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Abstract. This work is concerned with the action of a semisimple ele-
ment g of the semisimple connected Lie group Sl(d, R) on flag manifolds
or FΘ. These manifolds are obtained as left cosets of a parabolic group
TΘ.

We consider minimal sets of g on FΘ, assigning to each minimal set M
an index K(M) which appears if one consider an special decomposition
of the vector space Rd related to g called the Conley Decomposition.

The main result to be proved is:

Theorem 1. Let M and N two minimal sets with respect to g in FΘ.
Then there is a continuous curve α : [0, 1] → FΘ joining M and N and
such that each α(t) be almost periodic if and only if K(M) = K(N).

We give an application of the theorem in control theory.

1. Introduction

We present a brief resumée on flag manifolds to fix some notations. This
approach follows closely that of the paper by Guivarch and Raugi [GR89].
The details can be found there and in the book by Rohlin and Fuchs [RF81],
chapter 3.
By Θ is meant an ordered subset of the set {1, . . . , d}, that is Θ = {i1, . . . , is}
where ik < ik+1 < d for all k ∈ {1, . . . , s}. Rd is the d-dimensional vector
space over R.

Definition 1. The space of all s-tuple of subspaces (Ed−is , . . . , Ed−i1), where
each Ei is a i-dimensional subspace of Rd, and also a subspace of Ej for j > i,
is called Θ-flag manifold and is denoted by FΘ.

This set can be given directly a topology and a differentiable structure that
will not be described here (see [RF81]), instead one looks to each FΘ as
homogeneous spaces of Sl(d,R).
As particular instances of flag manifolds one have to keep in mind
(1) The complete flag manifold that occurs when Θ = {1, . . . , d}.
(2) The Grassmanian manifold obtained when Θ = {i} has just one element.
In this case it would be used the traditional notation Gr(d − i, Rd), this
include yet the projective space Pd−1 as particular case (Θ = {d− 1}).
With respect to the canonical basis there is a canonical and transitive action
of Sl(d,R) on Rd and as consequence also on FΘ, such that this space is ac-
tually an homogeneous space identified with the left coset space Sl(d,R)/TΘ,
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where TΘ is the isotropy group with respect to the action on FΘ, this group
is composed of all matrices with the following form:

T =


Gi1 0 0 0
∗ Gi2−i1 0 0

∗ ∗ . . . 0
∗ ∗ ∗ Gd−is


Here Gi is an element of the group Gl(i,R) and the product of the det Gi

must be one.
To obtain this representation we take in FΘ a canonical element δΘ defined
as following:
Let f1, . . . , fd be the canonical basis of Rd and set

Fd−ik = [fd, . . . , fik+1]vs

where the rightside means the vector space generated by the vectors between
brackets. Then δΘ is defined to be

δΘ = (Fd−is , . . . , Fd−i1)

It will be computed the isotropy group for this element (which is the same
for all elements). For this purpose, let T ∈ TΘ be fixed. Then it is easy to
compute that

TδΘ = δΘ if and only if TFi = Fi∀i ∈ {d− ik : 1 ≤ k ≤ s}
Being T a matrix (aij), then one can write this condition as Tfi ∈ Fd−ik for
i ∈ {ik + 1, . . . , d}, which means in this case that a1i = · · · = aiki = 0, which
gives the general form of the elements of TΘ.
Since the special orthogonal group SO(d) also acts transitively on the Θ-flag
manifolds, they are compact. Next we analyze the semi simple elements of
Sl(d,R).

2. Conley Decomposition of the Vector Space

From now on in this paper g ∈ Sl(d,R) is a fixed semisimple element. One
remind that g is semisimple if for each g-invariant subspace V of Rd there is
another g-invariant subspace W such that Rd = V ⊕W . (c.f. Tits [Ti83]).
Let {λ1, . . . , λr} be the set of all different eigenvalues of g. Some of them
are eventually complex numbers. To this spectrum there corresponds a de-
composition of Rd in the eigenspaces

Rd = V1 ⊕ · · · ⊕ Vr

This decomposition will be referred as Jordan decomposition. Since g is
semisimple we know the structure of the ‘blocks’ Λi = g|Vi

. Its convenient
to denote

g = Λ1 ⊕ · · · ⊕ Λr

where each Λi : Vi → Vi is an operator and they have one of the following
forms
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First case: The eigenvalue λi associated to Λi is real. In this case the
dimension of Vi is the multiplicity of λi and each vector in Vi is an eigenvector.
Then if Ii denote the identity in Vi then one can write

Λi = λiIi

Second case: The eigenvalue λi is complex. Then there is a basis of the
vector space Vi in which the operator Λi will take the form:

Λi = |λi|

Rθi
0 0

0
. . . 0

0 0 Rθi


where each block Rθi

denote the matrix

(
cos θi − sin θi

sin θi cos θi

)
with θi ∈ (0, 2π)\

π.
Although the Jordan decomposition is the classical one related to the spectral
theory it reveals to be too fine to study the dynamical features of the operator
g acting as cascade on the compact homogeneous spaces. The difficulties will
be clear after the simple example that follows the discussion. In contrast the
Conley decomposition seems to have a good behavior with respect to isolated
invariant sets on flag manifolds.
Put Σ∗ = {α ∈ R such that there is a λi with |λi| = α}. It is clear that Σ∗

has s ≤ r elements and they will be supposed enumerated as α1 > · · · > αs.
Now let Wj denote the vector subspace of Rd obtained as direct sum of all
subspaces Vi from the jordan decomposition for which |λi| = αj.

Definition 2. The new decomposition of the vector space as

Rd = W1 ⊕ · · · ⊕Ws

will be called Conley decomposition.

One should note that the operator g|Wj
has possibly different eigenvalues but

all with the same absolute value (αj). It will be denoted as πj the projector
πj = Rd → Rd such that Imπj = Wj and Kerπj = ⊕i6=jWi.
This section ends with a very simple but important lemma.

Lemma 1. Let x be a k-dimensional subspace of Rd. Then
∑s

j=1 dim πj(x) ≥
k and the equality holds if and only if x = ⊕s

j=1πj(x)

Proof. Let {e1, . . . , ek} be a basis of x. Each element ei can be uniquely de-
composed as sum of vectors in Wj, this obviously implies that x is a subspace
of ⊕s

j=1πj(x) and this implies the first inequality. The second assertion is
immediate comparing the dimension of the subspaces x and ⊕s

j=1πj(x). �

3. The action on grassmanian manifolds

It was already seen that the grassmanian manifolds are particular instances
of flag manifolds. Here Gr(k, Rd) will denote the space of all k-dimensional
subspaces of Rd (Remember that this is the special case for Θ = {d − k}).
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Then a point x ∈ Gr(k, Rd) is a k-dimensional subspace of Rd. It will
be denoted as ω(x) the omega limit set of x with respect to g. That is
ω(x) = {y ∈ Gr(k, Rd) : limi→∞ gni(x) = y}.
Proposition 1. Let x an arbitrary point in Gr(k, Rd), and consider y a
point in ω(x). Then

∑s
j=1 dim πj(y) = k.

Proof. Let {nk} denote the increasing sequence of integers such that gnk(x)
tends to y. Keep fixed a basis {f1, . . . , fk} of the vector space x. For each
integer n, one has that gn(x) is the k-dimensional subspace generated by
gn(f1), . . . , g

n(fk), which will be denoted by [gn(f1), . . . , g
n(fk)]vs, one must

note that this subspace is the same as [gn(f1)
β1

, . . . , gn(fk)
βk

]vs where βi are non

zero real numbers.
The elements of this basis can be decomposed as

fi =
s∑

j=1

eij

Where each eij is in Wj, the subspace of the Conley decomposition.
It follows that:

gn(fi) =
s∑

j=1

ρn
j e

(n)
ij

where ρj is the absolute value of the eigenvalues of g|Wj
, and e

(n)
ij =

gn|Wj
(eij)

ρj
n .

Let j(i) be the least index in the decomposition of fi for which eij is different
of zero. As we are interested just in the vector space generated by the family
gn(fi) we have dividing both sides by ρj(i) in the above equation

[gn(fi)]vs = [e
(n)
ij(i) +

s∑
j=j(i)+1

ρj

ρj(i)

e
(n)
ij ]vs

As n goes to infinity remain just the terms eij(i) belonging to Wi. This implies
that y has a basis with each element belonging to a Wi which completes the
proof �

Corollary 1. If M ⊂ Gr(k, Rd) is a minimal set, and if x ∈ M then
s∑

i=1

dim πi(x) = k

.

Proof. In this case ω(x) = M . �

These results were not true if we had taken the original Jordan decomposition
of Rd. The following proposition is the key of our construction, giving the
main motivation to consider the Conley decomposition. It is convenient to
see firstly a simple example which shows the differences.
Example: We consider in Sl(3, R) the following elements
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g1 =

(
1 0
0 Rθ

)
e g2 =

(
2 0
0 1

2
Rθ

)
Then one can easily see that they induces the same Jordan decomposition
of R3 but different Conley decomposition. The whole space is the decompo-
sition for g1 and for g2 the space is decomposed in direct sums of a subspace
of dimension one and a subspace of dimension 2.

w(x,g2)

w(x,g1)

x x

Figure 1. Conley decompositions and corresponding mini-
mal sets

Proposition 2. Let g be a semisimple element of Sl(d,R), whose eigenvalues
have all the same modulus (that is, 1 in this case), then for an arbitrary
element x ∈ Gr(k, Rd) the set ω(x) is a minimal set, and x ∈ ω(x).

before we give the proof, let us recall the definition of an almost periodic
point [Brw76, Bro79]

Definition 3. A point x is almost periodic, if the closure of its orbit is a
compact minimal set.

Now is clear that we want to prove that all points in the proposition are
almost periodic.

Proof. Suppose we have the complex eigenvalues λ1, . . . , λr each one with
multiplicity mi. We count apart the 1,−1 which appear eventually and their
multiplicity are respectivally α and β. then we can write

g = Iα ⊕ Jβ ⊕Rθ1 ⊕ · · · ⊕Rθr

In this decomposition of g each member is related to the restriction of g to
the proper eigenspace, and θi are the arguments of λi.
In this way one can see that

gn = Iα ⊕ (−1)nJβ ⊕Rnθ1 ⊕ · · · ⊕Rnθr

Taking a point x in Gr(k, Rd) we write the action of g on it as

gn(x) = Iα ⊕ (−1)nJβ ⊕Rnθ1 ⊕ · · · ⊕Rnθr(x)
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Now let T r the r-dimensional torus and D = {−1, 1} the discrete space and
consider the following continuous mapping

ix : D × T r → Gr(k, Rd)

defined by

ix(γ, ω1, · · · , ωr) = Iα ⊕ γ.Jβ ⊕Rω1 ⊕ · · · ⊕Rωr(x)

It is immediate to see that ix(D × T r) is a compact set and g-invariant.
Now we consider a flow in D × T r giving by the homeomorphism

t(γ, ω1, . . . , ωr) = (γ, ω1 + θ1, . . . , ωr + θr)

Then the transformation ix provides a topological conjugation of this action
with the action of g on Gr(k, Rd). Now since each point in D×T r is almost
periodic and takes the orbit of (1, 0, . . . , 0) onto the orbit of x in Gr(k, Rd).
Hence the orbit of x is minimal and is his omega limit. The proposition is
proved �

What this result says is that when the Conley decomposition is the whole
space then each point of a grassmanian manifold belongs to a minimal set,
and this grassmanian manifold itself is the only isolated invariant set. This
also implies that any continuous curve in Gr(k, Rd) has only almost periodic
points. This is obvious but important.
Its our purpose to generalize this result for those semisimple operators that
have eigenvalues of different modulus, that is whose Conley decomposition
have more than one component.
We have to see a little more generalities on projections. Let

Rd = V ⊕W

an arbitrary decomposition of Rd. Associated to this decomposition there
is a projection π : Rd → V with Ker π = W . In this way the projection
associate to each element x ∈ Gr(k, Rd) is a subspace of V . We are interested
in some properties of this mapping.

Lemma 2. Set l = dim π(x), for x ∈ Gr(k, Rd). There is a neighborhood U
of x, where dim π(y) ≥ l for all y ∈ U .

Proof. Consider the subspace π(x) ⊂ V and let be e1, . . . el a basis of this
subspace. We take also f1, . . . , fl in x such that π(fi) = ei.
Since Gr(k, Rd) is an homogeneous space of Sl(d,R) the lemma is equivalent
to say that there is a neighborhood Ũ of the identity in Sl(d,R) such that
for all h ∈ Ũ it holds dim π(hx) ≥ l.
First of all we note that there exists a neighborhood U1 of the identity such
that for each h ∈ U1 and all fi one has π(hfi) 6= 0. In fact if this were not the
case, we could find an fi and a sequence hn converging to the identity I such
that π(hnfi) = 0 and then π(hnfi) → 0 = π(fi) by continuity contradicting
the fact that π(fi) = ei.
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Now we prove that in an eventually smaller neighborhood π(hfi) remains
linearly independent.
We can write

π(hfi) =
l∑

j=1

aij(h)ej

and then is clear that independence of π(hfi) is determined by det aij(h).
The assertion then follows from the continuity of det and from the fact that
det aij(I) = 1. Hence follows also the Lemma. �

Consider now a minimal set M in Gr(k, Rd) with respect to a semisimple
element g, and suppose that the subspaces W and V given as in the last
lemma are invariants then we have

Lemma 3. Let x ∈ Gr(k, Rd), then one has π(g(x)) = g(π(x))

Proof. Let e1, . . . , ek be a basis of x. g(ei) form also a basis of g(x). It
insufficient to prove the commutativity for the basis. In one hand one has
ei = v + w =⇒ π(ei) = v =⇒ g(π(ei)) = g(v), in the other hand:
g(ei) = g(v) + g(w) =⇒ π(g(ei)) = g(v) �

Proposition 3. dim π(x) is constant for all x ∈ M .

Proof. Let x in M and U a neighborhood of x as given by lemma above.
Now take a point y in this neighborhood and in M , such that dim π(y) >
dim π(x). Apply again lemma 2 for the point y, we find a neighborhood of
y such that the dimension of π(z) is not smaller than dim π(y).
But since M is a minimal set, there is one element of the form gn(x) in
each neighborhood of y. As π(x) and π(gn(x)) have the same dimension in
consequence of the last lemma we have a contradiction. That is, there is no
such y. �

This last proposition determines then a continuous application π from a
minimal set M to a Grassmann manifold Gr(k(π, M), V ), where k(π, M) =
dim π(x) with x being an arbitrary point in M . We have morever that

Lemma 4. π(M) is a minimal set in Gr(k(π, M), V ) with respect to g|V .

Proof. The commutativity in lemma implies that in this case π is a conju-
gation between the flows

g : M → M

and
g|V : Gr(k(π, M), V ) → Gr(k(π, M), V )

As the first flow is minimal then π(M) is also minimal. �

In particular using this construction for the decomposition given by we get
a family of l natural numbers {ki} and l applications

πi : M → Gr(ki, Wi)

where ki = k(πi, M).
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Definition 4. The sequence given above (k1, . . . , kl) connected with a min-
imal set M ⊂ Gr(k, Rd) will be called the g-multigrade of the minimal set
M . It will be denoted as C(M)

Note that by lemma 3.5 we have
∑

ki = k .

4. A theorem on the multigrade

The most important result in this section is that the multigrade of minimal
sets on Gr(k, Rd) gives also information about the connection of two minimal
sets.
Let g ∈ SL(d,R) be a semisimple element. We say that two minimal sets
M and N are g-connected if there are points x ∈ M and y ∈ N such that x
and y are g-connected according definition 2.4.

Proposition 4. Let M and N be two minimal sets in Gr(k, Rd), and suppose
that C(M) = C(N), then M and N are g-connected.

Proof. We take for each minimal set the mappings defined above

πi : M → Gr(ki, Wi) and πi : N → Gr(ki, Wi)

. Note that we keep the same notation although these mappings depends
naturally on the sets M and N . Note also that as consequence from the
hypothesis both mappings go into the same Grassmann manifold Gr(ki, Wi),
since ki(M) = ki(n).
Then we have that πi(M) and πi(N) are minimal sets in Gr(ki, Wi). We also
know that the action of g|Wi

on Wi has all eigenvalues with the same absolute
values according the definition of Wi. Then we can apply the Proposition
3.6. That is to say, we take an arbitrary continuous curve from πi(M) to
πi(N), then each point of this curve is a point in a minimal set according
this proposition. We fix this curve and denote it as Ki : [0, 1] → Gr(ki, Wi).
The next task is to construct a continuous curve between M and N such
that each point belongs to a minimal set. We produce this curve with help
from the family of curves Ki. We define the continuous curve on Gr(k, Rd)
as:

K(t) = K1(t)⊕ · · · ⊕Kl(t)

It is easy to see that this curve is well defined and connected N and M . We
have just to check, whether each point K(t) belongs to some minimal set.
First of all let us prove that K(t) is a almost periodic point (see section 3.6),
and then is the proof complete.
This a consequence of a general fact: If x ∈ Gr(k, Rd) can be decomposed
as direct sum x = x1 ⊕ · · · ⊕ xl, where xi are subspace of Wi, then x is a
almost periodic point for the action of g.
In fact we have:

gn(x) = gn(x1)⊕ · · · ⊕ gn(xl)

And using again the method of proposition 3.6 we can write

gn(x) = Iα ⊕ Jn
β ⊕Rnθ1

1
⊕ · · · ⊕Rnθ1

j1
(x1)⊕ · · · ⊕Rnθl

1
⊕ · · · ⊕Rnθl

jl

(xl)]
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Now by means of the conjugation already used we indentify this action with
the action of t(θ1

1 ...,θl
jl

) on D × T j1+···+jl which concludes the assertion.

Since the closure of the orbit of a almost periodic point is a minimal set
(Auslander,[Au88, Th. 7 pg 11]) we are also ready with the proposition. �

The most important consequence of this proposition is that we can give a
boundary for the classes of g-connected minimal sets. The only possibility
for two minimal sets being not g-connected is that they have differents multi-
grades. But the number of different multigrades are finite as is easy to see.
In fact a family of natural numbers (k1, . . . , kl) could be a multigrade for the
action of g only if ,

(1)
∑l

1 ki = k.
(2) ki ≤ dim Wi = ni

If we denote by C(k; n1, · · · , nl) the number of solutions of this system then
we can formulate the following

Corollary 2. There are at most C(k, n1, . . . , nl) classes of g-connected min-
imal sets on Gr(k, Rd) for this semisimple g.

The next step is the generalization of this result to an arbitrary flag manifold
FΘ.

5. Generalization for FΘ

In the last section we proved a delimitation for the number of classes of g-
connected minimal sets on the Grassmann manifolds in this section we give
a general version of this result for general flag manifolds, the idea will be the
same, but we have to care about some details.
As in the beginning of this paper let Θ = {k1, . . . , ks} denote a subset of
{1, . . . , d}. To avoid complications with the notations we set li = d − ki.
Then a point f of FΘ is composed by a family of subspaces (Fls , . . . , Fl1),
where Fli+1

⊂ Fli . We have also the canonical projections Pi given by

Pi : FΘ → Gr(li, Rd)

f 7→ Fli

From the definition of a action of g on both spaces it is easy to see that Pi

is a conjugation. We also note that the minimal sets on FΘ are taken to
minimal sets on Gr(li, Rd) (see section 3.6)
Let X and Y two minimal sets on FΘ, then Pi(X) and Pi(Y ) are minimal
sets on the corresponding Grassmann manifold, each one with a multigrade
Ci(Pi(X)) and Ci(Pi(Y )). Then we have the following proposition

Proposition 5. Keep g a semisimple element as in the last section, and
consider X and Y two miniaml sets of FΘ, if Ci(Pi(X)) = Ci(Pi(Y )) for all
i ∈ {1, . . . , s} then X and Y are g-connected
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Proof. Recall that Ci(Pi(X)) denotes the multigrade of the minimal set
Pi(X) on Gr(li, Rd) under the action of g, and this means

Ci(Pi(X)) = {ki
1, . . . , k

i
l}

where we have also that
∑

j ki
j = li and ki

j ≤ dim Wj.

According proposition 3.11 Pi(X) and Pi(Y ) are g-connected,so there is a
continuous curve

ci : [0, 1] → Gr(li, Rd)

such that ci(0) ∈ Pi(X) and ci(1) ∈ Pi(Y ).
But we need additional properties for these curves to get a continuous curve
in FΘ, that is to say, we must impose:

ci+1(t) ⊂ ci(t)

This means that ci+1(t) is a subspace of ci(t). With this in mind we construct
such a curve
First of all we pick a point in X and another in Y and consider their pro-
jection on Gr(li, Rd). The first curve cs we take as in the construction of
the proposition 3.11.connecting the two points. The others curves we will
construct iteractivelly.
Supposing we have already the curve ci+1 we contruct the next ci. The curve
ci+1(t) we can write according the proof of proposition 3.11 as

ci+1(t) = Ki+1
1 (t)⊕ · · · ⊕Ki+1

l

where Ki+1
j ∈ Gr(ki+1

j , Wj).
Now we note that we have for all j ∈ {1, ..., l}

ki+1
j ≤ ki

j.

To see this consider a x ∈ X then

ki+1
j = dim πj(Pi+1(x)) and ki

j = dim πj(Pi(x))

Since Pi+1(x) is a subspace of Pi(x) it follows the observation.
For the construction of the curve ci we have the terminal points already
fixed; ci(0) has to be the projection of the elected point in X and ci(1) the
projection of the corresponding point in Y . It is then clear that we have :

ci+1(0) < ci(0) und ci+1(0) < ci(0)

Since Ki+1
j (t) is a ki+1

j -dimensional subvectorspace of Wj , we can complete

it to a ki
j-dimensional subspace of Wj. We are the able to construct a conti-

nouous complementation of Ki+1
j (t), which we will call V i

j (t) and such that
(see Lemma 3.15 in sec. 3.6):

• V i
j (t) is a subspace of Wj and is continuous.

• dim V i
j (t) = ki

j − ki+1
j and V i

j (t) ∩Ki+1
j (t) = ∅.

• πj(ci(0)) = πj(ci+1(0))⊕ V i
j (0) and πj(ci(1)) = πj(ci+1(1))⊕ V i

j (1)
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Now we define

Ki
j(t) = Ki+1

j (t)⊕ V i
j (t) ∈ Gr(ki

j, Wj)

The curve ci is made with help of Ki
j:

ci(t) = Ki
1(t)⊕ · · · ⊕Ki

l (t)

These curves have all wanted properties that allows us to define a continuous
curve on FΘ by:

c(t) = (cs(t), . . . c1(t))

We note about this curve that:
(a) c(0) ∈ X and c(1) ∈ Y .
(b) Each ci(t) is contained in a minimal set of Gr(li, Rd). These are conse-
quence of the proof of propositon 3.11.
We have still to prove that c(t) is contained in a minimal set.
This follows in the same way we have made in proposition 3.11.
Let f ∈ FΘ such that

Pi(f) = xi
1 ⊕ · · · ⊕ xi

l ∈ Gr(li, Rd). and xi+1
j subspace of xi

j

We want to prove that f is a almost periodic point, and in this way contained
in a minimal set. Note that this is the case for the points c(t).
First we write as usual:

gn(f) = (gn(xs
1 ⊕ · · · ⊕ xs

l ), . . . , g
n(x1

1 ⊕ · · · ⊕ x1
l ))

We can decompose g as

g = g1 ⊕ · · · ⊕ gl

wheregi : Wi → Wi. then we can write

gn(f) = (gn
1 (xs

1)⊕ · · · ⊕ gn
l (xs

l ), . . . , g
1
1(x

s
1)⊕ · · · ⊕ gn

l (x1
l ))

We decompose gi again as

gj = ρj(Iαj
⊕ Jβj

⊕Rθj
1
⊕ · · · ⊕Rθj

nj
)

or as already observed in propositin 3.6

gn
j (xi

j) = (Iαj
⊕ Jβj

n ⊕Rnθj
1
⊕ · · · ⊕Rnθj

nj
)(xi

j)

We consider again the mapping:

if : D × T n1+···+nl → FΘ

(γ, θj
1, . . . , θ

j
nj

) 7→
⊕

j

(Ialphaj
⊕ Jβj

γ ⊕Rθj
1
⊕ · · · ⊕Rθj

nj
)(f)

if (T ) is then a compact invariant set on FΘ and the almost periodic points in
D× T are transformed in almost periodic points on if (T ) . We have proved
our assertion and the is also the proposition proved. �

We have as consequence
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Corollary 3. In the flag manifold FΘ there are at most CΘ(n1, ..., nl) dif-
ferent classes of g-connected minimal sets where

CΘ(n1, ..., nl) =
∏

C(li, n1, ..., nl)

and ni = dim Wi.

Proof. This number give the number all possibles multigrade. �

6. Complementary Lemmas

We prove in this section three fundamental Lemmas that we have used in
this work.

Lemma 5. Let c : [0, 1] → Gr(k, Rd) be a continuous curve. Consider x0

and x1 ∈ Gr(s, Rd), such that x0 ∩ c(0) = {0} and x1 ∩ c(1) = {0} as
subspaces . Then there is a continuous curve v : [0, 1] → Gr(s, Rd) , such
that c(t)⊕ v(t) is continuous with v(0) = x0 and v(1) = x1

Proof. As Gr(k, Rd) is a homogeneous space of SL(d,R) we can represent

Gr(k, Rd) = SL(d,R)/Gc(0)

Let now ḡ ∈ SL(d,R) be an element such that

• ḡ.c(0) = c(1)
• ḡ.x0 = x1

this is possible cause we have: c(0) ∩ x0 = c(1) ∩ x1 = {0} and x0 and x1

have the same dimension.
Now we take a lift g(t) of c(t) in SL(d,R) such that g(1) = ḡ, then we have
that

c(t) = g(t).c(0)

and taking
l(t) = g(t).(c(0)⊕ x0)

follows that l(t) is continuous and

l(1) = g(1)(c(0)⊕ x0) = c(1)⊕ x1

Let us consider a h ∈ Gc(0) such that h.x0 = x0 ( that is to say: h.(c(0)⊕x0) =
c(0)⊕ x0), and a curve in Gc(0)

α : [0, 1] → Gc(0)

such that α(0) = g(0)−1.h and α(1) = e. Then the curve

u(t) = g(t).α(t)

satisfies

(1) u(t) is continuous.
(2) u(0) = c(0)⊕ x0.
(3) u(1) = c1 ⊕ x1

Then v(t) = g(t).α(t).x0 is the wanted curve. �

Another importante result is the following
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Lemma 6. Let f : X → X and g : Y → Y two homeomorfisms between
topological spaces and consider c : X → Y a continuous conjugation, that is

c ◦ f = g ◦ c.

Then if M is a minimal set in X and c(M) is closed, c(M) is also a minimal
set.

Proof. (1) c(M) is an invariante set since we have

f(M) = M =⇒
c ◦ f(M) = c(M) =⇒

g(c(M)) = c(M)

(2) c(M) is closed by assumption.
(3) Suppose that c(M) contains a closed invariant set K. Then c−1(K)
is a closed invariant set in X, which implies that c−1(K) ∩ M is a closed
invariant set contained in M , since it is also not empty it must be M itself,
which implies that K = c(M). �

We have also used that each point in a torus T n is a almost periodic point
with respect to translations. Here is a proof of this fact

Lemma 7. Consider D = {−1, 1} and T n the n-dimensional torus. More-
over we consider for a fixed ω ∈ T n the homeomorphism on D × T n given
by

tω(γ, x) = (−γ, x + ω).

Then each point (γ, x) ∈ D × T n is a almost periodic point.

Proof. We prove this lemma in two parts, first suppose that ω = (ω1, . . . , ωn) ∈
T n is rationally independent, then the point 2ω is also rationally independent
and the orbit of a point (γ, x) ∈ D × T n we can write as

O(γ, x) = {t2n
ω (γ, x) : n ∈ Z}∪̇{t2n+1

ω (γ, x) : n ∈ Z}
We note that since 2ω is rationally independent we have

Cl{t2n
ω (γ, x) : n ∈ Z} = {γ} × T n

and
Cl{t2n+1

ω (γ, x) : n ∈ Z} = {−γ} × T n

and this is a minimal set.
If ω is not rationally independent then we write ω = (ω1, . . . , ωn) ∈ T n and
take x ∈ T n arbitrary.
We rearrange the vector ω such that the first k components are the maximal
rationally independent set in ω. This means:

a1ω1 + · · ·+ akωk = 0, ai ∈ Z ⇔ ai = 0

and

ωk+i =
k∑

j=1

ai
jωj
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We consider then the injection:

ix : D × T k → D × T n

defined as:

ix(γ, (ω1, . . . , ωk)) = (γ, x + (ω1, . . . , ωk,
∑

ai
jωj))

for i = 1, . . . , n − k. We note that this map is a conjugation between the
homeomorphisms iω and i(ω1,··· ,ωk) on D×T k. Since (ω1, . . . , ωk) are rationally
independent we use the first part of the proof on D × T k and then the last
lemma to conclude the proof. �

7. Conclusions

We give here a consequence of the above results to the theory of control sets.
Let S be a subsemigroup of SL(d,R) with non empty interior acting on a
flag manifold. We define a control set as a subset D satisfying
i) int D 6= ∅,
ii) D ⊂ Cl(Sx) for all x ∈ D, and
iii) D is maximal with properties i) and ii).
More on control sets can be found in [T-91]

Proposition 6. If Int S has a semisimple element whose eigenvalues have
all the same absolute value then there is only one control set for S, namelly
the whole flag manifold.

Proof. In this case we have the whole space as Conley decomposition beeing
each point in a minimal set and they all have to be in the same control
set. �

In other words, such a semigroup must acts transitivelly on the flag manifold.
Another result that comes easily from this theory is that

Proposition 7. If the semigroup S has non empty interior then it has at
most finitely many efective [SMT] control sets on the flag manifolds

Proof. It is know (see for instance [SaM86]) that the set of semisimple el-
ements are dense in SL(d,R). Then taking a semisimple element in the
interior of S we have that all minimal sets belongs to an efective control set.
Now minimal sets having the same multigrade must be in the same control
set. So we can have as much control sets as multigrade. This proves the
result. �
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