 (1997), 1711–1716.
- [13] F. Trèves, Introduction to Pseudodifferential and Fourier Integral Operators, Vol. 1, Plenum Press, New York, 1980.

Rodrigo A. H. M. Cabral, Severino T. Melo Instituto de Matemática e Estatística Universidade de São Paulo Rua do Matão 1010 São Paulo, SP 05508-090, Brazil E-mail: rahmc@ime.usp.br toscano@ime.usp.br