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Abstract

Let f :
� n � � n be a continuous map, we study the continuity of the Zadeh's extension of f to

the space of fuzzy sets F � � n � , with respect to two different metrics, the usual metric derived from
the Hausdorff metric on the family of compact sets and the endograph metric defined by Kloeden [4].
Finally we determine a class of fuzzy sets where these metrics are equivalent.

1 Introduction

The Zadeh extension is the way we produce a
fuzzy transformation f̂ : F ��� n �
	 F ��� n � from a
given function f : � n 	 � n. In the next section
we will give briefly the precise definition. Now
we want just to point that, although this extension
is well known since several years, the study of its
properties in the topological spaces was almost al-
ways neglected. Among the few works we found
on the subject we mention that of Cabrelli et alli
[1], who was motivated by the study of Fuzzy It-
erated Function Systems and that of Nguyen [5]
working in the context of fuzzy numbers. We are
interested in the study of Discrete Fuzzy Dynami-
cal Systems applied to biological populational dy-
namics, and our approach is indeed very close
to that of the papers mentioned above, contain-
ing some improvements and generalizations; more
specifically, it is our objective in the future, to
model some biological phenomenal using differ-
ence equations where the subjectivity affects the
states and parameters involved, playing a decisive
role in the dynamics of the process. In this sense
the Zadeh extension will appear as a fundamental
tool relating the classical and fuzzy models.

Our goal is to present the continuity properties of

the Zadeh extension to the space F ��� n � with the
different metrics D [7] and H [4]. Let us also ob-
serve that all the results here are true taking a com-
plete metric space X instead of � n, being the gen-
eralizations straightforward.

2 Preliminaries

Let Q ��� n � be the family of nonempty, compact
subsets of � n. The distance of Hausdorff is defined
as:

h � A � B �� max � h1 � A � B � � h2 � A � B ���
where

h1 � A � B �� sup
x � A

inf
y � B

���
x � y

���

and
h2 � A � B �� sup

y � B
inf
x � A

���
x � y

���

It is well known that the metric space � Q ��� n � � h �
is complete and separable.
We say that a sequence Ap � Q ��� n � converges to
A in the sense of Kuratowski if

A  liminf
p ��� ∞

Ap
 limsup

p ��� ∞
Ap

where
�
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liminf
p ��� ∞

Ap
 � x : x  lim

p � ∞
xp � xp � Ap

�

limsup
p � � ∞

Ap
 � x :x  lim

p j � ∞
xp j � xp j � Ap j

�

or

limsup
p ��� ∞

Ap
 ∞�

p � 1

�
n � p

Ap

The following theorem can be found in Hausdorff
[3]

Theorem 1. Let Ap � A � Q ��� n � , then the follow-
ing are equivalents:
(1) Ap converges to A in the Hausdorff metric h.
(2) A and Ap are contained in a compact set K, and
Ap converges to A in the Kuratowski sense.

We will need also the following proposition:

Proposition 2. If f : � n 	 � n is a uniformly con-
tinuous function, the transformation in the space
� Q ��� n � � h � assigning to each compact set K, the
compact set f � K � is also uniformly continuous.

We give here a proof for sake of completeness.

Proof. From now on we denote
���
x � y

� �  d � x � y �
and given ε � 0 take the δ � 0 such that

d � x � y ��� δ 	� d � f � x � � f � y � �
� ε

If h � K � C ��� δ, then we have by definition
�

x � K 	� inf
y � C

d � x � y �
� δ

then there is ȳ such that d � x � ȳ ��� δ, and

d � f � x � � f ��y � �
� ε

which implies that infy � C d � f � x � � f � y � ��� ε and

sup
x � K

inf
y � C

d � f � x � � f � y � ��� ε

A symmetric argument shows the other inequal-
ity.

The above proposition 2 and the theorem 1 imme-
diately implies the following proposition

Proposition 3. f : � n 	 � n is continuous if and
only if the transformation in the Hausdorff space
� Q ��� n � � h � assigning to each compact set K, the
compact set f � K � is also continuous.

3 The fuzzy metric spaces

We define the fuzzy sets as:

F ��� n �  � u : � n 	�� 0 � 1� �
with � u � α compact nonempty and where for each
0 � α � 1

� u � α  � x � � n : u � x ��� α �

and � u� 0  � x � � n : u � x � � 0 �
In this set we have the metrics:

D � u � v �� sup
0 � α � 1

h � � u� α � � v � α �

that we call normal metric, and we have also the
endograph metric

H � u � v �  h � send � u � � send � v � �

where

send � u �� � � u� 0 � � 0 � 1 � ��� end � u �

with

end � u �  � � x � α � � � n � � 0 � 1� : u � x ��� α �

this set is called the endograph [4] and here h
means the Hausdorff metric in the corresponding
space.
It is well known that the space � F ��� n � � D � is com-
plete but not separable [7] whereas F ��� n � with the
metric H is separable but not complete [4].
In the following we will need a proposition which
can be found in [6]

Proposition 4. Let up be a sequence and u an el-
ement in F ��� n � . Then the sequence up converges
in the endograph metric to u if and only if

� u � α ��� lim
p � ∞

inf � up
� α �

� lim
p � ∞

sup � up
� α �

� � u � α � � � α � � 0 � 1�
(1)

and

lim
p � ∞

h � � up � 0 � � u � 0 �� 0 (2)
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4 On the Zadeh extension

Let f : � n 	 � n be any function. We define the
Zadeh extension f̂ as

f̂ � u � � x � �� supτ � f � 1 � x � u � τ � if f  1 � x ��� /0
0 otherwise

for all u � F ��� n � . Note that in the next theorem
we give a sufficient condition for f̂ to be a well
defined function in F ��� n �

Obs.: 1. It follows from this definition that if f is
a constant function f � x �  c then its extension is
f̂ � u �  ĉ  χ � c � the characteristic function.

Obs.: 2. Identifying � nwith the subset

� χ � x � : x � � n �

then we have

f̂ � χ � x � �  χ � f � x �	� � � x � � n

which shows that the Zadeh extension is in fact an
extension.

Obs.: 3. If f is bijective then

f̂ � u � � x �  u � f  1 � x � ��

Obs.: 4. For the case where

f � x �� Ax � b �
the extension is given by

f̂ � u � � x �  u � A  1 � x � b � �

if A is invertible. If a � 0 and f � x �  ax then
f̂ � u � � x �
 u � a  1x �
 au � x � according the rules of
multiplication on the fuzzy sets (see, for instance,
[8]).

The next theorem was first proved in Nguyen [5],
some generalizations of these results appeared lat-
ter [2] and more recently Cabrelli et alli [1] works
on it in the context of a Fuzzy Iterated Function
System. We present here an improved version
which fits better to our needs and is indeed very
close to the one given in Cabrelli et alli [1].

Theorem 5. If f : � n 	 � n is continuous, then the
Zadeh extension is well defined and we have:

� f̂ � u � � α  f � � u� α �

Proof. Note that to show the fact f̂ � u � � F ��� n � , it
is enough to verify that the levels � f̂ � u � � α are com-
pact and nonempty for each α, then the second as-
sertion of the theorem will imply the first one. Let
us show the second part.
First off all note that f  1 � x � being closed and � u� 0
compact then f  1 � x � � � u � 0 is a compact subset of
� n. We divide the proof in two:
For α � 0 let x � � f̂ � u � � α, then f̂ � u � � x ��� α which
implies that f  1 � x �� /0 and f  1 � x � � � u � 0 � /0 then

f̂ � u � � x �  sup
τ � f � 1 � x � u � τ �

 sup
τ � f � 1 � x ����� u� 0 u � τ �

 u � y �
(3)

For some y � f  1 � x � � � u � 0, since u is upper semi-
continuous (c.f. Rudin [10, pg 195]); then x 
f � y � , which means that x � f � � u � α � .
On the other hand f � � u� α � � � f̂ � u � � α is always
true since for x � f � � u � α � there is a y � � u� α and
x  f � y � , then f̂ � u � � x �
� u � y ��� α or x � � f̂ � u � � α.
For α  0, we note that

A  � x : f̂ � u � � x � � 0�  f � � x :u � x � � 0� �  f � B �

since if x � A then supτ � f � 1 � x � u � τ � � 0 which im-
plies that there exists a y with f � y �  x and u � y � � 0
that is x � B; if x � f � B � then there exists y � B and
f � y �  x hence

sup
τ � f � 1 � x � u � τ ��� u � y �

that is x � A.
Now using the compactness of B and the continuity
of f we get

A  f � B �  f � B �
from what we conclude

� f̂ � u � � 0  f � � u� 0 �

We observe that there is a one-to-one correspon-
dence between the fuzzy sets and the family of
compact sets � � u� α : 0 � α � 1 � , in particular the
family � f � � u � α � : 0 � α � 1 � gives rise to a unique
fuzzy set in F ��� n � .
A direct consequence of this theorem is
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Corollary 6. If f : � n 	 � n is continuous then f̂
is monotone in the following sense:

f̂ � u � � f̂ � v � if u � v

where u � v means u � x � � v � x � for all x � � n.

Proof. The relation u � v implies that � u� α � � v� α
and from the theorem 5 we have � f̂ � u � � α  f � � u� α �
the result follows immediately.

Theorem 7. Let f : � n 	 � n be a uniformly con-
tinuous function, then the Zadeh extension

f̂ : � F ��� n � � D � 	 � F ��� n � � D �

is also uniformly continuous.

Proof. Given ε � 0 take δ � 0 such that

h � � u � α � � v � α ��� δ

implies h � f � � u� α � � f � � v� α � �
� ε see (theorem 1).
Hence taking D � u � v � � δ then h � � u� α � � v� α � � δ
which implies

h � f � � u � α � � f � � v � α � �
� ε

and from above

h � � f̂ � u � � α � � f̂ � v � � α �
� ε

for all α � � 0 � 1 � , that is D � f̂ � u � � f̂ � v � ��� ε this con-
cludes the proof.

Note that if f̂ : � F ��� n � � D � 	 � F ��� n � � D � is con-
tinuous and is the Zadeh extension of some func-
tion f , then f must be continuous because

D � f̂ � χ � x � � � f̂ � χ � y � � �  ���
f � x � � f � y � ���

 d � f � x � � f � y � � � � x � y � � n

Proposition 8. Let f : � n 	 � n be a function and
f̂ : F ��� n ��	 F ��� n � its Zadeh extension, then f is
Lipschitz with constant K if and only if f̂ is Lip-
schtz with the metric D with the same constant K.

Proof. Since f is Lipschitz, it is also continuous
and then

D � f̂ � u � � f̂ � v � �  sup
0 � α � 1

h � f � � u� α � � f � � v� α � �

Now
h � f � � u � α � � f � � v� α � �

 max � sup
x ��� u � α inf

y ��� v � α d � f � x � � f � y � � �

sup
y ��� v� α inf

x ��� u � α d � f � x � � f � y � � �

� max � sup
x ��� u � α inf

y ��� v� α Kd � x � y � �

sup
y ��� v � α inf

x ��� u � α Kd � x � y ���

 Kmax� sup
x ��� u � α inf

y ��� v � αd � x � y � � sup
y ��� v� α inf

x ��� u� αd � x � y � �

 Kh � � u � α � � v � α �
hence

D � f̂ � u � � f̂ � v � � � KD � u � v �

On the other hand assuming that f̂ is Lipschitz and
taking in account the note before this proposition,
we get that

D � f̂ � χ � x � � f̂ � χ � y � �� d � x � y � � � x � y � � n

it is easy to show the other side of the result.

Proposition 9. If f : � n 	 � n is a contraction
then f̂ : F ��� n ��	 F ��� n � has only one fixed point
in F ��� n � .
Proof. By the proposition above f̂ is a contraction
and since � F ��� n � � D � is complete f̂ has only one
fixed point.

Obs.: 5. Calling ū the unique fixed point from the
proposition, then we have

D � f̂ n � u � � ū � � Kn

1 � K
D � f̂ � u � � ū �

Obs.: 6. Note that the fixed point ū of f̂ must be
actually a characteristic function of a one-point set
� x � , where x is the fixed point of f . This means that
if we have a contraction

F : � F ��� n � � D � 	 � F ��� n � � D �

whose fixed point is not of this type, F cannot be a
Zadeh extension of any contraction.

Now we have a similar result for the endograph
metric in F ��� n � .
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Theorem 10. Let f : � n 	 � n be a continuous
function, then the Zadeh extension

f̂ : � F ��� n � � H � 	 � F ��� n � � H �

is also continuous.

Proof. We will show that if a sequence up con-
verges to u in the metric H, this implies that f̂ � up

�
converges to f̂ � u � using the same metric H.
Using proposition 4 and continuity of f we have to
prove

lim
p� ∞

h � f � � up � 0 � � f � � u � 0 � �� 0 (4)

� f̂ � u � � α � � lim
p � ∞

inf� f̂ � up
� � α� (5)

� lim
p � ∞

sup � f̂ � up
��� α �

� � f̂ � u ��� α � � α � � 0 � 1 �
Equation (4) follows immediately from the conti-
nuity of f and proposition 3
To prove (5); note first that the case where α  0 is
trivial. For α � 0 we have

� f̂ � u � � α �  f � � u � α � ��
 (6)

From the hypothesis that up converges to u in the
endograph metric, it follows:

� u � α � � lim
p � ∞

inf � up � α � lim
p � ∞

sup � up � α � � u� α (7)

Applying f to each term we can prove (5) by show-
ing that

f � lim
p � ∞

inf � up � α ��� lim
p � ∞

inf f � � up � α �

and

f � lim
p � ∞

sup � up � α �  lim
p � ∞

sup f � � up � α �

To verify the first relation take

y � f � lim
p � ∞

inf � up � α �

then, by definition, y  f � x � where x  limp� ∞xp

where each xp was taken from � up � α by continuity
of f we get y  limp � ∞ f � xp

� and then

y � lim
p � ∞

inf f � � up � α � 


For the second equality if

y � f � lim
p � ∞

sup � up � α �

then y  f � x � with x  lim j � ∞ xp j , and xp j � � up j � α
then

y  lim
j � ∞

f � xp j
�

Suppose now we have y � limp � ∞ sup f � � up � α � this
implies y  lim j � ∞ f � xp j

� ; again take a subse-
quence xpk

	 x � limp � ∞ sup � up � α and hence

y  lim
k � ∞

f � xpk
�� f � x �

by continuity and uniqueness of the limit. This
concludes the theorem.

It is clear that the continuity in the endograph met-
ric of f̂ implies the continuity of f .
We have proved two theorems on the continuity of
the Zadeh extension considering two different met-
rics on F ��� n � . Now we study in which measure
are these metrics equivalents.

Definition 1. We say that u � F ��� n � has no
proper local maximal points if for all x � � n with
0 � u � x ��� 1, x isn't a local maximal point of u.

Note that this definition is equivalent to

� u � α �  � u� α for 0 � α � 1

We quote another result from [6]

Proposition 11. If up � F ��� n � and u � F ��� n �
have no proper local maximal points, and � u� 1 has
just one point then

up
	 u in D � � up

	 u in H

Proof. See Quelho or Rojas-Medar et alli [6, 9] for
a proof.

Definition 2. We define the family of restrict fuzzy
sets as the elements u � F ��� n � such that u has
no proper local maximal points and � u � 1 has just
one element. We denote this subset of F ��� n � as
F ��� n ���

Proposition 12. Let f : � n 	 � n be a continuous
function then
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1. f̂ � F ��� n � � �
� F ��� n � �

2. f̂
�

F ��� n � � is continuous with the metric D

Proof. Take u � F ��� n � � , then we need prove that

� f̂ � u � � α �  � f̂ � u � � α for 0 � α � 1

and � f̂ � u � � 1 has just one element.

By continuity of the function f and α � 0 we pro-
ceed like in theorem 5 obtaining

� f̂ � u � � α �  f � � u � α �  f � � u� α �� � f̂ � u � � α

The theorem 5 also ensures that

� f̂ � u � � 1  f � � u� 1 �

and then � f̂ � u � � 1 has just one element. This proves
assertion (1).
The second part follows immediately from the
proposition 11, since taking up � u � F ��� n � � , we
know that if up converges to u in the metric D then
converges also in the metric H, and hence f̂ � up

�
converges to f̂ � u � in the metric H by theorem 10.
To conclude the proof of this second part we use
the first part and proposition 11 to show that f̂ � up

�
converges to f̂ � u � in the metric D.
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