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Abstract

The concept of asymptotic smooth transformation was introduced by J.
Hale [1] and it is a very important property for a transformation, between
complete metric spaces, to have a global attractor. This property has also
consequences on the asymptotic stability of attractors. In our work, we study
the conditions under which the Zadeh’s extension of a continuous mapf :
Rn → Rn is asymptotically smooth in the complete metric spaceF(Rn) of
normal fuzzy sets with the induced Hausdorff metricd∞ (see Kloeden and
Diamond [2] ).
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1 Introduction

The question of determining whether a discrete dynamical system on a infinite di-
mensional vector space has a compact attractor has been studied very intensively
in the last ten years. Some new concepts that were irrelevant for the finite dimen-
sional cases shows up to be of decisive importance in infinite dimensional cases.
Among these concepts we will center our attention in the asymptotic smoothness
of a function.

The concept of asymptotic smoothness was introduced by J. Hale in [1]. Every
continuous transformation between finite dimensional vector spaces are asymp-
totically smooth, this is not the case for infinite dimensional Banach spaces or
metric spaces. From the dynamical point of view, an important property of an
asymptotic smooth map is that the existence of a compact set that attracts locally
points implies that the compact set also attracts locally compact sets. A practi-
cal consequence of this result is the use of an iteration procedure to approximate
global attractors. In his book, J. Hale also gives some examples of asymptotic
smooth transformations in infinite dimensional spaces. Our objective in this pa-
per is to provide another class of such functions using the Zadeh’s extensions of
continuous transformation inRn. Extending a mapT : Rn → Rn to a map in
the fuzzy spacêT : F(Rn) → F(Rn) using the extension principle is a standard
procedure that is known since the first steps of the theory of fuzzy sets [3]. It is a
procedure particularly useful if one knows a deterministic process but has a fuzzy
initial condition, for instance see [4]. The properties of the extension principle, in
case of any variation of fuzzy dynamical systems, play also a substantial role, due
to the so calledα-level preservation of the Zadeh’s extensions [5, 6, 7, 8]. Prop-
erties of the Zadeh’s extension connected to the regularity of the function which
originated it were studied in the works of Nguyen [9], Barros et al. [10, 11] and
Ma et al. [5].

The results we present in this paper are used to analyze the interaction of
dynamical properties between a transformation inRn and its Zadeh’s Extension
defined onF(Rn)[9]. We indicate a procedure to obtain an attractor if it exists.

Attractors of a such discrete dynamical system in the spaceF(Rn) can appear
in many problems as an iteration system. Different instances of this applications
can be found the works of Cabrelli et al. [12] and Barros et al. [4]:

In [12], Cabrelli et al. introduce the iterated fuzzy sets systems, which or-
bits are used for approximation of fractals or other images or sets, these sets
should be global attractors inF(Rn). As a consequence, the transformations
Tn : F(Rn) → F(Rn) that originate the iterated fuzzy sets systems are assumed
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to be asymptotically smooth. In this paper the hypothesis thatTn are Zadeh’s
extensions of Lipschitzian maps inR2 is sufficient for the existence of a global
attractor.

In [4], Barros et al. consider the fuzzification of a classical population growth
model. This is obtained considering the Zadeh’s extension of the so called Malthus-
Verhulst (or logistic) model. This is an appropriated model if one considers en-
vironmental fuzziness. The work shows that, besides the known attractors of the
deterministic logistic system, there are other fuzzy attractors.

The paper is organized as follows: In the section 2 we recall the main def-
initions and known results from the theory of dynamical systems and fuzzy set
analysis. This material is fully described in the given references. In the section
3 we present a discussion of the properties of compact sets inF(Rn) that affect
our work. The section 4 contains our main results that give some condition un-
der which the Zadeh’s extension of a continuous transformation is asymptotically
smooth. In the last section we present some examples.

2 Preliminaries

If X is a metric space andT : X → X is a continuous transformation then we
have a discrete dynamical system. For the basics notations and definitions on
dynamical systems we refer to Hale [1]. We say thatT is asymptotically smooth
(see [1]) if, for each nonempty bounded and closed setB ⊂ X for whichT (B) ⊂
B, there is a compact setJ ⊂ B such thatJ attractsB. We recall thatJ attractsB
if for each neighborhood ofJ there is a positiven0 such thatT n(B) is contained
in that neighborhood for alln ≥ n0 (see Hale [1] page 9). An important property
is that if T is an asymptotically smooth map then a set attracts locally points if
and only if it attracts locally compact sets. Cooperman [13] and Brumley [14]
have given examples where this is not true for general transformations on infinite
dimensional Banach Spaces.

The concepts of limit sets of a dynamical systems are classical. Here we will
need the following: theω-limit of a subsetB of X is given by:

ω(B) =
⋂
n>0

cl(
⋃
k≥n

T k(B)).

It is clear that ifB is such thatT (B) ⊂ B then

ω(B) =
⋂
n>0

cl(T n(B))
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The next Lemma can be found in Hale [1] (page 11, Cor. 2.2.4)

Lemma 1. If T is asymptotically smooth andB is a nonempty bounded set such
that its positive orbit is bounded, thenω(B) is nonempty, compact, and invariant
andω(B) attractsB.

The problem we addressed here is: What are the conditions for a continu-
ous transformations onRn to have its Zadeh’s extensions asymptotically smooth?
Note that since the Zadeh’s extensions of the identity inRn is the identity in
F(Rn), and that not all bounded closed set inF(Rn)are compact, the identity
map doesn’t have this property.

Next we recall some definitions on fuzzy metric spaces.
The family of all compact nonempty subsets ofRn will be denoted asQ(Rn).

We also setF(Rn) for the family of fuzzy setsu : Rn → [0, 1] whoseα-level:

[u]α = {x ∈ Rn : u(x) ≥ α} 0 < α ≤ 1 and[u]0 = cl{x ∈ Rn : u(x) > 0}

are inQ(Rn).
It is known that the metric

d∞(u, v) = sup
0≤α≤1

h([u]α, [v]α)

whereh is the Hausdorff metric inQ(Rn), turns the spaces(F(Rn), d∞) into
complete metric spaces [15].

Let f : Rn → Rn be a mapping, then we define the Zadeh’s extension as:

f̂(u)(x) =

{
supτ∈f−1(x) u(τ) if f−1(x) 6= ∅
0 if f−1(x) = ∅

for all fuzzy setsu.
The proof of the following results can be found in [10].

Theorem 1. If f : Rn → Rn is continuous then̂f : F(Rn) → F(Rn) is well
defined and for allα ∈ [0, 1] we have

[f̂(u)]α = f([u]α).

We will need also a recent result of Roman-Flores et al. [11]

Theorem 2. If f : Rn → Rn is continuous then̂f : F(Rn) → F(Rn) is continu-
ous with respect to the metricd∞.
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3 Some facts on compact sets onF(Rn)

Our strategy is to study the problem using the bare definition of an asymptoti-
cally smooth map. So we should be able to determine when a subset ofF(Rn)
is compact or not. In the book of Kloeden and Diamond [2] one finds the char-
acterization of compact sets in the space of fuzzy sets with convex levels which
does not fit our purpose since our levels are only compact sets inRn. The best
approach we have found in the literature is the article of Rojas et al. [16]. In
that paper it is shown how difficult it is to find a compact set inF(Rn). A re-
sult that is of great importance here is the following: IfK is a compact set inRn

thenJK = {u ∈ F(Rn) : [u]0 ⊂ K} is compact if and only ifK has diameter
zero! Our candidate to be an attractor will be of this type but we have also good
properties for this candidate.

Lemma 2. Let K ⊂ Rn be a compact set andA = {u ∈ F(Rn) : [u]0 ⊂ K}.
ThenA is a bounded closed set of the metric space(F(Rn), d∞)

Proof: To see thatA is bounded note that the distance ofA to a point0̂ (the
characteristic function at0) is finite. Indeed, denotingh the Hausdorff metric
between compact sets

d∞(0̂, A) = inf
u∈A

d∞(0̂, u) = inf
u∈A

sup
α∈[0,1]

h({0}, [u]α) ≤ sup
x∈K

d(0, x) = M < ∞

Note that this last numberM must be less than infinity becauseK is a compact
set inRn.

Now A is closed. In fact, consider a convergent sequenceun in A with
limit u, the convergence being in the metricd∞ then we have, in particular, that
h([un]0, [u]0) → 0 and since[un]0 ⊂ K then[u]0 ⊂ K proving thatu belongs to
A. In other words,A contains all its cluster points and then it is closed. QED

4 The asymptotic smoothness problem

The main results will follow from a sequence of lemmas. Letf : Rn → Rn be a
continuous transformation and̂f : F(Rn) → F(Rn) its Zadeh’s extension which
is continuous according Theorem 2. To prove thatf̂ is asymptotically smooth we
have to prove that for each closed bounded setB ⊂ F(Rn) such thatf̂(B) ⊂ B
there is a compact setJ ⊂ B that attractsB. We take a closed bounded nonempty
B. Note that for eachu ∈ f̂(B) andv ∈ B such thatf̂(v) = u we have[u]α =
[f̂(v)]α = f([v]α), using Theorem 1.
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Lemma 3. Let B as above and defineBα = cl(
⋃

u∈B[u]α) ⊂ Rn. There exists a
compact setK ⊂ Rn such that[u]0 ⊂ K for all u ∈ B. HenceBα is bounded for
eachα ∈ [0, 1]

Proof: Take a pointx in Rn and denote aŝx its characteristic function. Since
B is bounded there exists ar > 0 such that the ball with center in̂x and radiusr
contains the entire setB. In other words, for allu ∈ B d∞(x̂, u) ≤ r. According
to a result that can be found in [10] this metric can be written as

d∞(x̂, u) = sup
0≤α≤1

inf{a : [u]α ⊂ Ba(x) andx ∈ Ba([u]α)}

whereBa(x) denote the Euclidean ball centered inx. Then it follows immediately
that [u]0 ⊂ Br(x) ⊂ clBr(x) = K. Now since[u]α ⊂ [u]0 follows [u]α ⊂ K
what proves the lemma. QED

Lemma 4. ConsiderBα as in Lemma 3. ThenBα are closed bounded and satisfies
f(Bα) ⊂ Bα. Therefore there is a compact setJα ⊂ Bα that attractsBα.

Proof: In fact the only assertion that has to be proved is thatf(Bα) ⊂ Bα.
The rest follows immediately from definitions, Lemma 2 and the fact that every
continuous transformation inRn is asymptotically smooth.

Take ax in Bα. By definitionx is the limit of a sequencexn with xn ∈ [un]α

andun ∈ B. Therefore we have

f(xn) ∈ f([un]α) = [f̂(un)]α ⊂ Bα.

Sincef is continuousf(xn) converges tof(x) ∈ Bα and this completes this
proof. QED

Using the Lemma 1 we can define the special compact invariant setsJα =
ω(Bα). These are the attractors we will consider. Now we can prove

Lemma 5. For 0 ≤ α1 ≤ α2 ≤ 1 we haveJα2 ⊂ Jα1

Proof: We have thatBα2 ⊂ Bα1 . Observing that in this case the omega limits
can be written as:

Jα2 = ω(Bα2) =
⋂
n≥0

fn(Bα2) ⊂
⋂
n≥0

fn(Bα1) = Jα1

and then follows the result.
We defineJ = {u ∈ B : [u]0 ⊂ J0}.
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Theorem 3. If f̂ : F(Rn) → F(Rn) is asymptotically smooth thenJ is nonempty
for all nonempty closed boundedB with f̂(B) ⊂ B.

Proof: We take a closed boundedB with f̂(B) ⊂ B. Since we are assuming
that f̂ is asymptotically smooth, we can use Lemma 1 to construct the attractor
K = ω(B) which is also nonempty, compact and invariant. Again takeK0 =
cl

⋃
u∈K [u]0. With respect toK0 we can assert

a)K0 is a compact set contained inB0. And this is clear.
b) K0 is an invariant set forf (i.e. f(K0) = K0). In fact, if x ∈ K0 then we

know thatx is a limit of a sequencexn such thatxn ∈ [un]0 andun ∈ K then
follows: f(x) = limn→∞ f(xn). Now

f(xn) ∈ f([un]0) = [f̂(un)]0 ∈ K0

this shows thatf(K0) ⊂ K0.
To prove thatK0 ⊂ f(K0), we repeat the process takingx ∈ K0 andxn as

above. Now sinceK is invariant forf̂ we have thatun = f̂(vn) wherevn ∈ K.
Then for eachn ≥ 0 we havexn = f(yn) whereyn ∈ [vn]0 ⊂ K0. Choosing a
subsequence, if necessary, we takey = limn→∞ yn. By continuity off follows
thatx = f(y). HenceK0 is an invariant set off .

Now J0 attractsB0 and alsoK0. This means that for eachε ≥ 0 there is
an n0 such that forn ≥ n0, fn(K0) ⊂ N(J0, ε) or K0 ⊂ N(J0, ε) using the
invariance. HereN(J0, ε) stands for anε-neighborhood ofJ0. This proves that in
factK0 ⊂ J0 becauseε is arbitrary and thenJ 6= ∅. QED.

In particular ifJ = ∅ thenf̂ isn’t asymptotically smooth.

Theorem 4. Suppose that̂f : F(Rn) → F(Rn) is asymptotically smooth,B a
nonempty, bounded, closed subset ofF(Rn)such thatf̂(B) ⊂ B, K = ω(B) and
Jα = ω(Bα). ThenKα = Jα.

Proof: The proof thatKα ⊂ Jα follows as in the above Theorem, only chang-
ing the index0 by α. It remains to prove thatJα ⊂ Kα. We know thatK attracts
B, therefore givenε > 0 there existsn0 such that forn ≥ n0, f̂n(B) ⊂ N(K, ε)
this implies that for eachα ∈ [0, 1], fn(Bα) ⊂ N∗(Kα, ε) where

N∗(Kα, ε) = {x ∈ Rn : d(x, Kα) ≤ ε}.

It follows from the definition ofJα that

Jα ⊂
⋂

n≥n0

fn(Bα) ⊂ N∗(Kα, ε).
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This is true for everyε > 0 then follows the result. QED.
The setJ , according to the above proposition, is the best candidate in which

we can find an attractor. It could be the empty set, and in this case the Zadeh’s
extension isn’t asymptotically smooth. We give some examples where we can
decide on the smoothness of the transformation and even determine the attractors.

5 Examples

We present two examples.
Let f : Rn → Rn be a continuous transformation, such that{0} is the unique

global attractor off . Thenf̂ : F(Rn) → F(Rn) is asymptotically smooth.
It is clear thatf̂ : F(Rn) → F(Rn) is continuous. We take a bounded closed

setB ∈ F(Rn) such thatf̂(B) ⊂ B. Now we shall prove that:
(a)χ{0} attractsB, and
(b) χ{0} ⊂ B.
Since the set{χ{0}} is compact inF(Rn) it follows our result.
To prove (a) note that for eachα ∈ [0, 1] the setBα = cl(

⋃
u∈B[u]α) ⊂ Rn

is compact, and then{0} attractsBα. This means that for eachε > 0 there is an
nα ∈ N such thatfn(Bα) ⊂ N({0}, ε) for all n > nα. HereN({0}, ε) denotes
theε-neighborhood of{0}. But sinceBα ⊂ B0 we havefn(Bα) ⊂ N({0}, ε) for
all n > n0.

For eachu ∈ B, it follows thatfn([u]α) ⊂ N({0}, ε) and sincef is continu-
ous[f̂n(u)]α ⊂ N({0}, ε). From this it follows the assertion (a).

For the item (b) we taken0 such thatd∞(f̂n(B), χ{0}) ≤ ε for n > n0. This
implies thatχ{0} is in aε-neighborhood of̂fn(B) and then in aε-neighborhood
of B, becausêfn(B) ⊂ B. As this last assertion is true for anyε > 0 we must
haveχ{0} ∈ B. The proof of the result is complete.

As a particular case, we can takef(x) = Ax whereA is a linear operator.
We can restrict the analysis to the eigenspace associated to the eigenvalues whose
absolute values are less than one, and the above result applies.

This next example shows that it is not always true that the Zadeh’s extension
is asymptotically smooth.

If f : Rn → Rn have a compact setK with infinite points as attractor, then
one can easily see that the set

B = {u ∈ F(Rn) : [u]0 ⊂ K}
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is a bounded closed set for whicĥf(B) = B. SinceB is not compact according
to Rojas et al. [16], then̂f is not asymptotically smooth. The meaning of this last
example is that if̂f have a global attractor it will be hard to detect it since we can
not use the theory for asymptotically smooth transformation.

Theorem 4 can be understood as a way to produce the the fuzzy attractors in a
levelwise manner. There is yet the problem to find out the conditions that guaran-
tee the existence of the attractor. This is the project we are involved now. Another
study that could be interesting, is to consider the dissipativity and asymptotic
smoothness of time continuous dynamical systems in the sense of Hüllermeier
[17]. For this, the concept of attractor has to be generalized as in Diamond [18].
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