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Abstract

Let G be a connected semi-simple Lie group with finite center and S C
G a semigroup with interior points. It is proved that S is transitive on a
homogeneous space G /L only if the action of L on B is topologically transitive
and contracting, where B = G/P is the flag manifold of G associated with S.
In [4, Thm.6.4] the authors claimed another necessary condition in case G is
simple, namely, that L is discrete. It is shown by means of an example that
this condition is wrong without the further assumption that G/L is compact.

1 Introduction

Let G be a connected semi-simple Lie group with finite center and S C G a sub-
semigroup with nonvoid interior. Given a closed subgroup L C G, S is said to be
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transitive on the homogeneous space G/ L if for every z,y € G/L there exists g € S
such that y = gx. We look here at the possibilities for L in order that S is transitive
on G/L. The main results are stated in Theorems 1.1 and 1.2 below.

We work here in the context of [4]. So we use freely the concepts and notations
of that paper. In particular, let g be the Lie algebra of G and g = k & s one of its
Cartan decompositions with k standing for a maximal embedded subalgebra. Select
a maximal abelian a C s, let IT be the set of roots of the pair (g,a) and ¥ C II a
simple system of roots. Denote by IIT the corresponding set of positive roots. Let
m be the centralizer of a in k. The standard minimal parabolic subalgebra of g is
given by p = m @ a & n where

n= 3} g

acllt
is the direct sum of the root spaces associated to the positive roots. The normalizer
P of p in G is a minimal parabolic subgroup and B = G/P is a maximal flag
manifold of G. It is well known that p is the Lie algebra of P. Given a subset
© C X, let n~ (©) be the subalgebra generated by Y-, g_, with the sum extended
to a € ©. We denote by pg the parabolic subalgebra

Poe=n (O)®p.

Its normalizer Pp in G is a parabolic subgroup whose Lie algebra is pg. We put
Bo = G/ Pg for the corresponding flag manifold.

Denote by W the Weyl group for (g, a), and by Wg the subgroup of W generated
by the reflections with respect to the roots in © C X. In [4, Section 4] it was
associated with a semigroup S C G with int S # () a subgroup W (S) C W which
accounts for the number of S-control sets on B. It was shown that W (S) = Wg,
for some subset Og of the simple system of roots. We use the notation B (S) = By,.
The main property of B (S) which will be used here is that if C' C B (S) stands
for the invariant control set for S then C' is contained in the stable manifold of the
attractor in B (S) of any h € int S which is split regular. In particular, there are
b € B (S) and a split regular element H in the Lie algebra g such that exp (tH)x — b
as t — +oo for all x € C.

The statement of the main result requires the notion of contracting sequences (see
[2]): Let gx be a sequence in G, and write the polar decomposition of its elements
as g = vghyug with v, uy € K and hy € cl AT, Here K is the compact subgroup
appearing in a Cartan decomposition of G and AT = expa®t, where a* C a is a
Weyl chamber. For a root a € Il and h € expa, put @, (h) = exp (a (logh)). The
sequence gy is said to be contracting if @, (k) — 0 as kK — 400 for all negative root
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a. Moreover, the sequence is said to be contracting with respect to a flag manifold
Bg if ¢4 (hx) — 0 for all negative root a which is not in the subset (©) of roots
spanned by ©. It is known that if g is contracting with respect to Bg then there
are a subsequence g, and by € Bg such that gx, x — by for  in an open and dense
subset of Bg (see Proposition 2.5 below).

The action of a group L on the topological space X is said to be topologically
transitive if every orbit Lz, x € X is dense in X.

Theorem 1.1 Let S C G a semigroup with int S # () and L C G a closed subgroup.
In order that S is transitive on G/L it is necessary that

1. L is topologically transitive on B (S) and

2. L admits a contractive sequence with respect to B (S).

It was claimed by the authors that in case G is simple a necessary condition
for a proper semigroup to be transitive on G/L is that either dimL =0 or L = G
(see Theorem 6.4 in [4]). This result is wrong: As we show in Section 3 below
there are proper semigroups which are transitive on the quotient of SI(2n,R) by
the symplectic group.

Despite that example, Theorem 6.4 in [4] holds with the additional assumption
that G/L is compact. We have

Theorem 1.2 Suppose that G is simple and that 0 < dim L < dim G. Suppose also
that G/L is compact. Then S is not transitive on G/L unless S = G.

2 Proofs

We start with the following useful criterion for deciding the transitivity of a semi-
group.

Proposition 2.1 Let G be a topological group, L C G a closed subgroup and S C G
a semigroup with int S # 0. If S is transitive on G/L then int SN gLg™ # O for all
g € G. Reciprocally, assume that G/L is connected. Then S is transitive on G /L if
int SNgLg~ # 0 for all g € G.



Proof: Suppose that S is transitive on G/L and take x € G/L and g € intS.
Then there exists h € S such that hgx = x. Since hg € int S, this shows that int S
intercepts any conjugate of L.

As to the converse, the condition ensures that int.S intercepts the isotropy at
any z € G/L. This implies that € (int S)z C int (Sz) which shows that Sz is
open for all z € G/L. The same statement holds with S~! instead of S. Fixing z,
set

0= U Sy
yESx
We have that O U Sz = G/L. If y ¢ Sz then S'y N Sz = () which shows that
O N Sz =0. Since G/L is connected, this shows that O = ), and we conclude that
Sz =G/L and S is transitive. O

This proposition can be stated as:
Corollary 2.2 With the same notations and assumptions,
1. if S is transitive on G/L then int (9Sg~')NL # 0 for all g € G.

2. If G/L is connected and int (9Sg~ )N L # O for all g € G then S is transitive
on G/L.

We shall need the following fact which is also of a general nature.

Proposition 2.3 Suppose S is transitive on G/L. Then for every h € G there
exists g € L such that hg € S.

Proof: Let xy be the origin in G/L. Then there exists s € S such that szq = hxy.
This implies that s~*hzy = z¢ and hence that s™'h € L. Putting ¢ = h™'s, we get
the result. O

In order to start the proof of Theorem 1.1 let S be a semigroup transitive on
G/L. Let also C C B(S) be the invariant control set for S on B (S) and denote by
Cy C C its set of transitivity. This is an open an dense subset of C. Moreover, for
any x € () there exists a split regular element H € g such that x is the attractor of
exp (tH), t > 0, and C is contained in its stable manifold (see [4, Prop.4.8]). Since
C is compact, this implies that for any neighborhood U > z there exists ¢y > 0 such
that exp (tH)C C U for all t > t;. These contractions will be exploited to show
that the L-orbits on B (S) are dense. We check first the density of the orbits inside
the invariant control set.



Lemma 2.4 Given z,y € C there exists a sequence g, € L such that g,y — x as
k — oo.

Proof: Take x € Cy and U a neighborhood of z. By the above comments there
exists h € G such that hC C U. Apply Proposition 2.3 to h=! to get g € L such
that h='¢g € S. Then h='gC C C because C is S-invariant. This implies that
gC C hC C U. This ensures the existence of a sequence converging to any x € Cj.
Using the density of Cy in C' we get the lemma. a

We can show now the density of the L-orbits on B (S). The lemma above still
holds with ¢gC, g € G in place of C' because gC is the invariant control set for
gSg~" and this semigroup is also transitive on G/L if S is transitive. Now, the
family int (¢C), g € G covers B (S) so by compactness there exists a finite number
C;=¢,C,1=1,...,k such that

B(S)=intC; U---Uint Cy .

Given z,y € B(S) we can find 1 < 4y,...,4 < k with z € int C;, and y € intC;,,
and such that int C;, Nint Cj, ., # 0 for otherwise B (S) would not be connected.
This being so, pick z; € int C;, Nint C;,,,, j = 1,...,] and a neighborhood V' > y.
By the lemma above, there exists hy € L such that hyz € V. Hence V; = hy'V is
a neighborhood of z,. Applying again the lemma, there exists ¢g;_; € L such that
gi—1zi—1 € V; and thus we get the neighborhood V;_; = gl__ll‘/} of z_;. Applying
successively the lemma, we get neighborhoods V; of z; such that V;y; = ¢;V; with
g; € L. Since V; is a neighborhood of z;, there exists h; € L with hyx € V;. This
way,
hogi---g1hiz €V

which shows that there exists a sequence hy € L with hyz — y concluding the proof
that L is topologically transitive on B (S).

Now, we check that L satisfies the second condition of Theorem 1.1. For this we
reproduce here the following well known description of the action on a flag manifold
Bg of sequences g € G (see [2]).

Let g, = wvphguy, vg,up € K, hy € cl AT be the polar decomposition of the
sequence. Denote by by € Bg the attractor of the elements in A and let 0 = N™b,
the corresponding open Bruhat component (stable manifold). Substituting g, by a
subsequence we can assume that v, — v and u, — u. This being so, take z € u='o.
Then ugxr — uxr € o so that y, = uix belongs o for large k, and y, — y = ux.



We can write y, = ngby with ny = exp (Xj), and Xy € n~ (©). The same way,
y =exp (X) by, X € n~ (0), and we have that X; — X.
With this notation, the action of A on ¥y is

hkyk = hk exp (Xk) bo = exXp (Ad (hk) Xk) bo .

We decompose X}, as
X, = ZX,‘C"

with X% € g,, and « running over the negative roots which are not in (©). A
similar decomposition exists for X with components X®. We have that

Ad (hg) X = da (hi) X1

where ¢, (hy) = exp (a (log hy)). Since 0 < ¢, (hg) < 1, we can take subsequences
again and assume that lim @, (hg) = a, € [0, 1] exists for all negative root a. As-
suming this, we have that the restriction of Ad (hy) to n™ (©) converges to a linear
mapping, say 7 of n~ (©). This 7 is diagonal and its eigenvalues are a,. Clearly,
Ad (hy) X — 17X, and since X} — X we have also that Ad (hy) Xy — 7X. We get
thus the

Proposition 2.5 Toke a sequence gy, € G. Then there are

1. a subsequence g, ,
2. elements v,u € K, and
3. a linear mapping 7 of n~ (©)
such that for every Y € n™ (0),
gr,u"texp (Y) by — vexp (1Y) by
as n — oo. The subsequence is contracting if and only if 7 = 0. O

Corollary 2.6 Let g, € G be a sequence, and suppose that for an open subset
U € Bg, grx — by for all x € U, where by € Bg is fired. Then g admits a
subsequence which is contracting with respect to Bg.



Proof: Take the polar decomposition in such a way that by is the attractor of the
elements in the Weyl chamber A™ and apply the proposition to the sequence. The
subset,

V={Yen (©):ulexp(Y)b € U}

is open and not empty in n~ (0). For Y € V', we have by the proposition that
gr,u texp (Y) by — vexp (TY) by,
and since u~texp (Y) by € U we have also that
gk, u”texp (Y) by — by .

Comparing these limits we get that v = 1 and 7Y = 0 for Y € V. The fact that
V # () is open implies then that 7 = 0 and the subsequence is contracting with
respect to Bg. O

With this corollary it becomes easy to get a contracting sequence in L. In fact,
take z in Cy and a sequence Uy, of neighborhoods of x whose intersection is {z}.
Take also a sequence hj of split regular elements in G such that hyC C Ug. By
Proposition 2.3 there exists, for each k, g, € L such that h;'g, € S. Therefore
h;;'gC C C so that

gkC’ C h,C C U,

and gy — x for every y € C. Since int C # () the above corollary implies that
gr admits a contracting subsequence. Therefore L contains a sequence which is
contracting with respect to B (S) concluding the proof of Theorem 1.1.

Let us consider now Theorem 1.2. The proof of Theorem 6.4 in [4] works with
the assumption that G/L is compact. Here is a modification of that proof which
is based in Theorem 1.1: Let 1 be the Lie algebra of L and put J = N (1) for its
normalizer in G. The assumption on the dimension of L and the fact that g is simple
imply that 0 < dimJ < dim G. We have that G/J is the orbit under G of 1 in the
Grassmannian of £ = dim1 subspaces of g. This orbit is compact because L C J.
Therefore, the result is a consequence of the following lemma.

Lemma 2.7 Suppose that G is simple and let G/J be a compact projective orbit for
some finite dimensional representation of G. Then J is not topologically transitive
on any flag manifold unless J = G.



Proof: Let G = KAN be an Iwasawa decomposition. In any finite dimensional
representation of G the elements of 7" = AN are represented by upper triangular
matrices. Therefore, the fact that G/J is compact implies that there exists z € G/J
which is fixed by T (see [5]). Hence we can assume without loss of generality that
T C J. This being so, put U = J N K. Then U is compact and J = UT. Now,
suppose that J is topologically transitive on some boundary B = G/Q with @
parabolic. We can assume that 7" C @ hence the density of the orbit under J of the
origin by € B implies that the U-orbit of by is also dense. From the compactness of
U we then have that U is transitive on B.

Now we realize B as an adjoint orbit under K: let k be the Lie algebra of K and
g = k@ s the corresponding Cartan decomposition. We have that the Lie algebra a
of A is contained in s, and there exists H € a such that Ad (K) H coincides with B
as a homogeneous space. Since g is simple the adjoint action of K on s is irreducible
and hence the subspace spanned by the orbit Ad (K) H coincides with s. Now, H
belongs to the Lie algebra j of J so that Ad (U) H C j. However, Ad (U) H coincides
with Ad (K) H because U is transitive on B. This shows that s is contained in j
and since the Lie algebra generated by s is g we conclude that j = g and hence that

J=0a. O

3 Counterexamples
Let W be a pointed generating cone in R** and define
Sw={geSl(2n,R): gW C W}.

This is a subsemigroup with nonempty interior of G = SI(2n,R) for which B (S)
is the projective space RP?"~!. Let L be the symplectic group Sp(n,R). Its Lie
algebra sp (n, R) is the algebra of matrices which are written in blocks n x n as

A B
Cc A
with B and C' symmetric.
We shall prove that Sy, is transitive on G/L.

Lemma 3.1 Take v € R*™ with |v| = 1 and put V = v for the orthogonal com-
plement of v. Then there exists H € sp (n,R) which is diagonalizable and has a
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principal eigenvalue N\, of multiplicity one, that is, \,, > p for any other eigen-
value, and moreover,

1. v spans the eigenspace associated with \,,, and

2. the other eigenspaces are contained in V.

Proof: If v = ey, the first basic vector, take
HO = diag{)\l, caey )‘n) —)\1, ey _An}

with A\ > --- > )\, > 0. This H, satisfies the requirements.

On the other hand, let K be the compact component of a Cartan decomposition
of Sp (n,R) contained in the orthogonal group. It is well known that K is transitive
on the sphere S?* ! (see e.g. [1]). Therefore for an arbitrary v € S*" !, there exists
k € K such that ke; = v. Then H = kHyk™" is the required element in sp (n, R)
because its eigenspaces are the images under k£ of the eigenspaces of H,. O

Lemma 3.2 Let W € R be a pointed generating cone and consider its dual
W*={veR: (v,w) >0 for all w € W}.
Then int W N int W* # ().

Proof: By induction on d. For d = 1 or 2 the result is trivial. Before proving the
induction step, let P : RY — R? be an orthogonal projection. Then P* = P and
since W is generating, P (W) is generating in the image of P. Moreover, the dual
(P (W))" in the image of P is contained in W*. In fact, take y € (P (W))". Then

(y,7) = (P'y,z) = (y, Pz) > 0

forall z € W.

This fact will be used in the following situation: If int W* C W there is nothing to
prove. Otherwise, let € (int W*) — W, and denote by P the orthogonal projection
onto x*. We claim that P (W) is a pointed cone. In fact, suppose 0 # +y € P (W).
Then there are a.. € R such that z, = £y 4+ a.x € W. Since z € int W*, aq > 0.
However,

Zr +2-=(ay +a )z



with a; + a_ > 0 which implies that x € W contradicting the choice of z.
The induction hypothesis applies then to P (W) so that

int P(W)Nint P (W) # 0
with the interior taken in z*. By the previous comment, W* contains the wedge
V=R'c+(P(W)),

and it is clear that Az +int (P (W))" is contained in the interior of V if A > 0. This
being so, pick
z € int P (W) Nint P (W)*.

Then Az + z € intV C int W* for all A > 0. Moreover, there exists a € R such
that ax + z € W because z € P (W). Since z € int W*, a > 0. This shows that
W Nnint W* # () concluding the proof of the lemma because if two pointed and
generating wedges are such that one of them itercepts the interior of the other than
they have a common interior point. a

We can show now that Sy is transitive on SI(2n,R) /Sp(n,R). According to
Corollary 2.2 we must show that Sp (n,R) meets the interior of gSy g~ for all g.
Now, gSwg™" = Sgw, and of course, gWW is pointed and generating if and only
if the same happens to W. Also, g € int Sy if and only if gW C int W. Hence
the transitivity of Sy, follows if we show that there exists g € Sp(n,R) such that
gW C int W. For this, take

v € int W Nint W*.

We have that v N W = 0 because v € int W*. Let H € sp (n,R) be as in Lemma
3.1 with v a principal eigenvector. Then v is an attractor for the spherical action
of exp (tH), t > 0 with the stable manifold given by (v,-) > 0. From this we have
that exp (tH) W C int W for ¢ > 0 big enough. This shows that Sp (n, R) meets the
interior of any Sy so that these semigroups are transitive on SI(2n,R) /Sp (n, R).

The transitivity of Sy on SI(2n,R) /Sp(2n,R) shows that Theorem 1.2 does
not hold without the assumption that G/L is compact as was claimed in [4, Thm.
6.4].

The flaw in the proof offered in [4] for this fact comes from Lemma 1 in [3] which
is wrong. That lemma claims that if a subsemigroup S, with nonvoid interior, of a
linear group G is transitive in a projective orbit O of G then it is also transitive on
the orbits which are in the closure of O.
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In order to provide a counterexemple for this statement we use again the semi-
groups Sy C Sl (2n,R) and the symplectic group

Sp(n,R) = {g € Sl(2n,R) : gJg" = J}

_ 0 _1n><n
1= < Lm0 ) '

Let V = A? (IRZ")* be the space of skew-symmetric bilinear forms on R?".
Sl (2n, R) represents in V' by

(98) (u,v) = (g‘lu, g‘lv) .

Taking the symplectic form w € V, whose matrix is J, the isotropy of the action
of Sl (2n,R) is exactly the symplectic group. Therefore, S is transitive on the orbit
of w and thus in its projective orbit. On the other hand, on the closure of this
projective orbit there is a Grassmannian. In fact, the matrix of gw, g € SI(2n,R)

1S ¢
() 35"

so that if A~! = diag{\y, ..., Aon} with A\; > -+ > Xy, > 0 then the matrix of hkw,

k>1is
0 —AF
A0

with A = diag{\An11,. .., ApA2n}. The eigenvalue A\jA,11 of A is strictly bigger
than any other eigenvalue. This implies that

1
APAS

where

hkw — &1 N\ Ept

as k — oo. Here ¢;, i = 1,...,2n is the basis of (IRZ")* dual to the basis of R*".
This shows that the orbit of the decomposable vector €; A €41 is in the closure of
the orbit of w. Now it is easily seen that the isotropy at £; A €,41 is the subgroup
Q@ of matrices of the form
z 0
()

with = being a 2 x 2 matrix. In other words, the orbit of €; A g,,41 is the Grassman-
nian of 2n — 2 subspaces of R*™. None of the semigroups Sy is transitive on this
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Grassmannian. This can be seen either by Theorem 6.2 in [4], or by Theorem 1.1
above (the isotropy @ is not transitive on the projective space) or even directly: The
(2n — 2)-subspaces which meet W is a proper subset of the Grassmannian which is
invariant under Syy.
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