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Preface

These notes provide an introduction to Pontryagin’s Maximum Principle. Optimal con-
trol, and in particular the Maximum Principle, is one of the real triumphs of mathematical
control theory. Certain of the developments stemming from the Maximum Principle are now
a part of the standard tool box of users of control theory. While the Maximum Principle has
proved to be extremely valuable in applications, here our emphasis is on understanding the
Maximum Principle, where it comes from, and what light it sheds on the subject of control
theory in general. For this reason, readers looking for many instances of applications of the
Maximum Principle will not find what we say here too rewarding. Such applications can
be found in many other places in the literature. What is more difficult to obtain, however,
is an appreciation for the Maximum Principle. It is true that the original presentation
of Pontryagin, Boltyanskii, Gamkrelidze, and Mishchenko [1986] is still an excellent one in
many respects. However, it is probably the case that one can benefit by focusing exclusively
on understanding the ideas behind the Maximum Principle, and this is what we try to do
here.

Let us outline the structure of our presentation.
1. The Maximum Principle can be thought of as a far reaching generalisation of the classical

subject of the calculus of variations. For this reason, we begin our development with
a discussion of those parts of the calculus of variations that bear upon the Maximum
Principle. The usual Euler–Lagrange equations only paint part of the picture, with
the necessary conditions of Legendre and Weierstrass filling in the rest of the canvas.
We hope that readers familiar with the calculus of variations can, at the end of this
development, at least find the Maximum Principle plausible.

2. After our introduction through the calculus of variations, we give a precise statement
of the Maximum Principle.

3. With the Maximum Principle stated, we next wind our way towards its proof. While it
is not necessary to understand the proof of the Maximum Principle to use it,1 a number
of important ideas in control theory come up in the proof, and these are explored in
independent detail.

(a) The notion of a “control variation” is fundamental in control theory, particularly
in optimal control and controllability theory. It is the common connection with
control variations that accounts for the links, at first glance unexpected, between
controllability and optimal control.

(b) The notion of the reachable set lies at the heart of the Maximum Principle. As we
shall see in Section 6.2, a significant step in understanding the Maximum Principle
occurs with the recognition that optimal trajectories lie on the boundary of the
reachable set for the so-called extended system.

4. With the buildup to the proof of the Maximum Principle done, it is possible to complete
the proof. In doing so, we identify the key steps and what they rely upon.

1Like much of mathematics, one can come to some sort of understanding of the Maximum Principle by
applying it enough times to enough interesting problems. However, the understanding one obtains in this
way may be compromised by looking only at simple examples. As Bertrand Russell wrote, “The man who
has fed the chicken every day throughout its life at last wrings its neck instead, showing that more refined
views as to the uniformity of nature would have been useful to the chicken.”
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5. Since one should, at the end of the day, be able to apply the Maximum Principle, we do
this in two special cases: (1) linear quadratic optimal control and (2) linear time-optimal
control. In both cases one can arrive at a decent characterisation of the solution of the
problem by simply applying the Maximum Principle.

6. In three appendices we collect some details that are needed in the proof of the Maximum
Principle. Readers not caring too much about technicalities can probably pretend that
these appendices do not exist.
An attempt has been made to keep prerequisites to a minimum. For example, the

treatment is not differential geometric. Readers with a background in advanced analysis
(at the level of, say, “Baby Rudin” [Rudin 1976]) ought to be able to follow the development.
We have also tried to make the treatment as self-contained as possible. The only ingredient
in the presentation that is not substantially self-contained is our summary of measure theory
and differential equations with measurable time-dependence. It is not really possible, and
moreover not very useful, to attempt a significant diversion into these topics. We instead
refer the reader to the many excellent references.
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Muñoz–Lecanda for the invitation to give the course and for his hospitality during my
stay in Barcelona. I would also like to thank the attendees of the lectures for indulging my
excessively pedantic style and onerous notation for approximately three gruelling (for the
students, not for me) hours of every day of the course.
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Chapter 1

Control systems and optimal
control problems

We begin by indicating what we will mean by a control system in these notes. We will be
slightly fussy about classes of trajectories and in this chapter we give the notation attendant
to this. We follow this by formulating precisely the problem in optimal control on which we
will focus for the remainder of the discussion. Then, by means of motivation, we consider
a few typical concrete problems in optimal control.

Notation. Here is a list of standard notation we shall use.
1. R denotes the real numbers and R = {−∞} ∪ R ∪ {∞} denotes the extended reals.
2. The set of linear maps from Rm to Rn is denoted by L(Rm; Rn).
3. The standard inner product on Rn is denoted by 〈·, ·〉 and the standard norm by ‖·‖.

We also use ‖·‖ for the induced norms on linear and multilinear maps from copies of
Euclidean space.

4. For x ∈ Rn and r > 0 we denote by

B(x, r) = {y ∈ Rn | ‖y − x‖ < r},
B(x, r) = {y ∈ Rn | ‖y − x‖ ≤ r}

the open and closed balls of radius r centred at x.
5. We denote by

Sn = {x ∈ Rn+1 | ‖x‖ = 1}
the unit sphere of n-dimensions and by

Dn = {x ∈ Rn | ‖x‖ ≤ 1}

the unit disk of n-dimensions.
6. The interior, boundary, and closure of a set A ⊂ Rn are denoted by int(A), bd(A),

and cl(A), respectively. If A ⊂ Rn then recall that the relative topology on A is that
topology whose open sets are of the form U ∩ A with U ⊂ Rn open. If S ⊂ A ⊂ Rn,
then intA(S) is the interior of S with respect to the relative topology on A.

6
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7. If U ⊂ Rn is an open set and if φ : U→ Rm is differentiable, the derivative of φ at x ∈ U

is denoted by Dφ(x), and we think of this as a linear map from Rn to Rm. The rth
derivative at x we denote by Drφ(x) and we think of this as a symmetric multilinear
map from (Rn)r to Rm.

8. If Ua ⊂ Rna , a ∈ {1, . . . , k}, are open sets and if

φ : U1 × · · · × Uk → Rm

is differentiable, we denote by Daφ(x1, . . . , xk) the ath partial derivative for a ∈
{1, . . . , k}. By definition, this is the derivative at xa of the map from Ua to Rm de-
fined by

x 7→ φ(x1, . . . , xa−1, x, xa+1, . . . , xk).

We denote by Dr
aφ the rth partial derivative with respect to the ath component.

9. Let U ⊂ Rn be an open set. A map φ : U→ Rm is of class Cr if it is r-times continuously
differentiable.

10. The expression ḟ will always mean the derivative of the function f : R → Rk with
respect to the variable which will be “time” in the problem.

11. We denote by o(εk) a general continuous function of ε satisfying limε→0
o(εk)
εk

= 0. This
is the so-called Landau symbol .

12. The n× n identity matrix will be denoted by In and the m× n matrix of zeros will be
denoted by 0m×n.

1.1. Control systems

Control systems come in many flavours, and these flavours do not form a totally ordered
set under the relation of increasing generality. Thus one needs to make a choice about the
sort of system one is talking about. In these notes we will mean the following.

1.1 Definition: (Control system) A control system is a triple Σ = (X, f, U) where
(i) X ⊂ Rn is an open set,
(ii) U ⊂ Rm, and
(iii) f : X× cl(U)→ Rn has the following properties:

(a) f is continuous;
(b) the map x 7→ f(x, u) is of class C1 for each u ∈ cl(U). •

The differential equation associated to a control system Σ = (X, f, U) is

ξ̇(t) = f(ξ(t), µ(t)). (1.1)

One might additionally consider a system where time-dependence enters explicitly, rather
than simply through the control. However, we do not pursue this level of generality (or any
of the other possible levels of generality) since it contributes little to the essential ideas we
develop.

Let us give important specific classes of control systems.
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1.2 Example: (Control-affine system) A control system Σ = (X, f, U) is a control-affine
system if f has the form

f(x, u) = f0(x) + f1(x) · u,
where f : X→ Rn and f1 : X→ L(Rm; Rn) are of class C1. Note that f is an affine function
of u, hence the name. Many of the systems one encounters in practice are control-affine
systems. •

A special class of control-affine system is the following.

1.3 Example: (Linear control system) A linear control system (more precisely, a linear
time-invariant control system) is a triple (A,B,U) where A : Rn → Rn and B : Rm →
Rn are linear maps, and where U ⊂ Rm. We associate to a linear control system the control
system (X, f, U) with X = Rn, f(x, u) = A(x) + B(u), and with “U = U .” Thus the
equations governing a linear control system are

ξ̇(t) = A(ξ(t)) +B(µ(t)).

The solution to this differential equation with initial condition ξ(0) at time t = 0 is given
by

ξ(t) = exp(At)ξ(0) +
∫ t

0
exp(A(t− τ))Bµ(τ) dτ, (1.2)

where exp(·) is the matrix exponential. •

1.2. Controls and trajectories

It will be worthwhile for us to be quite careful about characterising the sorts of controls
we will consider, and the trajectories generated by them. A consequence of this care is a
pile of notation.

We should first place some conditions on the character of the control functions t 7→ µ(t)
that will allow solutions to (1.1). The following definition encodes one of the weakest notion
of control that one can allow.

1.4 Definition: (Admissible control, controlled trajectory, controlled arc) Let Σ = (X, f, U)
be a control system.

(i) An admissible control is a measurable map µ : I → U defined on an interval I ⊂ R
such that t 7→ f(x, µ(t)) is locally integrable for each x ∈ X. The set of admissible
controls defined on I is denoted by U (I).

(ii) A controlled trajectory is a pair (ξ, µ) where, for some interval I ⊂ R,

(a) µ ∈ U (I) and
(b) ξ : I → X satisfies (1.1).

We call I the time interval for (ξ, µ).
(iii) A controlled arc is a controlled trajectory defined on a compact time interval.

If (ξ, µ) is a controlled trajectory, we call ξ the trajectory and µ the control . •



The Maximum Principle in control and in optimal control 9

For x0 ∈ X and t0 ∈ I we denote by t 7→ ξ(µ, x0, t0, t) the solution of the differential
equation (1.1) satisfying ξ(µ, x0, t0, t0) = x0. We denote by ξ(µ, x0, t0, ·) the map t 7→
ξ(µ, x0, t0, t).

Corresponding to admissible controls we shall denote

Ctraj(Σ) = {(ξ, µ) | (ξ, µ) is a controlled trajectory},
Carc(Σ) = {(ξ, µ) | (ξ, µ) is a controlled arc},

Ctraj(Σ, I) = {(ξ, µ) | (ξ, µ) is a controlled trajectory with time interval I},
Carc(Σ, I) = {(ξ, µ) | (ξ, µ) is a controlled arc with time interval I}.

Because of the rather general nature of the controls we allow, the existence and unique-
ness of controlled trajectories does not quite follow from the basic such theorems for ordinary
differential equations. We consider such matters in Appendix A.

It is also essential to sometimes restrict controls to not be merely integrable, but
bounded.1 To encode this in notation, we denote by Ubdd(I) the set of admissible con-
trols defined on the interval I ⊂ R that are also bounded.

Sometimes we shall merely wish to consider trajectories emanating from a specified
initial condition and whose existence can be guaranteed for some duration of time. This
leads to the following notion.

1.5 Definition: (Controls giving rise to trajectories defined on a specified interval) Let Σ =
(X, f, U) be a control system, let x0 ∈ X, let I ⊂ R be an interval, and let t0 ∈ I. We
denote by U (x0, t0, I) the set of admissible controls such that the solution to the initial
value problem

ξ̇(t) = f(ξ(t), µ(t)), ξ(t0) = x0,

exists for all t ∈ I. •

1.3. Two general problems in optimal control

Now let us introduce into the problem the notion of optimisation. We will focus on a
rather specific sort of problem.

1.6 Definition: (Lagrangian, objective function) Let Σ = (X, f, U) be a control system.
(i) A Lagrangian for Σ is a map L : X× cl(U)→ R for which

(a) L is continuous and
(b) the function x 7→ L(x, u) is of class C1 for each u ∈ cl(U).

(ii) If L is a Lagrangian, (ξ, µ) ∈ Ctraj(Σ) is L-acceptable if the function t 7→
L(ξ(t), µ(t)) is integrable, where I is the time interval for (ξ, µ). The set of
L-acceptable controlled trajectories (resp. controlled arcs) for Σ is denoted by
Ctraj(Σ, L) (resp. Carc(Σ, L)).

1More generally, one can consider controls that are essentially bounded. However, since trajectories for
the class of bounded controls and the class of unbounded controls are identical by virtue of these controls
differing only on sets of measure zero, there is nothing gained by carrying around the word “essential.”
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(iii) If L is a Lagrangian, the corresponding objective function is the map
JΣ,L : Ctraj(Σ)→ R defined by

JΣ,L(ξ, µ) =
∫
I
L(ξ(t), µ(t)) dt,

where we adopt the convention that JΣ,L(ξ, µ) =∞ if (ξ, µ) is not L-acceptable. •
We will seek, essentially, to minimise the objective function over some set of controlled

trajectories. It is interesting and standard to consider controlled trajectories that steer the
system from some subset S0 of X to some other subset S1 of X. Let us define precisely the
problems we will address in these notes. Let Σ = (X, f, U) be a control system, let L be
a Lagrangian, and let S0 and S1 be subsets of X. Denote by Carc(Σ, L, S0, S1) ⊂ Carc(Σ)
the set of controlled arcs with the following properties:

1. if (ξ, µ) ∈ Carc(Σ, L, S0, S1) then (ξ, µ) is defined on a time interval of the form [t0, t1]
for some t0, t1 ∈ R satisfying t0 < t1;

2. if (ξ, µ) ∈ Carc(Σ, L, S0, S1) then (ξ, µ) ∈ Carc(Σ, L);

3. if (ξ, µ) ∈ Carc(Σ, L, S0, S1) is defined on the time interval [t0, t1], then ξ(t0) ∈ S0

and ξ(t1) ∈ S1.

This leads to the following problem.

1.7 Problem: (Free interval optimal control problem) Let Σ = (X, f, U) be a control system,
let L be a Lagrangian for Σ, and let S0, S1 ⊂ X be sets. A controlled trajectory (ξ∗, µ∗) ∈
Carc(Σ, L, S0, S1) is a solution to the free interval optimal control problem for Σ,
L, S0, and S1 if JΣ,L(ξ∗, µ∗) ≤ JΣ,L(ξ, µ) for each (ξ, µ) ∈ Carc(Σ, L, S0, S1). The set of
solutions to this problem is denoted by P(Σ, L, S0, S1). •

For t0, t1 ∈ R satisfying t0 < t1, we denote by Carc(Σ, L, S0, S1, [t0, t1]) the subset
of Carc(Σ, L, S0, S1) comprised of those controlled arcs defined on [t0, t1]. This gives the
following problem.

1.8 Problem: (Fixed interval optimal control problem) Let Σ = (X, f, U) be a control sys-
tem, let L be a Lagrangian for Σ, let S0, S1 ⊂ X be sets, and let t0, t1 ∈ R satisfy t0 < t1.
A controlled trajectory (ξ∗, µ∗) ∈ Carc(Σ, L, S0, S1, [t0, t1]) is a solution to the fixed in-
terval optimal control problem for Σ, L, S0, and S1 if JΣ,L(ξ∗, µ∗) ≤ JΣ,L(ξ, µ) for
each (ξ, µ) ∈ Carc(Σ, L, S0, S1, [t0, t1]). The set of solutions to this problem is denoted by
P(Σ, L, S0, S1, [t0, t1]). •

Giving necessary conditions for the solution of these optimal control problems is what
the Maximum Principle is concerned with. By providing such necessary conditions, the
Maximum Principle does not solve the problem, but it does often provide enough restrictions
on the set of possible solutions that insight can be gained to allow a solution to the problem.
We shall see instances of this in Chapters 8 and 9.

1.4. Some examples of optimal control problems

Let us now take the general discussion of the preceding section and consider some special
case which themselves have varying levels of generality.
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1. In the case where the Lagrangian is defined by L(x, u) = 1, the objective function is
then the time along the trajectory, and solutions of the problem P(Σ, L, S0, S1) are
called time-optimal trajectories for Σ.

2. A commonly encountered optimal control problem arises in the study of linear systems.
Let Σ be the control system associated with a linear system (A,B,U), let Q be a
symmetric bilinear form on the state space Rn, and let R be a symmetric positive-
definite bilinear form on the control space Rm. We then consider the Lagrangian defined
by LQ,R(x, u) = 1

2Q(x, x) + 1
2R(u, u). This class of optimal control problems are called

linear quadratic optimal control problems. The utility of this class of problem is
not readily apparent at first blush. However, this optimal control problem leads, in a
way that we will spell out, to a technique for designing a stabilising linear state feedback
for (A,B,U). We shall consider this in Chapter 8.

3. Let f1, . . . , fm be vector fields on the open subset X of Rn and define

f(x, u) =
m∑
a=1

uafa(x).

This sort of system is called a driftless control system . Let us take as Lagrangian
the function defined by L(x, u) = 1

2‖u‖. This sort of optimal control problem is a sort
of clumsy first step towards sub-Riemannian geometry . A more elegant description
of sub-Riemannian geometry involves distributions.

4. As a very concrete example we take

(a) n = 2 and m = 1,

(b) X = R2,

(c) f(x, u) = (x2, u),

(d) U = [−1, 1],

(e) L((x1, x2), u) = 1
2(x1)2, and

(f) S0 = {(x1
0, x

2
0)} and S1 = {(0, 0)}.

The fixed interval optimal control problem associated with this data has a surprisingly
complicated solution exhibiting what is known as Fuller’s phenomenon . What hap-
pens is that, as one approaches S1, the optimal control undergoes an infinite number of
switches between the boundary points of the control set U . This indicates that simple
problems in optimal control can have complicated, even undesirable solutions. We refer
the reader to Exercise E7.3 to see an outline of what one can say in this example after
an application of the Maximum Principle.
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Exercises

E1.1 Prove (1.2).

E1.2 Do the following.

(a) Find a control system Σ = (X, f, U) and a locally integrable function µ : [0, 1]→
U that is not an admissible control.

(b) Find a control system Σ = (X, f, U) and an admissible control µ : [0, 1] → U
that is not locally integrable.



Chapter 2

From the calculus of variations to
optimal control

The calculus of variations is a subject with a distinguished history in mathematics. The
subject as we know it began in earnest with the so-called “brachistochrone problem,” the
object of which is to determine the path along which a particle must fall in a gravitational
field in order to minimise the time taken to reach a desired point (see Figure 2.1). This
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Figure 2.1. The brachistochrone problem

problem was posed in 1696 by Johann Bernoulli to the mathematical community, with
solutions being given by some of the luminaries of the time: Johann himself, Johann’s
brother Jakob, Leibniz, Newton, and Tschirnhaus. This problem is typical of the calculus
of variations in that its solution is a curve. We refer to [Goldstine 1980] for an historical
account of the calculus of variations.

In this chapter we will review some parts of the classical calculus of variations with an
eye towards motivating the Maximum Principle. The Maximum Principle itself can seem
to be a bit of a mystery, so we hope that this warmup via the calculus of variations will be
helpful in the process of demystification. The presentation here owes a great deal to the
very interesting review article of Sussmann and Willems [1997].
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14 A. D. Lewis

There are a huge number of books dealing with the calculus of variations. Introductory
books include [Gelfand and Fomin 2000, Lanczos 1949, Yan 1995]. More advanced treat-
ments include [Bliss 1946, Bolza 1961, Carathéodory 1935, Troutman 1996], and the two
volumes of Giaquinta and Hildebrandt [1996].

2.1. Three necessary conditions in the calculus of variations

We let X be an open subset of Rn and let L : X × Rn → R be a twice continuously
differentiable function which we call the Lagrangian .1 We let x0, x1 ∈ X, let t0, t1 ∈
R satisfy t0 < t1, and denote by C2(x0, x1, [t0, t1]) the collection of twice continuously
differentiable curves ξ : [t0, t1] → X which satisfy ξ(t0) = x0 and ξ(t1) = x1. For ξ ∈
C2(x0, x1, [t0, t1]) we denote

JL(ξ) =
∫ t1

t0
L(ξ(t), ξ̇(t)) dt.

The basic problem in the calculus of variations is then the following.

2.1 Problem: (Problem of calculus of variations) Find ξ∗ ∈ C2(x0, x1, [t0, t1]) such that
JL(ξ∗) ≤ JL(ξ) for every ξ ∈ C2(x0, x1, [t0, t1]). The set of solutions to this problem will be
denoted by P(L, x0, x1, [t0, t1]). •

We will state and prove three necessary conditions which must be satisfied by elements
of P(L, x0, x1, [t0, t1]).

2.1.1. The necessary condition of Euler–Lagrange. The first necessary condition
is the most important one since it gives a differential equation that must be satisfied by
solutions of the basic problem in the calculus of variations. We denote a point in X × Rn

by (x, v), and we think of x as representing “position” and v as representing “velocity.”

2.2 Theorem: (The necessary condition of Euler–Lagrange) Let X be an open subset of Rn,
let x0, x1 ∈ X, and let t0, t1 ∈ R satisfy t0 < t1. Suppose that L : X × Rn → R is a twice
continuously differentiable Lagrangian and let ξ ∈P(L, x0, x1, [t0, t1]). Then ξ satisfies the
Euler–Lagrange equations:

d
dt
(
D2L(ξ(t), ξ̇(t))

)−D1L(ξ(t), ξ̇(t)) = 0.

Proof: Let ξ ∈ C2(x0, x1, [t0, t1]) and let ζ : [t0, t1]→ Rn be twice continuously differentiable
and satisfy ζ(t0) = ζ(t1) = 0. Then, for ε > 0 sufficiently small, the map ξζ : (−ε, ε) ×
[t0, t1]→ X defined by ξζ(s, t) = ξ(t) + sζ(t) has the following properties:

1. it makes sense (i.e., takes values in X);

2. ξζ(0, t) = ξ(t) for each t ∈ [t0, t1];

3. d
ds

∣∣
s=0

ξζ(s, t) = ζ(t) for each t ∈ [t0, t1].

1Note that we consider Lagrangians of class C2 in this section. This is because we want to be able to
always write the Euler–Lagrange equations. In the problems of optimal control we will relax the smoothness
on Lagrangians, cf. Definition 1.6.
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For s ∈ (−ε, ε) let us denote by ξsζ ∈ C2(x0, x1, [t0, t1]) the curve defined by ξsζ(t) = ξζ(s, t).
Note that the function s 7→ JL(ξsζ) is continuously differentiable. We then compute

d
ds
JL(ξsζ) =

∫ t1

t0

d
ds
L(ξsζ(t), ξ̇

s
ζ(t)) dt

=
∫ t1

t0

(
D1L(ξsζ(t), ξ̇

s
ζ(t)) · ζ(t) + D2L(ξsζ(t), ξ̇

s
ζ(t)) · ζ̇(t)

)
dt (2.1)

=
∫ t1

t0

(
D1L(ξsζ(t), ξ̇

s
ζ(t))−

d
dt
(
D2L(ξsζ(t), ξ̇

s
ζ(t))

)) · ζ(t) dt

+ D2L(ξsζ(t), ξ̇
s
ζ(t)) · ζ(t)

∣∣∣t=t1
t=t0

=
∫ t1

t0

(
D1L(ξsζ(t), ξ̇

s
ζ(t))−

d
dt
(
D2L(ξsζ(t), ξ̇

s
ζ(t))

)) · ζ(t) dt,

where we have used integration by parts in the penultimate step and the fact that ζ(t0) =
ζ(t1) = 0 in the last step.

Now suppose that for some t̄ ∈ [t0, t1] we have

D1L(ξ(t̄), ξ̇(t̄))− d
dt
(
D2L(ξ(t̄), ξ̇(t̄))

) 6= 0.

Then there exists ζ0 ∈ Rn such that(
D1L(ξ(t̄), ξ̇(t̄))− d

dt
(
D2L(ξ(t̄), ξ̇(t̄))

)) · ζ0 > 0.

Then, since L is twice continuously differentiable, there exists δ > 0 such that(
D1L(ξ(t), ξ̇(t))− d

dt
(
D2L(ξ(t), ξ̇(t))

)) · ζ0 > 0

for t ∈ [t̄ − δ, t̄ + δ] ∩ [t0, t1]. We may, therefore, suppose without loss of generality that t̄
and δ satisfy t̄ ∈ (t0, t1) and [t̄− δ, t̄+ δ] ⊂ [t0, t1].

Now let φ : [t0, t1] → R be of class C2 and be such that φ(t) > 0 for |t − t̄| < δ and
φ(t) = 0 for |t− t̄| ≥ δ (can you think of such a function?). Then define ζ(t) = φ(t)ζ0. This
then gives

d
ds

∣∣∣
s=0

JL(ξsζ) > 0.

Therefore, it cannot hold that the function s 7→ JL(ξsζ) has a minimum at s = 0. This
shows that if the Euler–Lagrange equations do not hold, then ξ 6∈P(L, x0, x1, [t0, t1]). �

The way to think of the Euler–Lagrange equations is as analogous to the condition that
the derivative of a function at a minimum must be zero. Thus these equations are a “first-
order” necessary condition. Note that solutions to the Euler–Lagrange equations are not
generally elements of P(L, x0, x1, [t0, t1]). However, such solutions are important and so
are given a name.

2.3 Definition: (Extremal in the calculus of variations) Let X be an open subset of Rn, let
x0, x1 ∈ X, and let t0, t1 ∈ R satisfy t0 < t1. Suppose that L : X × Rn → R is a twice
continuously differentiable Lagrangian. A solution ξ : [t0, t1] → X to the Euler–Lagrange
equations is an extremal for P(L, x0, x1, [t0, t1]). •
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2.1.2. The necessary condition of Legendre. Next we look at second-order conditions
which are analogous to the condition that, at a minimum, the Hessian of a function must
be positive-semidefinite.

2.4 Theorem: (The necessary condition of Legendre) Let X be an open subset of Rn, let
x0, x1 ∈ X, and let t0, t1 ∈ R satisfy t0 < t1. Suppose that L : X × Rn → R is a twice
continuously differentiable Lagrangian and let ξ ∈P(L, x0, x1, [t0, t1]). Then the symmetric
bilinear map

D2
2L(ξ(t), ξ̇(t))

is positive-semidefinite for each t ∈ [t0, t1].

Proof: Let ξ ∈ C2(x0, x1, [t0, t1]) and let ζ : [t0, t1]→ Rn be as in the proof of Theorem 2.2.
Let ξsζ be the curve as defined in the proof of Theorem 2.2. Since L is of class C2 the
function s 7→ JL(ξsζ) is also of class C2. Moreover, using (2.1) as a starting point,

d2

ds2
JL(ξsζ) =

∫ t1

t0

(
D2

1L(ξsζ(t), ξ̇
s
ζ(t)) · (ζ(t), ζ(t))

+ 2D1D2L(ξsζ(t), ξ̇
s
ζ(t)) · (ζ(t), ζ̇(t)) + D2

2L(ξsζ(t), ξ̇
s
ζ(t)) · (ζ̇(t), ζ̇(t))

)
dt.

Let C1,ξ and C2,ξ be defined by

C1,ξ = sup
{‖D2

1L(ξ(t), ξ̇(t))‖ ∣∣ t ∈ [t0, t1]
}
,

C2,ξ = sup
{
2‖D1D2L(ξ(t), ξ̇(t))‖ ∣∣ t ∈ [t0, t1]

}
.

Suppose that there exists t̄ ∈ [t0, t1] such that D2
2L(ξ(t̄), ξ̇(t̄)) is not positive-

semidefinite. There then exists a vector ζ0 ∈ Rn such that

D2
2L(ξ(t̄), ξ̇(t̄)) · (ζ0, ζ0) < 0.

Then there exists δ0 > 0 and C3,ξ > 0 such that

D2
2L(ξ(t), ξ̇(t)) · (ζ0, ζ0) ≤ −C3,ξ < 0

for all t ∈ [t̄ − δ0, t̄ + δ0] ∩ [t0, t1]. We may thus suppose without loss of generality that t̄
and δ0 satisfy t̄ ∈ (t0, t1) and [t̄− δ0, t̄+ δ0] ⊂ [t0, t1]. We also suppose, again without loss
of generality, that ‖ζ0‖ = 1.

Let us define φ̈ : R→ R be defined by

φ̈(t) =



0, |t| ≥ 1,
32(t+ 1), t ∈ (−1,−3

4),
−32(t+ 1

2), t ∈ [−3
4 ,−1

4),
32t, t ∈ [−1

4 , 0),
−32t, t ∈ [0, 1

4),
32(t− 1

2), t ∈ [1
4 ,

3
4),

32(−t+ 1), t ∈ (3
4 , 1).
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Then define
φ̇(t) =

∫ t

−∞
φ̈(τ) dτ, φ(t) =

∫ t

−∞
φ̇(τ) dτ.

The function φ is designed to have the following properties:

1. φ is of class C2;

2. φ(−t) = φ(t);

3. φ(t) = 0 for |t| ≥ 1;

4. 0 ≤ φ(t) ≤ 1 for t ∈ [−1, 1];

5. φ̇(t) > 0 for t ∈ (−1, 0);

6. φ̇ is monotonically increasing on (−1,−1
2);

7. φ̇ is monotonically decreasing on (−1
2 , 0).

Define
d = inf{φ̇(t) | t ∈ [− 9

10 ,− 1
10 ]}, D = sup{φ̇(t) | t ∈ [− 9

10 ,− 1
10 ]}.

The properties of φ ensure that |φ̇(t)| < d for t ∈ (−1,− 9
10) ∪ (− 1

10 ,
1
10) ∪ ( 9

10 , 1). These
features of φ ensure that the following estimates hold:∫ 1

−1
|φ(t)|2 dt ≤ 1,

∫ 1

−1
|φ(t)φ̇(t)|dt ≤ D,

∫ 1

−1
|φ̇(t)|2 dt ≥ 8d

5
.

Now, for δ ∈ (0, δ0) define φδ : [t0, t1] → R by φδ(t) = φ(δ−1(t − t̄)). Our estimates for
φ above then translate to∫ t1

t0
|φδ(t)|2 dt ≤ δ,

∫ t1

t0
|φδ(t)φ̇δ(t)| dt ≤ D,

∫ t1

t0
|φ̇δ(t)|2 dt ≥ 8d

5δ
.

Now define ζδ : [t0, t1]→ Rn by ζδ(t) = φδ(t)ζ0. With ζδ so defined we have∣∣∣∫ t1

t0
D2

1L(ξ(t), ξ̇(t)) · (ζδ(t), ζδ(t)) dt
∣∣∣ ≤ C1,ξ

∫ t1

t0
|φδ(t)|2 dt ≤ δC1,ξ

and ∣∣∣∫ t1

t0
2D1D2L(ξ(t), ξ̇(t)) · (ζδ(t), ζ̇δ(t)) dt

∣∣∣ ≤ C2,ξ

∫ t1

t0
|φδ(t)φ̇δ(t)| dt ≤ DC2,ξ.

We also have∫ t1

t0
D2

2L(ξ(t), ξ̇(t)) · (ζ̇δ(t), ζ̇δ(t)) dt ≤ −C3,ξ

∫ t1

t0
|φ̇δ(t)|2 dt ≤ −8dC3,ξ

5δ
.

From this we ascertain that for δ sufficiently small we have

d2

ds2
JL(ξζs

δ
)
∣∣∣
s=0

< 0.
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If ξ ∈P(L, x0, x1, [t0, t1]) then we must have

d
ds

∣∣∣
s=0

JL(ξζs
δ
) = 0,

d2

ds2

∣∣∣
s=0

JL(ξζs
δ
) ≥ 0.

Thus we have shown that, if D2
2L(ξ(t), ξ̇(t)) is not positive-semidefinite for every t ∈ [t0, t1],

then ξ 6∈P(L, x0, x1, [t0, t1]), as desired. �

2.5 Remark: (Relationship with finding minima in finite dimensions) Theorems 2.2 and 2.4
are exactly analogous to well-known conditions from multivariable calculus. This is fairly
easily seen by following the proofs of the theorems. But let us make this connection explicit
in any case.

Let U ⊂ Rn be an open set and let f : U→ R be a function of class C2. In calculus one
shows that if x0 ∈ U is a local minimum of f then

1. Df(x0) = 0 and

2. D2f(x0) is positive-semidefinite.

Theorem 2.2 is exactly analogous to the first of these conditions and Theorem 2.4 is exactly
analogous to the second of these conditions. •

2.1.3. The necessary condition of Weierstrass. The last necessary condition we give
requires a new object.

2.6 Definition: (Weierstrass excess function) Let X ⊂ Rn be open and let L : X×Rn → R be
a Lagrangian. The Weierstrass excess function is the function EL : X× Rn × Rn → R
defined by

EL(x, v, u) = L(x, u)− L(x, v)−D2L(x, v) · (u− v). •
The excess function appears in the following necessary condition for a solution of the

problem in the calculus of variations.

2.7 Theorem: (The necessary condition of Weierstrass) Let X be an open subset of Rn, let
x0, x1 ∈ X, and let t0, t1 ∈ R satisfy t0 < t1. Suppose that L : X × Rn → R is a twice
continuously differentiable Lagrangian and let ξ ∈P(L, x0, x1, [t0, t1]). Then

EL(ξ(t), ξ̇(t), u) ≥ 0

for all t ∈ [t0, t1] and for all u ∈ Rn.

Proof: Suppose that ξ ∈P(L, x0, x1, [t0, t1]) and that

EL(ξ(t̄), ξ̇(t̄), u) < 0

for some t̄ ∈ [t0, t1] and for some u ∈ Rn. Then, since EL is continuous,

EL(ξ(t), ξ̇(t), u) < 0

for all t sufficiently close to t̄. We therefore suppose, without loss of generality, that t̄ ∈
(t0, t1).
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Choose ε0 > 0 sufficiently small that [t̄− ε0, t̄+ ε0] ⊂ [t0, t1]. Now, for ε ∈ (0, ε0), define

ξε(t) =


ξ(t) + (t− t0)uε, t ∈ [t0, t̄− ε),
(t− t̄)u+ ξ(t̄), t ∈ [t̄− ε, t̄),
ξ(t), t ∈ [t̄, t1],

where
uε =

ξ(t̄)− ξ(t̄− ε)− εu
t̄− t0 − ε .

Note that uε has been defined so that t 7→ ξε(t) is continuous. Note that

ξ̇ε(t) =


ξ̇(t) + uε, t ∈ (t0, t̄− ε),
u, t ∈ (t̄− ε, t̄),
ξ̇(t), t ∈ (t̄, t1).

Now define
∆L(ε) = JL(ξε)− JL(ξ)

Since limε→0 uε = 0,

lim
ε→0

∆L(ε) = lim
ε→0

∫ t̄−ε

t0

(
L(ξ(t) + (t− t0)uε, ξ̇(t) + uε)− L(ξ(t), ξ̇(t))

)
dt

+ lim
ε→0

∫ t̄

t̄−ε

(
L((t− t̄)u+ ξ(t̄), u)− L(ξ(t), ξ̇(t))

)
dt

= 0 + 0 = 0,

using the fact that both integrands are bounded uniformly in ε. We also compute

d
dε
JL(ξε) =

d
dε

∫ t̄−ε

t0
L(ξε(t), ξ̇ε(t)) dt+

d
dε

∫ t̄

t̄−ε
L(ξε(t), ξ̇ε(t)) dt

= − L(ξ(t̄− ε) + (t̄− ε− t0)uε, ξ̇(t̄− ε) + uε) + L(−εu+ ξ(t̄), u)

+
∫ t̄−ε

t0

(
D1L(ξ(t) + (t− t0)uε, ξ̇(t) + uε) · (t− t0)

duε
dε

+ D2L(ξ(t) + (t− t0)uε, ξ̇(t) + uε) · duε
dε

)
dt.

An integration by parts gives

∫ t̄−ε

t0
D2L(ξ(t) + (t− t0)uε, ξ̇(t) + uε) · duε

dε
dt

= D2L(ξ(t) + (t− t0)uε, ξ̇(t) + uε)(t− t0)
duε
dε

∣∣∣t=t̄−ε
t=t0

−
∫ t̄−ε

t0

( d
dt

D2L(ξ(t) + (t− t0)uε, ξ̇(t) + uε)
)
· (t− t0)

duε
dε

dt. (2.2)
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We easily see that

lim
ε→0

(−L(ξ(t̄− ε) + (t̄− ε− t0)uε, ξ̇(t̄− ε) + uε) + L(−εu+ ξ(t̄), u)
)

= −L(ξ(t̄), ξ̇(t̄)) + L(ξ(t̄), u). (2.3)

We have
duε
dε

=
(ξ̇(t̄− ε)− u)(t̄− t0 − ε) + (ξ(t̄)− ξ(t̄− ε)− εu)

(t̄− t0 − ε)2
,

whence
duε
dε

∣∣∣
ε=0

=
ξ̇(t̄)− u
t̄− t0 .

Using this, along with the integration by parts formula (2.2) and the fact that ξ satisfies
the Euler–Lagrange equations by Theorem 2.2, we ascertain that

lim
ε→0

∫ t̄−ε

t0

(
D1L(ξ(t) + (t− t0)uε, ξ̇(t) + uε) · (t− t0)

duε
dε

+ D2L(ξ(t) + (t− t0)uε, ξ̇(t) + uε) · duε
dε

)
dt = D2L(ξ(t̄), ξ̇(t̄)) · (ξ̇(t̄)− u). (2.4)

Combining (2.3) and (2.4) we have shown that

d
dε

∣∣∣
ε=0

∆L(ε) =
d
dε

∣∣∣
ε=0

JL(ξε) = EL(ξ(t̄), ξ̇(t̄), u) < 0,

implying that for some sufficiently small ε there exists δ > 0 such that JL(ξε)−JL(ξ) < −δ.
One can now approximate ξε with a curve ξ̃ of class C2 and for which |JL(ξ̃) − JL(ξε)| <
δ
2 ; see [Hansen 2005]. In this case we have JL(ξ̃) − JL(ξ) < − δ

2 which contradicts ξ ∈
P(L, x0, x1, [t0, t1]). �

The reader is asked to give an interpretation of Weierstrass’s necessary condition in
Exercise E2.2. This interpretation is actually an interesting one since it reveals that the
Weierstrass condition is really one about the existence of what will appear to us as a
“separating hyperplane” in our proof of the Maximum Principle.

2.2. Discussion of calculus of variations

Before we proceed with a reformulation of the necessary conditions of the preceding
section, let us say some things about the theorems we proved, and the means by which we
proved them.

In each of the above theorems, the proof relied on constructing a family of curves in
which our curve of interest was embedded. Let us formalise this idea.

2.8 Definition: (Variation of a curve) Let X ⊂ Rn be an open set, let x0, x1 ∈ X, let t0, t1 ∈ R
satisfy t0 < t1, and let ξ ∈ C2(x0, x1, [t0, t1]). A variation of ξ is a map σ : J × [t0, t1]→ X

with the following properties:
(i) J ⊂ R is an interval for which 0 ∈ int(J);

(ii) σ is of class C2;
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(iii) σ(s, t0) = x0 and σ(s, t1) = x1 for all s ∈ J ;
(iv) σ(0, t) = ξ(t) for all t ∈ [t0, t1].

For a variation σ of ξ, the corresponding infinitesimal variation is the map δσ : [t0, t1]→
Rn defined by

δσ(t) =
d
ds

∣∣∣
s=0

σ(s, t). •
In Figure 2.2 we depict how one should think of variations and infinitesimal variations.

ξ(t)

σ(s, t)

ξ(t)

δσ(t)

Figure 2.2. A variation (left) and an infinitesimal variation (right)

A variation is a family of curves containing ξ and the corresponding infinitesimal variation
measures how the family varies for small values of the parameter indexing the family. In
Figure 2.3 we depict the infinitesimal variations used in the proofs of Theorems 2.2, 2.4,
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Figure 2.3. Infinitesimal variations used in the necessary condi-
tions of Euler–Lagrange (top left), Legendre (top right), and
Weierstrass (bottom). In each case the point t̄ in the proofs of
Theorems 2.2, 2.4, and 2.7 is to be thought of as being at zero.

and 2.7. Note that the variation used in Theorem 2.7 is of a different character than the
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other two. The family of curves associated with the first two variations are obtained by
adding the variations scaled by s. Thus, for example, the varied curves and their time
derivatives approach the original curve and its time derivative uniformly in time as s→ 0.
However, the variation for Theorem 2.7 is constructed in a different manner. While the
varied curves approach the original one uniformly in time as s → 0, the same does not
hold for velocities. Moreover, Theorem 2.7 is a result of a rather different flavour that
Theorems 2.2 and 2.4. The latter two theorems have more or less direct analogues to ideas
from finite-dimensional optimisation theory, while the former does not. It bears mentioning
here that it is the sort of variation appearing in Theorem 2.7 that we will mimic in our
proof of the Maximum Principle. These variations will be called needle variations. This
name also makes sense for the variations use in proving the Weierstrass necessary condition,
if one keeps in mind that it is the variation of the velocity that one is interested in in this
case.

The idea of a variation will be of essential importance to us in the proof of the Maximum
Principle. Indeed, the idea of a variation is of importance in control theory in general. In
our three necessary conditions from the preceding section we were able to be quite explicit
about the variations we constructed, and the effect they had on the cost function. In control
theory, it is not the usual case that one can so easily measure the effects of a variation.
This accounts for some of the technical fussiness we will encounter in proving the Maximum
Principle.

Now let us consider a few specific problems that will exhibit some of the sorts of things
that can happen in the calculus of variations, and therefore in optimal control theory.

The first example is one where there are no solutions to the problem of the calculus of
variations.

2.9 Example: (A problem with no solutions) We take X = R, x0 = 0, x1 = 1, t0 = 0, and
t1 = 1. As a Lagrangian we consider L(x, v) = x. Then the first-order necessary condition,
namely the Euler–Lagrange equation, is the equation

1 = 0.

This equation has no solutions, of course.
This can also be seen from the problem itself. The problem is to minimise the integral∫ 1

0
ξ(t) dt

over all C2-functions ξ : [0, 1]→ R satisfying ξ(0) = 0 and ξ(1) = 1. Included in this set of
functions are the functions x 7→ nt2 + (1− n)t, n ∈ Z>0. For these functions we have∫ 1

0
(nt2 + (1− n)t) dt =

3− n
6

.

Therefore, for any M > 0 there exists ξ ∈ C2(x0, x1, [0, 1]) such that JL(ξ) < −M . Thus
P(L, 0, 1, [0, 1]) = ∅. •

Our next example is one where there are an infinite number of solutions.



The Maximum Principle in control and in optimal control 23

2.10 Example: (A problem with many solutions) We again take X = R, x0 = 0, x1 = 1,
t0 = 0, and t1 = 1. The Lagrangian we use is L(x, v) = v, and this gives the Euler–Lagrange
equations

0 = 0.

Thus every curve in C2(0, 1, [0, 1]) satisfies the first-order necessary conditions of Theo-
rem 2.2. Since D2

2L(x, v) = 0, the necessary condition of Theorem 2.4 is also satisfied.
The Weierstrass excess function is also zero, and so the necessary condition of Theorem 2.7
obtains as well.

However, the satisfaction of the three necessary conditions does not ensure that a
curve is a solution of the problem. Nonetheless, in this case it can be seen directly that
P(L, 0, 1, [0, 1]) = C2(0, 1, [0, 1]). Indeed, for ξ ∈ C2(0, 1, [0, 1]) we have∫ 1

0
L(ξ(t), ξ̇(t)) dt =

∫ 1

0
ξ̇(t) dt = ξ(1)− ξ(0) = 1.

Thus JL(ξ) is actually independent of ξ, and so every curve minimises JL. •
Next we consider a problem where there are no solutions of class C2, but solutions exist

with weaker differentiability hypotheses. This suggests that the class C2(x0, x1, [t0, t1]) is
not always the correct one to deal with. In optimal control theory, we will deal with very
general classes of curves, and this accounts for some of the technicalities we will encounter
in the proof of the Maximum Principle.

2.11 Example: (A problem with no solutions of class C2) We let X = R, t0 = −1, and
t1 = 1 and define L(t, x, v) = x2(2t − v)2.2 As boundary conditions we choose x0 = 0 and
x1 = 1. Clearly since L is always positive JL is bounded below by zero. Thus any curve ξ
for which JL(ξ) = 0 will be a global minimum. In particular

t 7→
{

0, −1 ≤ t < 0,
t2, 0 ≤ t ≤ 1,

is a global minimiser of

JL(ξ) =
∫ t1

t0
ξ(t)2(2t− ξ̇(t))2 dt.

Note that ξ as defined is of class C1 but is not of class C2. •
There are many phenomenon in the calculus of variations that are not covered by the

above examples. However, since we will be considering a far more general theory in the
form of the Maximum Principle, we do not dedicate any time to this here. The reader can
refer to one of books on the topic of calculus of variations cited at the beginning of this
section.

2The Lagrangian we consider in this problem is time-dependent. We have not formally talked about
time-dependent Lagrangians, although the development for these differs from ours merely by adding a “t”
in the appropriate places.
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2.3. The Skinner–Rusk formulation of the calculus of variations

In a cluster of papers Skinner [1983] and Skinner and Rusk [1983a, 1983b] developed
a framework for mechanics on the Whitney sum of the tangent and cotangent bundles
(although surely this idea predates 1983). In this section we review this idea, but in the
absence of the geometric machinery (although with this machinery, the picture is somewhat
more compelling). Our presentation closely follows Sussmann and Willems [1997].

We let X ⊂ Rn be an open set and we consider the product X×Rn×Rn in which typical
points are denoted by (x, v, p). Given a Lagrangian L : X × Rn → R of class C2 we define
a C2 function HL by

HL(x, v, p) = 〈p, v〉 − L(x, v),

which we call the Hamiltonian for the Lagrangian L.
We now state a condition that is equivalent to Theorem 2.2.

2.12 Theorem: (A Hamiltonian formulation of the Euler–Lagrange equations) The following
statements are equivalent for a C2-curve t 7→ (ξ(t), χ(t), λ(t)) in X× Rn × Rn:

(i) χ(t) = ξ̇(t), and the Euler–Lagrange equations for ξ are satisfied, along with the
equation

λ(t) = D2L(ξ(t), χ(t));

(ii) the following equations hold:

ξ̇(t) = D3HL(ξ(t), χ(t), λ(t)),

λ̇(t) = −D1HL(ξ(t), χ(t), λ(t)),
D2HL(ξ(t), χ(t), λ(t)) = 0.

Proof: (i) =⇒ (ii) The equation additional to the Euler–Lagrange equation immediately
implies the third of the equations of part (ii). Since D3HL(x, v, p) = v and since χ = ξ̇, it
follows that

ξ̇(t) = D3HL(ξ(t), χ(t), λ(t)),

which is the first of the equations of part (ii). Finally, taking the derivative of the equation
additional to the Euler–Lagrange equation and using the relation

D1HL(x, v, p) = −D1L(x, v)

gives the second of the equations of part (ii).
(ii) =⇒ (i) The third of the equations of part (ii) implies that

λ(t) = D2L(ξ(t), χ(t)),

which is the equation additional to the Euler–Lagrange equations in part (i). The first
equation of part (ii) implies that ξ̇(t) = χ(t). Also, since

D1HL(x, v, p) = −D1L(x, v),

this shows that the equations of part (ii) imply

d
dt
(
D2L(ξ(t), ξ̇(t))

)
= D1L(ξ(t), ξ̇(t)),

which are the Euler–Lagrange equations. �
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The first two of the three equations of part (ii) of Theorem 2.12 are the classical Hamil-
ton’s equations, although they now involve a “parameter” v. The importance of the third
of these equations becomes fully realised when one throws Theorems 2.4 and 2.7 into the
mix.

2.13 Theorem: (A Hamiltonian maximisation formulation of the necessary conditions) The
following statements are equivalent for a C2-curve ξ on X:

(i) ξ satisfies the necessary conditions of Theorems 2.2, 2.4, and 2.7;
(ii) there exists a differentiable map t 7→ λ(t) so that, for the curve t 7→ (ξ(t), ξ̇(t), λ(t)),

the following relations hold:

ξ̇(t) = D3HL(ξ(t), ξ̇(t), λ(t)),

λ̇(t) = −D1HL(ξ(t), ξ̇(t), λ(t)),

HL(ξ(t), ξ̇(t), λ(t)) = max{HL(ξ(t), u, λ(t)) | u ∈ Rn}.

Proof: (i) =⇒ (ii) Define λ(t) = D2L(ξ(t), ξ̇(t)). By Theorem 2.12, the necessary condition
of Theorem 2.2 implies the first two of the equations of part (ii). Since

D2
2HL(x, v, p) = −D2

2L(x, v),

the necessary condition of Theorem 2.4 and the third equation of part (ii) of Theorem 2.12
tell us that

D2HL(ξ(t), ξ̇(t), λ(t)) = 0,

D2
2HL(ξ(t), ξ̇(t), λ(t)) ≤ 0.

Now we consider the necessary condition of Theorem 2.7. We note that the excess function
satisfies

EL(p, v, u) = HL(x, v,D2L(x, v))−HL(x, u,D2L(x, v)).

Therefore the necessary condition of Theorem 2.7 translates to asserting that, for each
t ∈ [t0, t1],

HL(ξ(t), ξ̇(t), λ(t))−HL(ξ(t), u, λ(t)) ≥ 0, u ∈ Rn. (2.5)

This is exactly the third of the equations of part (ii).
(ii) =⇒ (i) The third of the equations of part (ii) implies that D2HL(ξ(t), ξ̇(t), λ(t)) =

0. The definition of HL then gives λ(t) = D2L(ξ(t), ξ̇(t)). This then defines λ. By
Theorem 2.12 this also implies that the necessary condition of Theorem 2.2 holds. The
third of the equations of part (ii) also implies that (2.5) holds, this then implying that the
necessary condition of Theorem 2.7, and particularly those of Theorem 2.4, hold. �

2.4. From the calculus of variations to the Maximum Principle, almost

We now make a transition to optimal control from the calculus of variations setting of
the preceding section. We now suppose that we have a control system Σ = (X, f, U), and
we restrict velocities to satisfy the constraint imposed by the control equations:

ξ̇(t) = f(ξ(t), u(t)).
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Note then that the admissible velocities are now parameterised by the control set U . There-
fore, a Lagrangian will now be a function not on X × Rn, but on X × U . Let us try to be
a little more explicit about this, since this is an important point to understand in relating
the calculus of variations to optimal control. Let us define a subset DΣ of X× Rn by

DΣ = {(x, f(x, u)) ∈ X× Rn | u ∈ U}.

Thus DΣ is the subset of the states x and velocities v that satisfy the equations specifying
the control system. That is to say, if (ξ, u) ∈ Ctraj(Σ) then ξ̇(t) ∈ DΣ. Therefore, to specify
a Lagrangian for the system it suffices to define the Lagrangian only on DΣ. However, this
can be done simply by using the Lagrangian L : X × U → R. Indeed, we define a function
LΣ : DΣ → R by

LΣ(x, f(x, u)) = L(x, u).

Thus the optimal control problem can be turned into a problem resembling the calculus of
variations problem if it is understood that there are constraints on the subset of X × Rn

where the admissible velocities lie.
We now argue from Theorem 2.13 to a plausible (but incorrect) solution to Problem 1.8.

The control Hamiltonian for Σ and L is the function on X× Rn × U given by

HΣ,L(x, p, u) = 〈p, f(x, u)〉 − L(x, u).

Where in the calculus of variations we chose the velocity v to maximise the Hamiltonian
with (x, p) ∈ X×Rn fixed, we now fix (x, p) ∈ X×Rn and maximise the control Hamiltonian
with respect to the control:

Hmax
Σ,L (x, p) = max

u∈U
HΣ,L(x, p, u).

With Theorem 2.13 in mind, we state the following non-result.

2.14 This is not a theorem: If (ξ, u) ∈ Carc(Σ) solves Problem 1.8 then there exists a C1-
map λ such that

(i) HΣ,L(ξ(t), λ(t), u(t)) = Hmax
Σ,L (ξ(t), λ(t)) and

(ii) the differential equations

ξ̇(t) = D2HΣ,L(ξ(t), λ(t), u(t)),

λ̇(t) = −D1HΣ,L(ξ(t), λ(t), u(t))

are satisfied.

While the preceding attempt at a solution to the problems of optimal control from
the necessary conditions of the calculus of variations is not quite correct, it nevertheless
captures some part of the essence of the Maximum Principle. A somewhat uninteresting
(although still important) way in which our attempt differs from the actual Maximum
Principle is through the fact that its direct adaptation from the calculus of variations
demands more smoothness of the objects involved than is necessary. A more substantial
way that the attempt deviates from the correct version involves the absence in the attempt
of the “abnormal multiplier.” This is contained in the correct version, to whose precise
statement we now turn.
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Exercises

E2.1 Recall that a function f : Rn → R is convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for all λ ∈ [0, 1] and all x, y ∈ Rn.
Show that if, for fixed x ∈ X, the function v 7→ L(x, v) is convex then the excess

function satisfies EL(x, v, u) ≥ 0 for all u ∈ Rn.

In the following exercise you will give a geometric interpretation of the necessary condition
of Weierstrass. We recommend that the reader refer back to this exercise during the course
of the proof of Lemma 6.3 and “compare notes.”

E2.2 For a Lagrangian L : X×Rn → R consider fixing x ∈ X and thinking of the resulting
function Lx : v 7→ L(x, v). This is sometimes called the figurative .

(a) In Figure E2.1 we depict the function Lx in the case where X ⊂ R. Explain

u

Lx(u)

v u

D2L(x, v)(u− v)

L(x, u)− L(x, v)

Figure E2.1. The figurative when n = 1

all the labels in the figure and use the figure to give an interpretation of the
necessary condition of Theorem 2.7 in this case.

(b) Extend your explanation from part (a) to the case of general n.
(c) After understanding the proof of the Maximum Principle, restate Theorem 2.7

using separating hyperplanes.

The following exercise gives the initial steps in the important connection between the cal-
culus of variations and classical mechanics.
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E2.3 Let m ∈ R>0, let V : R3 → R be of class C2, and define a Lagrangian on R3 ×R3 by

L(x, v) = 1
2m‖v‖2 − V (x).

Show that the Euler–Lagrange equations are Newton’s equations for a particle of
mass m moving in the potential field V .

E2.4 Take X = R and define a Lagrangian by L(x, v) = (v2 − 1)2. Take t0 = 0, t1 = 1,
x0 = 0, and x1 = 1.

(a) What is the solution to Problem 2.1 in this case?
(b) Does the solution you found in part (a) satisfy the Euler–Lagrange equations?
(c) Can you find piecewise differentiable solutions to Problem 2.1 in this case?



Chapter 3

The Maximum Principle

In this chapter we give a precise statement of one version of the Maximum Principle, one
that is essentially that given by [Pontryagin, Boltyanskii, Gamkrelidze, and Mishchenko
1961] as this still holds up pretty well after all these years. We shall only prove the Maxi-
mum Principle in Chapter 6 after we have taken the time to properly prepare ourselves to
understand the proof. After the proof, in Chapter 7 we will discuss some of the important
issues that arise from the statement of the Maximum Principle.

Of course, since the Maximum Principle has been around for nearly a half century at
this point, one can find many textbook treatments. Some of these include books by Lee
and Markus [1967], Hestenes [1966], Berkovitz [1974], and Jurdjevic [1997]. Our treatment
bears some resemblance to that of Lee and Markus [1967].

For convenience, let us reproduce here the statement of the two problems that our version
of the Maximum Principle deals with. We refer the reader to Section 1.3 for notation.

Problem 1.7: (Free interval optimal control problem) Let Σ = (X, f, U) be a control system,
let L be a Lagrangian for Σ, and let S0, S1 ⊂ X be sets. A controlled trajectory (ξ∗, µ∗) ∈
Carc(Σ, L, S0, S1) is a solution to the free interval optimal control problem for Σ,
L, S0, and S1 if JΣ,L(ξ∗, µ∗) ≤ JΣ,L(ξ, µ) for each (ξ, µ) ∈ Carc(Σ, L, S0, S1). The set of
solutions to this problem is denoted by P(Σ, L, S0, S1). •
Problem 1.8: (Fixed interval optimal control problem) Let Σ = (X, f, U) be a control sys-
tem, let L be a Lagrangian for Σ, let S0, S1 ⊂ X be sets, and let t0, t1 ∈ R satisfy t0 < t1.
A controlled trajectory (ξ∗, µ∗) ∈ Carc(Σ, L, S0, S1, [t0, t1]) is a solution to the fixed in-
terval optimal control problem for Σ, L, S0, and S1 if JΣ,L(ξ∗, µ∗) ≤ JΣ,L(ξ, µ) for
each (ξ, µ) ∈ Carc(Σ, L, S0, S1, [t0, t1]). The set of solutions to this problem is denoted by
P(Σ, L, S0, S1, [t0, t1]). •

3.1. Preliminary definitions

As is suggested by our development of Section 2.4, an important ingredient in the Maxi-
mum Principle is the Hamiltonian associated to the optimal control problem for the system
Σ = (X, f, U) with Lagrangian L. We shall have occasion to use various Hamiltonians, so
let us formally define these now.

3.1 Definition: (Hamiltonian, extended Hamiltonian, maximum Hamiltonian, maximum ex-
tended Hamiltonian) Let Σ = (X, f, U) be a control system and let L be a Lagrangian.

29
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(i) The Hamiltonian is the function HΣ : X× Rn × U → R defined by

HΣ(x, p, u) = 〈p, f(x, u)〉.
(ii) The extended Hamiltonian is the function HΣ,L : X× Rn × U → R defined by

HΣ,L(x, p, u) = 〈p, f(x, u)〉+ L(x, u).

(iii) The maximum Hamiltonian is the function Hmax
Σ : X× Rn → R defined by

Hmax
Σ (x, p) = sup{HΣ(x, p, u) | u ∈ U}.

(iv) The maximum extended Hamiltonian is the function Hmax
Σ,L : X×Rn → R defined

by
Hmax

Σ,L (x, p) = sup{HΣ,L(x, p, u) | u ∈ U}. •
The variable “p” on which the various Hamiltonians depend is sometimes called the

costate .
In Section 6.1 we shall see that the extended Hamiltonian is, in fact, the Hamiltonian

for what we shall call the extended system.
Another key idea in the Maximum Principle is the notion of an adjoint response.

3.2 Definition: (Adjoint response) Let Σ = (X, f, U) be a control system and let (ξ, µ) ∈
Ctraj(Σ) have time interval I.

(i) An adjoint response for Σ along (ξ, µ) is a locally absolutely continuous map λ : I →
Rn such that the differential equation

ξ̇(t) = D2HΣ(ξ(t), λ(t), µ(t)),

λ̇(t) = −D1HΣ(ξ(t), λ(t), µ(t))

is satisfied.
Now additionally let L be a Lagrangian, and let (ξ, µ) ∈ Ctraj(Σ, L) have time interval I.

(ii) An adjoint response for (Σ, L) along (ξ, µ) is a locally absolutely continuous map
λ : I → Rn such that the differential equation

ξ̇(t) = D2HΣ,L(ξ(t), λ(t), µ(t)),

λ̇(t) = −D1HΣ,L(ξ(t), λ(t), µ(t))

is satisfied. •
Part of the Maximum Principle deals with the case when the initial set S0 and the final

set S1 have a nice property. In a properly geometric treatment of the subject one might ask
that these subsets be submanifolds. In more general treatments, one might relax smoothness
conditions on these subsets. However, since we are striving for neither geometric elegance
nor generality, the subsets we consider are of the following sort.

3.3 Definition: (Constraint set) A smooth constraint set for a control system Σ =
(X, f, U) is a subset S ⊂ X of the form S = Φ−1(0) where Φ: X → Rk is of class C1

and has the property that DΦ(x) is surjective for each x ∈ Φ−1(0). •
Of course, a smooth constraint set is a submanifold if you are familiar with the notion

of a submanifold.
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3.2. The statement of the Maximum Principle

We now have the data needed to give necessary conditions which can be applied to the
Problems 1.7 and 1.8. First we consider the free interval problem.

3.4 Theorem: (Maximum Principle for free interval problems) Let Σ = (X, f, U) be
a control system, let L be a Lagrangian, and let S0 and S1 be subsets of X. If
(ξ∗, µ∗) ∈ P(Σ, L, S0, S1) is defined on [t0, t1] then there exists an absolutely continuous
map λ∗ : [t0, t1]→ Rn and λ0

∗ ∈ {0,−1} with the following properties:
(i) either λ0

∗ = −1 or λ∗(t0) 6= 0;
(ii) λ∗ is an adjoint response for (Σ, λ0

∗L) along (ξ∗, µ∗);
(iii) HΣ,λ0∗L(ξ∗(t), λ∗(t), µ∗(t)) = Hmax

Σ,λ0∗L
(ξ∗(t), λ∗(t)) for almost every t ∈ [t0, t1].

If, additionally, µ∗ ∈ Ubdd([t0, t1]), then
(iv) Hmax

Σ,λ0∗L
(ξ∗(t), λ∗(t)) = 0 for every t ∈ [t0, t1].

Moreover, if S0 and S1 are smooth constraint sets defined by

S0 = Φ−1
0 (0), S1 = Φ−1

1 (0)

for maps Φa : Rn → Rka, a ∈ {1, 2}, then λ∗ can be chosen such that
(v) λ∗(t0) is orthogonal to ker(DΦ0(ξ(t0))) and λ∗(t1) is orthogonal to ker(DΦ1(ξ(t1))).

For the fixed interval problem we merely lose the fact that the maximum Hamiltonian
is zero.

3.5 Theorem: (Maximum Principle for fixed interval problems) Let Σ = (X, f, U) be a
control system, let L be a Lagrangian, let t0, t1 ∈ R satisfy t0 < t1, and let S0 and S1 be
subsets of X. If (ξ∗, µ∗) ∈P(Σ, L, S0, S1, [t0, t1]) then there exists an absolutely continuous
map λ∗ : [t0, t1]→ Rn and λ0

∗ ∈ {0,−1} with the following properties:
(i) either λ0

∗ = −1 or λ∗(t0) 6= 0;
(ii) λ∗ is an adjoint response for (Σ, λ0

∗L) along (ξ∗, µ∗);
(iii) HΣ,λ0∗L(ξ∗(t), λ∗(t), µ∗(t)) = Hmax

Σ,λ0∗L
(ξ∗(t), λ∗(t)) for almost every t ∈ [t0, t1].

If, additionally, µ∗ ∈ Ubdd([t0, t1]), then
(iv) Hmax

Σ,λ0∗L
(ξ∗(t), λ∗(t)) = Hmax

Σ,L (ξ∗(t0), λ∗(t0)) for every t ∈ [t0, t1].
Moreover, if S0 and S1 are smooth constraint sets defined by

S0 = Φ−1
0 (0), S1 = Φ−1

1 (0)

for maps Φa : Rn → Rka, a ∈ {1, 2}, then λ∗ can be chosen such that
(v) λ∗(t0) is orthogonal to ker(DΦ0(ξ(t0))) and λ∗(t1) is orthogonal to ker(DΦ1(ξ(t1))).

3.6 Remark: (Nonvanishing of the “total” adjoint vector) We shall see in the course of the
proof of the Maximum Principle (specifically in the proof of Lemma 6.3) that the condition
that either λ0

∗ = −1 or λ∗(t0) 6= 0 amounts to the condition that (λ0
∗)

2 + ‖λ∗(t)‖2 6= 0 for
all t ∈ [t0, t1]. Thus the “total” adjoint vector is nonzero. •



32 A. D. Lewis

3.7 Remark: (Transversality conditions) The final of the conclusions of Theorems 3.4
and 3.5 are called transversality conditions since they are simply stating the transversal-
ity of the initial and final adjoint vectors with the tangent spaces to the smooth constraint
sets. •

Note that if (ξ, µ) satisfies the hypotheses of the suitable Theorem 3.4 or Theorem 3.5,
then this does not imply that (ξ, µ) is a solution of Problem 1.7 or 1.8, respectively. However,
controlled trajectories satisfying the necessary conditions are sufficiently interesting that
they merit their own name and some classification based on their properties.

First we give the notation we attach to these controlled trajectories. We shall discrimi-
nate between various forms of such controlled trajectories in Sections 7.1 and 7.2.

3.8 Definition: (Controlled extremal, extremal, extremal control) Let Σ = (X, f, U) be a
control system, let L be a Lagrangian, let t0, t1 ∈ R satisfy t0 < t1, and let S0, S1 ⊂ X.

(i) A controlled trajectory (ξ, µ) is a controlled extremal for P(Σ, L, S0, S1)
(resp. P(Σ, L, S0, S1, [t0, t1])) if it satisfies the necessary conditions of Theorem 3.4
(resp. Theorem 3.5).

(ii) An absolutely continuous curve ξ is an extremal for P(Σ, L, S0, S1)
(resp. P(Σ, L, S0, S1, [t0, t1])) if there exists an admissible control µ such that
(ξ, µ) satisfies the necessary conditions of Theorem 3.4 (resp. Theorem 3.5).

(iii) An admissible control µ is an extremal control for P(Σ, L, S0, S1)
(resp. P(Σ, L, S0, S1, [t0, t1])) if there exists an absolutely continuous curve ξ
such that (ξ, µ) satisfies the necessary conditions of Theorem 3.4 (resp. Theorem 3.5).

•
One way to think of the Maximum Principle is as identifying a subset of controlled

trajectories as being candidates for optimality. Sometimes this restricted candidacy is
enough to actually characterise the optimal trajectories. In other instances it can turn out
that much additional work needs to be done beyond the Maximum Principle to distinguish
the optimal trajectories from the extremals.

3.3. The mysterious parts and the useful parts of the Maximum Principle

The statement of the Maximum Principle, despite our attempts to motivate it using
the calculus of variations, probably seems a bit mysterious. Some of the more mysterious
points include the following.
1. Where does the adjoint response λ∗ come from? A complete understanding of this

question is really what will occupy us for the next three chapters. We shall see in the
proofs of Theorems 5.16 and 5.18 that the adjoint response has a very concrete geometric
meaning in terms of the boundary of the reachable set.

2. What is the meaning of the pointwise (in time) maximisation of the Hamiltonian? As
with the adjoint response λ∗, the meaning of the Hamiltonian maximisation condition is
only understood by digging deeply into the proof of the Maximum Principle. When we
do, we shall see that the Hamiltonian maximisation condition is essentially a condition
that ensures that one is doing as best as one can, at almost every instant of time, to
reduce the cost.
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3. What is the rôle of the constant λ0
∗? In Section 7.1 we shall visit this question in some

detail, but it is only possible to really appreciate this after one has understood the
proof of the Maximum Principle. There is a finite-dimensional analogue of this which
we consider in Exercise E3.2.

Despite these mysterious points, it is possible to use the Maximum Principle without actu-
ally understanding it. Let us indicate how this is often done. We will employ the strategy
we outline in the developments of Chapters 8 and 9.
1. Use the Hamiltonian maximisation condition to determine the control. It is very often

the case that the third condition in Theorems 3.4 and 3.5 allow one to solve for the
control as a function of the state x and the costate p. Cases where this is not possible
are called “singular.” We shall say something about these in Section 7.2.

2. Study the Hamiltonian equations. If one does indeed have the control as a function of
the state and costate from the previous step, then one studies the equations

ξ̇(t) = D2HΣ,λ0∗L(ξ(t), λ(t), µ(ξ(t), λ(t))),

λ̇(t) = −D1HΣ,λ0∗L(ξ(t), λ(t), µ(ξ(t), λ(t)))

to understand the behaviour of the extremals. Note that the control may not be a
continuous function of x and p, so care needs to be exercised in understanding how
solutions to these equations might be defined.

3. Work, pray, or learn some other things to determine which extremals are optimal. The
preceding two steps allow a determination of the differential equations governing ex-
tremals. One now has to ascertain which extremals, if any, correspond to optimal
solutions. Sometimes this can be done “by hand.” However, very often this is not fea-
sible. However, much work has been done on determining sufficient conditions, so one
can look into the literature on such things.
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Exercises

E3.1 Consider a control system Σ = (X, f, U) that is control-affine:

f(x, u) = f0(x) + f1(x) · u.

Make the following assumptions:
(i) U = Rm;
(ii) for each x ∈ X the linear map f1(x) is an isomorphism.

Answer the following questions.

(a) Show that if L : X × U → is a Lagrangian then there is a naturally induced
Lagrangian L̃ : X× Rn → R.

(b) Show that the solutions of class C2 of Problem 1.8 for the system Σ and the
Lagrangian L coincide with solutions of Problem 2.1 for the Lagrangian L̃.

(c) Argue that the above conclusions almost show how Theorems 2.2, 2.4, and 2.7
in the calculus of variations are special cases of the Maximum Principle. Why
does it not completely show this?

The following exercise considers a sort of finite-dimensional version of the Maximum Prin-
ciple, indicating how, in the finite-dimensional setting, the constant λ0

∗ can arise. This rests
on the following so-called Lagrange Multiplier Theorem.

3.9 Theorem: (Lagrange Multiplier Theorem) Let U ⊂ Rn be an open subset and let f : U→
R and g : U→ Rm be of class C1 with m < n. If x0 is a local minimum of f |g−1(0) then
there exist λ0 ∈ R and λ ∈ Rm, not simultaneously zero, so that x0 is a critical point of

fλ0,λ : x 7→ λ0f(x) + 〈λ, g(x)〉.

Furthermore, if Dg(x0) is surjective then λ0 6= 0. Conversely, if x0 ∈ g−1(0) is a critical
point of fλ0,λ with λ0 = 0 then Dg(x0) is not surjective.

E3.2 We consider the Lagrange Multiplier Theorem in a couple of special cases. In each
case, use the theorem to find the minimum of f |g−1(0), and comment on the rôle
of λ0.

(a) Let f : R2 → R and g : R2 → R be defined by

f(x1, x2) = x1 + x2, g(x1, x2) = (x1)2 + (x2)2 − 1.

(b) Let f : R2 → R and g : R2 → R be defined by

f(x1, x2) = x1 + x2, g(x1, x2) = (x1)2 + (x2)2.



Chapter 4

Control variations

In this chapter we provide the technical details surrounding the construction of certain
sorts of variations of trajectories of a control system. The idea of a control variation is of
fundamental importance in control theory in general, and here we only skim the surface
of what can be said and done. The basic idea of a control variation is that it allows
one to explore the reachable set in the neighbourhood of a given trajectory by “wiggling”
the trajectory. This is somewhat like what we explained in Section 2.2 in the calculus
of variations. However, in control theory one can consider variations arising from two
mechanisms. Analogously to Definition 2.8, one can fix a control and vary a trajectory,
essentially by varying the initial condition. However, one can also vary the control in some
way and measure the effects of this on the trajectory. The variations we discuss in this
section are obtained by combining these mechanisms. Also, in control theory one often
looks for families of variations that are closed under taking convex combinations. We see
this idea in our development as well.

An interesting paper where the variational approach to controllability is developed
is [Bianchini and Stefani 1993]. Here one can find a fairly general definition of a con-
trol variation. Let us remark that through the idea of a control variation one may arrive
at the importance of the Lie bracket in control theory. This idea is explored in great depth
in the geometric control literature; we refer to the books [Agrachev and Sachkov 2004, Ju-
rdjevic 1997] for an introduction to the geometric point of view and for references to the
literature. The book on mechanical control systems by Bullo and Lewis [2004] also contains
an extensive bibliography concerning geometric control.

4.1. The variational and adjoint equations

As we saw in Section 2.1 in our proofs of the necessary conditions in the calculus of
variations, it is useful to be able to “wiggle” a trajectory and measure the effects of this in
some precise way. For control systems, a useful tool in performing such measurements is the
variational equation. Associated to this, essentially through orthogonal complementarity,
is the adjoint equation.

4.1 Definition: (Variational equation, adjoint equation) Let Σ = (X, f, U) be a control
system and let µ : I → U be an admissible control.

35
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(i) The variational equation for Σ with control µ is the differential equation

ξ̇(t) = f(ξ(t), µ(t)),
v̇(t) = D1f(ξ(t), µ(t)) · v(t)

on X× Rn.
(ii) The adjoint equation for Σ with control µ is the differential equation

ξ̇(t) = f(ξ(t), µ(t)),

λ̇(t) = −D1f
T (ξ(t), µ(t)) · λ(t)

on X× Rn. •
Let us indicate how one should think about these differential equations. For the vari-

ational equation the interpretation is quite direct, while the interpretation of the adjoint
equation perhaps is most easily explained by relating it to the variational equation. Thus
let us first consider the variational equation.

Note that, if one fixes the control µ : I → Rn, then one can think of the differential
equation

ξ̇(t) = f(ξ(t), µ(t)) (4.1)

as simply being a nonautonomous differential equation. The nicest interpretation of the
variational equation involves variations of solutions of (4.1).

4.2 Definition: (Variation of trajectory) Let Σ = (X, f, U), let x0 ∈ X, let t0, t1 ∈ R satisfy
t0 < t1, and let µ ∈ U (x0, t0, [t0, t1]). A variation of the trajectory ξ(µ, x0, t0, ·) is a map
σ : J × [t0, t1]→ X such that

(i) J ⊂ R is an interval for which 0 ∈ int(J),
(ii) σ(0, t) = ξ(µ, x0, t0, t) for each t ∈ [t0, t1],
(iii) s 7→ σ(s, t) is of class C1 for each t ∈ [t0, t1], and
(iv) t 7→ σ(s, t) is a solution of (4.1).

For a variation σ of ξ(µ, x0, t0, ·), the corresponding infinitesimal variation is the map
δσ : [t0, t1]→ Rn defined by

δσ(t) =
d
ds

∣∣∣
s=0

σ(s, t). •
The intuition of the notion of a variation and an infinitesimal variation can be gleaned

from Figure 4.1.
The following result explains the connection between variations and the variational

equation.

4.3 Proposition: (Infinitesimal variations are solutions to the variational equation and vice
versa) Let Σ = (X, f, U) be a control system, let x0 ∈ X, let t0, t1 ∈ R satisfy t0 < t1,
and let µ ∈ U (x0, t0, [t0, t1]). For a map v : [t0, t1] → Rn the following statements are
equivalent:

(i) there exists a variation σ of ξ(µ, x0, t0, ·) such that v = δσ;
(ii) t 7→ (ξ(µ, x0, t0, t), v(t)) satisfies the variational equation.
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ξ(µ, x0, t0, t)
v(t0)

v(t)

ξ(µ, x0, t0, t)v(t0)

v(t)

ξ(µ, x0, t0, t)

v(t0)

v(t)

Figure 4.1. The idea of a variation of a trajectory is shown in the
top figure. To further assist in the intuition of the variational
equation, one can refer to the bottom two pictures; the one on
the left shows a variation for a “stable” trajectory and the one
of the right shows a variation for an “unstable” trajectory.

Proof: (i) =⇒ (ii) Suppose that σ has domain J × [t0, t1] and define γ : J → X by γ(s) =
σ(s, t0). Then we have

σ(s, t) = ξ(µ, γ(s), t0, t)

since each of the curves t 7→ σ(s, t) and t 7→ ξ(µ, γ(s), t0, t) is a solution to (4.1) with initial
condition γ(s) at time t0. Therefore,

v(t) = δσ(t) =
d
ds

∣∣∣
s=0

σ(s, t) = D2ξ(µ, x0, t0, t) · δσ(t0).

Now let us define a linear map Φ(t) : Rn → Rn by

Φ(t) · w = D2ξ(µ, x0, t0, t) · w.

Note that
D4ξ(µ, x0, t0, t) = f(ξ(µ, x0, t0, t), µ(t))

so that, by the Chain Rule,

D4D2ξ(µ, x0, t0, t) = D1f(ξ(µ, x0, t0, t), µ(t)) ◦D2ξ(µ, x0, t0, t)
= D1f(ξ(µ, x0, t0, t), µ(t)) ◦Φ(t).

Thus Φ satisfies the matrix differential initial value problem

Φ̇(t) = D1f(ξ(µ, x0, t0, t), µ(t)) ◦Φ(t), Φ(t0) = In.

Therefore, v(t) = Φ(t) · δσ(t0) is the solution of the vector initial value problem

v̇(t) = D1f(ξ(µ, x0, t0, t), µ(t)) · v(t), v(t0) = δσ(t0),

which gives this part of the proof.
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(ii) =⇒ (i) Let s0 > 0, take J = [−s0, s0], and let γ : J → X be a curve such that
d
ds

∣∣
s=0

γ(s) = v(t0). By a compactness argument using continuity of solutions of (4.1),
the details of which we leave to the reader, one can choose s0 sufficiently small that
ξ(µ, γ(s), t0, ·) is defined on [t0, t1] for each s ∈ J . We then define σ(s, t) = ξ(µ, γ(s), t0, t).
It is easy to see that σ is a variation. Moreover, using our computations from the first part
of the proof we have δσ(t) = v(t). �

Motivated by the proof of the preceding proposition, for τ, t ∈ [t0, t1] we denote by
Φ(µ, x0, t0, τ, t) the solution to the matrix initial value problem

Φ̇(t) = D1f(ξ(µ, x0, t0, t), µ(t)) ◦Φ(t), Φ(τ) = In.

Geometrically we should think of Φ(µ, x0, t0, τ, t) as an isomorphism from the tangent space
at ξ(µ, x0, t0, τ) to the tangent space at ξ(µ, x0, t0, t); see Figure 4.2. In the proof we showed

ξ(t0)

ξ(τ)

ξ(t)

Φ(µ, x0, t0, τ, t)

Figure 4.2. The interpretation of Φ(µ, x0, t0, τ, t); ξ(µ, x0, t0, ·) is
abbreviated by ξ

that t 7→ v(t) = Φ(µ, x0, t0, t0, t) ·v(t0) is then the solution of the linear differential equation

v̇(t) = D1f(ξ(µ, x0, t0, t), µ(t)) · v(t)

with initial condition v(t0) at time t0. The intuition is that t 7→ Φ(µ, x0, t0, t0, t) · v indi-
cates how the linearised flow of the differential equation (4.1) translates the vector v along
the trajectory ξ(µ, x0, t0, ·). This is a sort of parallel transport, and is indeed the “Lie
drag” for those familiar with some differential geometry. Using standard methods for linear
differential equations one can verify the following:

1. Φ(µ, x0, t0, τ1, τ1) = In;



The Maximum Principle in control and in optimal control 39

2. Φ(µ, x0, t0, τ1, τ2) = Φ(µ, x0, t0, τ2, τ1)−1;

3. Φ(µ, x0, t0, τ1, τ2) ◦Φ(µ, x0, t0, τ0, τ1) = Φ(µ, x0, t0, τ0, τ2).

The connection between the adjoint equation and things Hamiltonian is also of interest.
We recall that for a system Σ = (X, f, U) we define the Hamiltonian

HΣ(x, p, u) = 〈p, f(x, u)〉.

The following result, which is proved merely by a direct computation, relates this Hamilto-
nian with the adjoint equation.

4.4 Proposition: (A Hamiltonian interpretation of the adjoint equation) Let Σ = (X, f, U)
be a control system and let µ : I → U be an admissible control. For maps ξ : I → X and
λ : I → Rn, the following statements are equivalent:

(i) the curve t 7→ (ξ(t), λ(t)) satisfies the adjoint equation;
(ii) the curve t 7→ (ξ(t), λ(t)) satisfies the differential equation

ξ̇(t) = D2HΣ(ξ(t), λ(t), µ(t)),

λ̇(t) = −D1HΣ(ξ(t), λ(t), µ(t)).

The equations in the second part of the proposition are Hamilton’s equations for the
time-dependent Hamiltonian (t, (x, p)) 7→ HΣ(x, p, µ(t)). We discuss this a little bit more
in Section 7.4.

For us, the most useful feature of the adjoint equation is its following relationship with
the variational equation.

4.5 Proposition: (Property of the adjoint equation) Let Σ = (X, f, U) be a control system,
let x0 ∈ X, let t0, t1 ∈ R satisfy t0 < t1, and let µ ∈ U (x0, t0, [t0, t1]). If v : [t0, t1] → Rn

and λ : [t0, t1] → Rn are such that t 7→ (ξ(µ, x0, t0, t), v(t)) and t 7→ (ξ(µ, x0, t0, t), λ(t))
satisfy the variational and adjoint equations, respectively, then

〈λ(t), v(t)〉 = 〈λ(t0), v(t0)〉

for all t ∈ [t0, t1].

Proof: Abbreviate ξ(t) = ξ(µ, x0, t0, t). We compute

d
dt
〈λ(t), v(t)〉 = 〈λ̇(t), v(t)〉+ 〈λ(t), v̇(t)〉

= − 〈D1f
T (ξ(t), µ(t)) · λ(t), v(t)〉+ 〈λ(t),D1f(ξ(t), µ(t)) · v(t)〉 = 0.

The result now follows since λ and v are absolutely continuous, and so t 7→ 〈λ(t), ξ(t)〉 is
also absolutely continuous. �

The following immediate consequence of the preceding result will be useful.

4.6 Corollary: (Hyperplanes and the variational and adjoint equations) Let Σ = (X, f, U)
be a control system, let x0 ∈ X, let t0, t1 ∈ R satisfy t0 < t1, and let µ ∈ U (x0, t0, [t0, t1]).
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Let P0 ⊂ Rn be a subspace of codimension one and let λ0 ∈ Rn \ {0} be orthogonal to P0.
For t ∈ [t0, t1], define Pt ⊂ Rn and λt ∈ Rn by asking that

Pt = {v(t) | v : [t0, t1]→ Rn satisfies the variational equation with v(t0) ∈ P0}
and that t 7→ λt is the solution of the adjoint equation with initial condition λ0.

Then λt is orthogonal to Pt for every t ∈ [t0, t1].

Thus one can think of the adjoint equation as describing the evolution of a hyperplane
along the trajectory ξ(µ, x0, t0, ·).

The solutions of the adjoint equation can be characterised in terms of the solutions of
the variational equation.

4.7 Proposition: (Solutions of the adjoint equation) Let Σ = (X, f, U) be a control system,
let x0 ∈ X, let t0, t1 ∈ R satisfy t0 < t1, let µ ∈ U (x0, t0, [t0, t1]), and let τ ∈ [t0, t0]. Then
the solution of the initial value problem

λ̇(t) = −D1f
T (ξ(µ, x0, t0, t), µ(t)) · λ(t), λ(τ) = λτ

is
t 7→ λ(t) = Φ(µ, x0, t0, t, τ)T · λτ .

Proof: Let t 7→ Ψ(µ, x0, t0, τ, t) be the solution to the matrix initial value problem

D5Ψ(µ, x0, t0, τ, t) = −D1f
T (ξ(µ, x0, t0, t), µ(t)) ·Ψ(µ, x0, t0, τ, t), Ψ(µ, x0, t0, τ, τ) = In,

so that the solution to the initial value problem

λ̇(t) = −D1f(ξ(µ, x0, t0, t), µ(t)) · λ(t), λ(τ) = λτ ,

is t 7→ Ψ(µ, x0, t0, τ, t) · λτ . Now let vτ ∈ Rn. Then, by Proposition 4.5, we have

〈Ψ(µ, x0, t0, τ, t) · λτ ,Φ(µ, x0, t0, τ, t) · vτ 〉 = 〈λτ , vτ 〉.
Since this must hold for every λτ , vτ ∈ Rn we deduce that

Ψ(µ, x0, t0, τ, t) = Φ(µ, x0, t0, τ, t)−T = Φ(µ, x0, t0, t, τ)T ,

giving the result. �

4.2. Needle variations

As we shall see, the proof of the Maximum Principle involves approximating the reach-
able set with convex cones. In order to generate these approximations we will use specific
variations of controls, called needle variations, that are conjured to exactly give the sort of
approximation we need. There are two sorts of needle variations we will use, depending on
whether we are considering the free interval or the fixed interval optimal control problem.
We shall first examine in detail the control variations used for the fixed interval problem,
and then after we understand that will “tack on” the additional data needed for the free
interval problem.

So let us first consider needle variations for the fixed interval problem.
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4.8 Definition: (Fixed interval needle variation) Let Σ = (X, f, U) be a control system, let
t0, t1 ∈ R satisfy t0 < t1, let x0 ∈ X, and let µ ∈ U (x0, t0, [t0, t1]).

(i) Fixed interval needle variation data is a triple θ = (τθ, lθ, ωθ) where

(a) τθ ∈ (t0, t1],
(b) lθ ∈ R≥0, and
(c) ωθ ∈ U .

(ii) The control variation of µ associated to the fixed interval needle variation data
θ = (τθ, lθ, ωθ) is the map µθ : J × [t0, t1]→ U defined by

µθ(s, t) =

{
ωθ, t ∈ [τθ − slθ, τθ],
µ(t), otherwise,

and where J = [0, s0] is an interval sufficiently small that µθ(s, ·) : t 7→ µθ(s, t) is an
admissible control for each s ∈ J .

(iii) The fixed interval needle variation associated with the control µ, the trajectory
ξ(µ, x0, t0, ·), and the fixed interval needle variation data θ = (τθ, lθ, ωθ) is the element
vθ ∈ Rn defined by

vθ =
d
ds

∣∣∣
s=0

ξ(µθ(s, ·), x0, t0, τθ),

when the limit exists. •
In Figure 4.3 we depict how one might think of µθ. The precise reason why this is a

t

µθ(s, t)

ωθ

τθ − slθ τθ

Figure 4.3. A depiction of the control variation associated to fixed
interval needle variation data

useful thing to do only begins to become apparent in Section 5.4 when we approximate the
reachable set with convex cones using needle variations.

The following result shows that fixed interval needle variations exist at Lebesgue points
for t 7→ f(ξ(µ, x0, t0, t), µ(t)). It will be convenient to denote by Leb(µ, x0, t0, t) the set of
Lebesgue points of τ 7→ f(ξ(µ, x0, t0, τ), µ(τ)) in the interval (t0, t).
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4.9 Proposition: (Existence of fixed interval needle variations) Let Σ = (X, f, U) be a control
system, let x0 ∈ X, let t0, t1 ∈ R satisfy t0 < t1, and let µ ∈ U (x0, t0, [t0, t1]). If θ =
(τθ, lθ, ωθ) is fixed interval needle variation data with τθ ∈ Leb(µ, x0, t0, t1), then the fixed
interval needle variation vθ ∈ Rn exists and is given by

vθ = lθ
(
f(ξ(µ, x0, t0, τθ), ωθ)− f(ξ(µ, x0, t0, τθ), µ(τθ)

)
.

Proof: Using the integral form of the differential equation we have

ξ(µθ(s, ·), x0, t0, τθ) = ξ(µθ(s, ·), x0, t0, τθ − slθ) +
∫ τθ

τθ−slθ
f(ξ(µθ(s, ·), x0, t0, t), ωθ) dt

= ξ(µ, x0, t0, τθ − slθ) +
∫ τθ

τθ−slθ
f(ξ(µθ(s, ·), x0, t0, t), ωθ) dt

= ξ(µ, x0, t0, τθ)−
∫ τθ

τθ−slθ
f(ξ(µ, x0, t0, t), µ(t)) dt

+
∫ τθ

τθ−slθ
f(ξ(µθ(s, ·), x0, t0, t), ωθ) dt.

Since τθ ∈ Leb(µ, x0, t0, t1) it holds that

lim
s→0

1
s

∫ τθ

τθ−slθ
‖f(ξ(µ, x0, t0, t), µ(t))− f(ξ(µ, x0, t0, τθ), µ(τθ))‖ dt = 0

=⇒ lim
s→0

1
s

∫ τθ

τθ−slθ
f(ξ(µ, x0, t0, t), µ(t)) dt = lim

s→0

1
s
f(ξ(µ, x0, t0, τθ), µ(τθ))slθ

=⇒ lim
s→0

1
s

∫ τθ

τθ−slθ
f(ξ(µ, x0, t0, t), µ(t)) dt = f(ξ(µ, x0, t0, τθ), µ(τθ))lθ.

Since t 7→ ξ(µθ(s, ·), x0, t0, t) is continuous and since µθ is constant on [τθ − slθ, τθ],

lim
s→0

1
s

∫ τθ

τθ−slθ
f(ξ(µθ(s, ·), x0, t0, t), ωθ) dt = f(ξ(µθ(0, ·), x0, t0, τθ), ωθ)lθ

= f(ξ(µ, x0, t0, τθ), ωθ)lθ.

Combining all of this gives

d
ds

∣∣∣
s=0

ξ(µθ(s, ·), x0, t0, τθ) = lθ
(
f(ξ(µ, x0, t0, τθ), ωθ)− f(ξ(µ, x0, t0, τθ), µ(τθ)

)
,

as desired. �

This gives the following useful property of the set of fixed interval needle variations at
a point where they are defined.

4.10 Corollary: (The set of fixed interval needle variations is a cone) Let Σ = (X, f, U) be
a control system, let x0 ∈ X, let t0, t1 ∈ R satisfy t0 < t1, and let µ ∈ U (x0, t0, [t0, t1]). If
τθ ∈ Leb(µ, x0, t0, t1), then the set of fixed interval needle variations associated with fixed
interval needle variation data of the form θ = (τθ, lθ, ωθ) is a cone in Rn.

Proof: If vθ is the fixed interval needle variation associated with the fixed interval needle
variation data (τθ, lθ, ωθ) and if λ ∈ R≥0, then λvθ is the fixed interval needle variation
associated with the fixed interval needle variation data (τθ, λlθ, ωθ). �
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Motivated by the corollary, if θ = (τθ, lθ, ωθ) is fixed interval needle variation data and
if λ ∈ R≥0, then we denote by λθ the fixed interval needle variation data λθ = (τθ, λlθ, ωθ).
The corollary shows that, if the fixed interval needle variation associated with θ exists, then
the fixed interval needle variation associated with λθ exists, and we have vλθ = λvθ.

4.3. Multi-needle variations

Now we extend the analysis from the preceding section to allow for the effects of multiple
needle variations. The reason for this is simple. The set of fixed interval needle variations at
a given Lebesgue point form a cone by Corollary 4.10. However, these will not generally form
a convex set, for example, because the control set U need not be convex (see Exercise E4.2).
To generate a convex set of variations from needle variations we allow the times of the needle
variations to vary.

Again the presentation breaks into fixed and free intervals cases, and we consider the
fixed interval case in detail, saving for Section 4.4 the development needed for the free
interval problem.

The notion needed in the fixed interval case is the following.

4.11 Definition: (Fixed interval multi-needle variation) Let Σ = (X, f, U) be a control sys-
tem, let t0, t1 ∈ R satisfy t0 < t1, let x0 ∈ X, and let µ ∈ U (x0, t0, [t0, t1]).

(i) Fixed interval multi-needle variation data is a collection Θ = {θ1, . . . , θk} of
fixed interval needle variation data θj = (τj , lj , ωj), j ∈ {1, . . . , k}, such that the times
τ1, . . . , τk are distinct.

(ii) The control variation of µ associated to the fixed interval multi-needle variation
data Θ = {θ1, . . . , θk} is the map µΘ : J × [t0, t1]→ U defined by

µΘ(s, t) =

{
ωj , t ∈ [τj − slj , τj ], j ∈ {1, . . . , k},
µ(t), otherwise,

and where J = [0, s0] is an interval sufficiently small that µΘ(s, ·) : t 7→ µΘ(s, t) is a
well-defined admissible control for each s ∈ J .

(iii) The fixed interval multi-needle variation associated with the control µ, the tra-
jectory ξ(µ, x0, t0, ·), the time t ∈ [t0, t1], t > τj , j ∈ {1, . . . , k}, and the fixed interval
multi-needle variation data Θ = {θ1, . . . , θk} is the element vΘ(t) ∈ Rn defined by

vΘ(t) =
d
ds

∣∣∣
s=0

ξ(µΘ(s, ·), x0, t0, t),

when the limit exists. •
The idea here is not much different than in Definition 4.8 except that we are performing

the same sort of construction at multiple times. The following result gives conditions for
the existence of fixed interval multi-needle variations.

4.12 Proposition: (Existence of fixed interval multi-needle variations) Let Σ = (X, f, U) be
a control system, let t0, t1 ∈ R satisfy t0 < t1, let x0 ∈ X, and let µ ∈ U (x0, t0, [t0, t1]).
If Θ = {θ1, . . . , θk} is fixed interval multi-needle variation date such that τ1, . . . , τk ∈
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Leb(µ, x0, t0, t) with τj < t, j ∈ {1, . . . , k}, then the fixed interval multi-needle variation
vΘ(t) ∈ Rn exists and is given by

vΘ(t) = Φ(µ, x0, t0, τ1, t) · vθ1 + · · ·+ Φ(µ, x0, t0, τk, t) · vθk .

Proof: Just as in the proof of Proposition 4.9 we have

ξ(µΘ(s, ·), x0, t0, τ1) = ξ(µ, x0, t0, τ1) + svθ1 + o(s).

Since the control µΘ(s, ·) on [τ2 − sl2, τ2] is just µ, it follows from Proposition 4.3 that

ξ(µΘ(s, ·), x0, t0, τ2 − sl2) = ξ(µ, x0, t0, τ2 − sl2) + sΦ(µ, x0, t0, τ1, τ2 − sl2) · vθ1 + o(s).

Now one can perform a computation, just like that in the proof of Proposition 4.9, to show
that

ξ(µΘ(s, ·), x0, t0, τ2) = ξ(µΘ(s, ·), x0, t0, τ2− sl2) + sl2f(ξ(µΘ(s, ·), x0, t0, τ2− sl2), ω2) +o(s).

Again following the computations in the proof of Proposition 4.9, and using the fact that
τ2 is a Lebesgue point, we have

ξ(µ, x0, t0, τ2 − sl2) = ξ(µ, x0, t0, τ2)− sl2f(ξ(µ, x0, τ2), µ(τ2)) + o(s).

Putting all of this together gives

ξ(µΘ(s, ·), x0, t0, τ2) = ξ(µ, x0, t0, τ2) + sΦ(µ, x0, t0, τ1, τ2 − sl2) · vθ1 + svθ2 + o(s).

Carrying on in this way (i.e., using induction) we arrive at

ξ(µΘ(s, ·), x0, t0, t) = ξ(µ, x0, t0, t) + sΦ(µ, x0, t0, τ1, t) · vθ1 + . . .

+ sΦ(µ, x0, t0, τk, t) · vθk + o(s). (4.2)

Differentiation with respect to s at s = 0 gives the result. �

One can see in the proof why it is that we require the times for a fixed interval multi-
needle variation to be distinct. It is possible to consider different needle variations based
at the same time, but one has to be more careful in computing the form of the variation.
However, it is not necessary here to use this degree of generality.

One of the important observations one can make about a fixed interval multi-needle
variation involves convex combinations. In order to express this, the following notation
is helpful. If Θ = {θ1, . . . , θk} is fixed interval multi-needle variation data and if λ =
{λ1, . . . , λk} ⊂ R≥0 then we denote λΘ = {λ1θ1, . . . , λkθk}, where we use the notation
introduced following Corollary 4.10.

4.13 Corollary: (Coned convex combinations of fixed interval multi-needle variations) Let
Σ = (X, f, U) be a control system, let t0, t1 ∈ R satisfy t0 < t1, let x0 ∈ X, and let
µ ∈ U (x0, t0, [t0, t1]). If Θ = {θ1, . . . , θk} is a fixed interval multi-needle variation such
that τ1, . . . , τk ∈ Leb(µ, x0, t0, t) with t > τj, j ∈ {1, . . . , k}, and if λ = {λ1, . . . , λk} ⊂ R≥0

then
vλΘ(t) = λ1Φ(µ, x0, t0, τ1, t) · vθ1 + · · ·+ λkΦ(µ, x0, t0, τk, t) · vθk .
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Moreover, if
k∑
j=1

λj = 1,

then the limit d
ds

∣∣
s=0

ξ(µλΘ(s, ·), x0, t0, t) exists uniformly in λ.

Proof: The first assertion follows immediately from the fact that vλjθj = λjvθj for j ∈
{1, . . . , k}. The final assertion concerning uniform convergence with respect to λ follows
from a compactness argument that we leave to the reader. �

4.14 Remark: (Why needle variations?) Having now discussed a little bit about needle
variations, we should really ask ourselves why these are useful to look at. Variations in
general provide us with a way to look at trajectories “nearby” a given trajectory. Needle
variations do this in a very specific way. What a needle variation does is isolate the effects
of changing the control from its nominal value to a different value around a single instant.
The notion of a multi-needle variation encodes the effects of doing this at various different
times. Thus the way to think of the set of multi-needle variations is this: It represents the
effects at a given time t of instantaneously altering the value of the control around almost
all times (specifically at Lebesgue points) preceding t. •

4.4. Free interval variations

Fixed interval multi-needle variations are defined relative to a control which specifies
the time interval for the control variation. Now we allow the length of the time interval to
vary. We jump straight to multi-needle variations.

4.15 Definition: (Free interval multi-needle variation) Let Σ = (X, f, U) be a control system,
let t0, t1 ∈ R satisfy t0 < t1, let x0 ∈ X, and let µ ∈ U (x0, t0, [t0, t1]).

(i) Free interval multi-needle variation data is a pair (Θ,Ψ) where Θ = {θ1, . . . , θk}
is fixed interval multi-needle variation data and where Ψ = (τ, δτ) ∈ [t0, t1]×R satisfies
τ > τj , j ∈ {1, . . . , k}.

(ii) The control variation of µ associated to free interval multi-needle variation data
(Θ,Ψ) is the map (s, t) 7→ µ(Θ,Ψ)(s, t) defined by

µ(Θ,Ψ)(s, t) =


µΘ(t), t ∈ [t0, τ ],
µ(τ), t ∈ (τ, τ + sδτ ],
µΘ(t− sδτ), t ∈ (τ + sδτ, t1 + sδτ ]

when δτ ≥ 0 and by

µ(Θ,Ψ)(s, t) =

{
µΘ(t), [t0, τ + sδτ ],
µΘ(t− sδτ), t ∈ (τ + sδτ, t1 + sδτ ]

when δτ < 0. (Note that the domain of µ(Θ,Ψ)(s, ·) depends on s.)
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(iii) The free interval multi-needle variation associated with the control µ, the tra-
jectory ξ(µ, x0, t0, ·), the time t > τ , and the free interval multi-needle variation data
(Θ,Ψ) is the element v(Θ,Ψ) ∈ Rn defined by

v(Θ,Ψ)(t) =
d
ds

∣∣∣
s=0

ξ(µ(Θ,Ψ)(s, ·), x0, t0, t),

when the limit exists. •
In Figure 4.4 we show a free interval multi-needle variation for δτ > 0. When δτ < 0

t

µ(Θ,Φ)(s, t)

ω1

τ1 − sl1 τ1

ω2

τ2 − sl2 τ2 τ τ + sδτ

Figure 4.4. A free interval multi-needle variation for δτ > 0

then the right endpoint of the interval simply gets shifted to the left, “deleting” that part
of the control defined on [τ + sδτ, τ ].

Let us do as we did for fixed interval multi-needle variations and show that free interval
multi-needle variations exist with suitable assumptions on the data.

4.16 Proposition: (Existence of free interval multi-needle variations) Let Σ = (X, f, U) be
a control system, let t0, t1 ∈ R satisfy t0 < t1, let x0 ∈ X, and let µ ∈ U (x0, t0, [t0, t1]). If
(Θ,Ψ) is free interval multi-needle variation data with Θ = {θ1, . . . , θk} and Ψ = (τ, δτ)
such that τ1, . . . , τk, τ ∈ Leb(µ, x0, t0, t), then the free interval multi-needle variation
v(Θ,Ψ) ∈ Rn exists at t > τ and is given by

v(Θ,Ψ)(t) = Φ(µ, x0, t0, τ1, t) · vθ1 + · · ·+ Φ(µ, x0, t0, τk, t) · vθk
+ δτΦ(µ, x0, t0, τ, t) · f(ξ(µ, x0, t0, τ), µ(τ)).

Proof: Since τ is a Lebesgue point for t 7→ f(ξ(µ, x0, t0, t), µ(t)) it is also a Lebesgue point
for t 7→ f(ξ(µ(Θ,Ψ)(s, ·), x0, t0, t), µ(Θ,Ψ)(t)). Therefore, emulating the arguments made in
the proof of Proposition 4.9, we obtain

ξ(µ(Θ,Ψ)(s, ·), x0, t0, τ + sδτ) = ξ(µ(Θ,Ψ)(s, ·), x0, t0, τ)

+ sδτf(ξ(µ(Θ,Ψ)(s, ·), x0, t0, τ), µ(Θ,Ψ)(s, τ)) + o(s).
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We also have, in similar fashion,

ξ(µ, x0, t0, τ + sδτ) = ξ(µ, x0, t0, τ) + sδτf(ξ(µ, x0, t0, τ), µ(τ)) + o(s).

Now, by continuous dependence of solutions on initial conditions, for s sufficiently small
there exists gs : [t0, t1]→ Rn such that lims→0 gs(t) = 0 uniformly in t and such that

f(ξ(µ(Θ,Ψ)(s, ·), x0, t0, t), µ(Θ,Ψ)(s, t)) = f(ξ(µ, x0, t0, t), µ(t)) + gs(t), t ∈ [t0, t1].

Therefore,∫ τ+sδτ

τ
f(ξ(µ(Θ,Ψ)(s, ·), x0, t0, t), µ(Θ,Ψ)(s, t)) dt =

∫ τ+sδτ

τ
f(ξ(µ, x0, t0, t), µ(t)) dt+ o(s)

= sδτf(ξ(µ, x0, t0, τ), µ(τ)) + o(s).

Using the integral form of the differential equation then gives

ξ(µ(Θ,Ψ)(s, ·), x0, t0, τ + sδτ) = ξ(µ(Θ,Ψ)(s, ·), x0, t0, τ) + sδτf(ξ(µ, x0, t0, τ), µ(τ)) + o(s).

From the proof of Proposition 4.12, particularly (4.2), we now have

ξ(µ(Θ,Ψ)(s, ·), x0, t0, τ + sδτ) = sδτf(ξ(µ, x0, t0, τ), µ(τ)) + ξ(µ, x0, t0, τ)

+ sΦ(µ, x0, t0, τ1, τ) · vθ1 + · · ·+ sΦ(µ, x0, t0, τk, τ) · vθk + o(s).

This then gives

ξ(µ(Θ,Ψ)(s, ·), x0, t0, t+ sδτ) = sδτΦ(µ, x0, t0, τ, t) · f(ξ(µ, x0, t0, τ), µ(τ)) + ξ(µ, x0, t0, t)

+ sΦ(µ, x0, t0, τ1, t) · vθ1 + · · ·+ sΦ(µ, x0, t0, τk, t) · vθk + o(s).

Differentiation with respect to s at s = 0 now gives the result. �

As with fixed interval multi-needle variations, free interval multi-needle variations are
closed under coned convex combinations. To generate the notation to succinctly express
this, let (Θ,Ψ) be free interval multi-needle variation data with Θ = {θ1, . . . , θk} and
Ψ = (τ, δτ) and let λ = {λ0, λ1, . . . , λk} ⊂ R≥0. We then take λ(Θ,Ψ) to be the free interval
multi-needle variation data ({λ1θ1, . . . , λkθk}, (τ, λ0δτ)). We then have the following result.

4.17 Corollary: (Coned convex combinations of free interval multi-needle variations) Let
Σ = (X, f, U) be a control system, let t0, t1 ∈ R satisfy t0 < t1, let x0 ∈ X, and let µ ∈
U (x0, t0, [t0, t1]). If (Θ,Ψ) is free interval multi-needle variation data with Θ = {θ1, . . . , θk}
and Ψ = (τ, δτ) such that τ1, . . . , τk, τ ∈ Leb(µ, x0, t0, t), and if λ = {λ0, λ1, . . . , λk} ⊂
R≥0, then

vλ(Θ,Ψ)(t) = λ1Φ(µ, x0, t0, τ1, t) · vθ1 + · · ·+ λkΦ(µ, x0, t0, τk, t) · vθ1
+ λ0δτΦ(µ, x0, t0, τ, t) · f(ξ(µ, x0, t0, τ), µ(τ)).

Proof: This exactly follows as does the proof of Corollary 4.13. �
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Exercises

E4.1 Let Σ = (X, f, U) be a control system, let t0, t1 ∈ R satisfy t0 < t1, let x0 ∈ X, and
let µ ∈ U (x0, t0, [t0, t1]). For τ0, τ1, τ2 ∈ [t0, t1] show that

1. Φ(µ, x0, t0, τ1, τ1) = In,

2. Φ(µ, x0, t0, τ1, τ2) = Φ(µ, x0, t0, τ2, τ1)−1, and

3. Φ(µ, x0, t0, τ1, τ2) ◦Φ(µ, x0, t0, τ0, τ1) = Φ(µ, x0, t0, τ0, τ2).

E4.2 Let X = R2, let m = 2, let

U = {(−1, 0), (0,−1), (0, 0), (1, 0), (0, 1)},

and define
f((x1, x2), (u1, u2)) = (u1, u2).

Define u(t) = (0, 0) for t ∈ [t0, t1]. Show that the set of fixed interval needle variations
at any point t ∈ [t0, t1] is not convex.



Chapter 5

The reachable set and
approximation of its boundary by
cones

In this chapter we carry out one of the important steps in understanding the Maximum
Principle: the elucidation of the relationship between convex cones of multi-needle variations
with the boundary of the reachable set. The development here is a little intricate and so
will take some time to absorb on a first encounter.

The reader should be warned that the material in this chapter is best understood while
forgetting about the fact that we are interested in optimal control. Only in Chapter 6 will
we bring the optimal control problem back into the picture. Thus this chapter is dealing
with the “in control” rather than the “in optimal control” aspect of the title for these notes.

5.1. Definitions

In this section we define precisely the various notions of reachable set that we shall use.

5.1 Definition: (Reachable set) Let Σ = (X, f, U) be a control system, let x0 ∈ X, and let
t0, t1 ∈ R satisfy t0 < t1.

(i) The reachable set from x0 at t0 in time t1 − t0 is

R(x0, t0, t1) = {ξ(µ, x0, t0, t1) | µ ∈ U (x0, t0, [t0, t1])}.

(ii) The reachable set from x0 at t0 is

R(x0, t0) = ∪t1∈[t0,∞)R(x0, t0, t1). •

Note that since f is time-independent,

R(x0, t0, t1) = R(x0, 0, t1 − t0)

(with similar statements holding for all other variants of the reachable set). However, it
will be necessary to sometimes consider trajectories naturally defined as starting at nonzero
times, so we allow arbitrary initial times in our definition.

49



50 A. D. Lewis

As we shall see, the Maximum Principle has a lot to do with the reachable set. Before we
get to this, we need to define the various flavours of cones that we shall use to approximate
the reachable set at its boundary.

5.2. The fixed interval tangent cone

We saw in Corollary 4.10 that the fixed interval needle variations at a Lebesgue point
for t 7→ f(ξ(µ, x0, t0, t), µ(t)) form a cone. We wish to consider unions of needle variations
over all Lebesgue points, so let us establish some notation for this.

5.2 Definition: (Fixed interval tangent cone) Let Σ = (X, f, U) be a control system, let
x0 ∈ X, let t0, t1 ∈ R satisfy t0 < t1, and let µ ∈ U (x0, t0, [t0, t1]). For t ∈ [t0, t1] we denote
by K(µ, x0, t0, t) the closure of the coned convex hull of the set⋃
{Φ(µ, x0, t0, τ, t) · v | τ ∈ Leb(µ, x0, t0, t), v is a fixed interval needle variation at τ}.

We call K(µ, x0, t0, t) the fixed interval tangent cone at t. •
The idea of the fixed interval tangent cone is that it should be a set of “directions” from

which trajectories of the system emanate. This will be made precise in Lemma 5.10 below.
In proving that lemma a key rôle will be played by the following notion.

5.3 Definition: (Fixed interval tangent simplex cone) Let Σ = (X, f, U) be a control system,
let x0 ∈ X, let t0, t1 ∈ R satisfy t0 < t1, and let µ ∈ U (x0, t0, [t0, t1]).

(i) Fixed interval tangent r-simplex cone data is a collection {Θ1, . . . ,Θr} of fixed
interval multi-needle variation data such that:

(a) Θa = {θa1, . . . , θaka} (so defining the notation for the fixed interval needle vari-
ation data θaj , j ∈ {1, . . . , ka}, a ∈ {1, . . . , r});

(b) θaj = (τaj , laj , ωaj), j ∈ {1, . . . , ka}, a ∈ {1, . . . , r} (so defining the notation
(τaj , laj , ωaj), j ∈ {1, . . . , ka}, a ∈ {1, . . . , r});

(c) the times τaj , j ∈ {1, . . . , ka}, a ∈ {1, . . . , r}, are distinct and all in
Leb(µ, x0, t0, t1);

(d) if vΘa(t), a ∈ {1, . . . , r}, are the fixed interval multi-needle variations associated
to Θa, a ∈ {1, . . . , r}, at time t > τaj , j ∈ {1, . . . , ka}, a ∈ {1, . . . , r}, then the
coned convex hull of {vΘ1 , . . . , vΘr} is an r-simplex cone.

(ii) The r-simplex cone defined by fixed interval tangent r-simplex cone data {Θ1, . . . ,Θr}
is a fixed interval tangent r-simplex cone at time t. •

The usefulness of fixed interval tangent simplex cones comes from the following simple
result.

5.4 Lemma: (Property of fixed interval tangent simplex cones) Let Σ = (X, f, U) be a control
system, let x0 ∈ X, let t0, t1 ∈ R satisfy t0 < t1, and let µ ∈ U (x0, t0, [t0, t1]). Let Θ =
{Θ1, . . . ,Θr} be a fixed interval tangent r-simplex cone data, let λ = {λ1, . . . , λr} ⊂ R≥0,
and let t > τaj, j ∈ {1, . . . , ka}, a ∈ {1, . . . , r}. Denote by vΘa(t), a ∈ {1, . . . , r}, the fixed
interval multi-needle variations at time t.
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Then, for s0 ∈ R>0 sufficiently small and for each s ∈ [0, s0], there exists a control
µλ,Θ(s, ·) ∈ U (x0, t0, [t0, t1]) such that

d
ds

∣∣∣
s=0

ξ(µλ,Θ(s, ·), x0, t0, t) = λ1vΘ1(t) + · · ·+ λrvΘr(t).

Proof: This follows from Corollary 4.13 since {θa,j | j ∈ {1, . . . , ka}, a ∈ {1, . . . , r}} is a
fixed interval multi-needle variation, this itself being a consequence of the distinctness of
the times τaj , j ∈ {1, . . . , ka}, a ∈ {1, . . . , r}. �

The point is that all directions in K(µ, x0, t0, t) that are contained in fixed interval tan-
gent simplex cones are generated by a fixed interval multi-needle variation. The nonobvious
thing is that all interior points in K(µ, x0, t0, t) have this property. The following result
records this, along with another useful characterisation of the fixed interval tangent cone.

5.5 Lemma: (Characterisations of fixed interval tangent cone) Let Σ = (X, f, U) be a control
system, let x0 ∈ X, let t0, t1 ∈ R satisfy t0 < t1, and let µ ∈ U (x0, t0, [t0, t1]). For a subset
C ⊂ Rn and for t ∈ [t0, t1] the following statements are equivalent:

(i) C = K(µ, x0, t0, t);
(ii) C is the closure of the union of the set of fixed interval tangent r-simplex cones at

time t where r = dim(K(µ, x0, t0, t));
(iii) C = cl

(⋃ {Φ(µ, x0, t0, τ, t) ·K(µ, x0, t0, τ) | τ ∈ Leb(µ, x0, t0, t)}
)
.

Proof: (ii)⊂(i) Note that any fixed interval tangent simplex cone at time t is, by definition,
contained in K(µ, x0, t0, t). Thus the closure of the set of all fixed interval tangent simplex
cones at time t is contained in K(µ, x0, t0, t) since the latter is closed.

(i)⊂(ii) Let r = dim(K(µ, x0, t0, t)) and let v ∈ rel int(K(µ, x0, t0, t)). By Proposi-
tion B.17 there exists v1, . . . , vr ∈ K(µ, x0, t0, t) such that conv cone({v1, . . . , vr}) is an
r-simplex cone with v in its relative interior. Thus there exists λ1, . . . , λr ∈ R>0 such that

v = λ1v1 + · · ·+ λrvr.

Let a ∈ {1, . . . , r}. Since va ∈ K(µ, x0, t0, t) there exists fixed interval needle variation data
θaj = (τaj , laj , ωaj) and λaj ∈ R>0, j ∈ {1, . . . , ka}, a ∈ {1, . . . , r}, such that

va = λa1Φ(µ, x0, t0, τθa1 , t) · vθa1 + · · ·+ λakaΦ(µ, x0, t0, τθaka , t) · vθaka .

Now take Θa = {λa1θa1, . . . , λakaθaka} and note that va = vΘa(t).
If the times τaj , j ∈ {1, . . . , ka}, a ∈ {1, . . . , r}, are distinct then {Θ1, . . . ,Θr} is fixed

interval tangent r-simplex cone data and

v ∈ int(conv cone({vΘ1(t), . . . , vΘr(t)})).

However, there is no reason for the times τaj , j ∈ {1, . . . , ka}, a ∈ {1, . . . , r}, to be distinct.
So let ε > 0. The times τaj , j ∈ {1, . . . , ka}, a ∈ {1, . . . , r}, can be modified to be distinct
Lebesgue points τ ′aj , j ∈ {1, . . . , ka}, a ∈ {1, . . . , r}, in such a way that
1. the total difference between the original times and the modified times is at most ε and
2. the total of the differences ‖f(ξ(τ ′aj), µ(τ ′aj))− f(ξ(τaj), µ(taj))‖ is at most ε.
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From this it follows that vθaj and vθ′aj can also be made arbitrarily close. Since t 7→
Φ(µ, x0, t0, τ, t) is continuous in t it follows that Φ(µ, x0, t0, τaj , t)·vθaj and Φ(µ, x0, t0, τ

′
aj , t)·

vθ′aj can be made arbitrarily close. From this we can assert that the times τ ′aj , j ∈
{1, . . . , ka}, a ∈ {1, . . . , r}, can be made distinct in such a way that the points v′1, . . . , v

′
r

defined by

v′a = λa1Φ(µ, x0, t0, τ
′
θa1
, t) · vθ′a1

+ · · ·+ λakaΦ(µ, x0, t0, τ
′
θaka

, t) · vθ′
aka
, a ∈ {1, . . . , r},

are arbitrarily close to the points v1, . . . , vr. In particular, since v ∈
rel int(conv cone({v1, . . . , vr})) we also have v ∈ rel int(conv cone({v′1, . . . , v′r})). Thus we
can write

v = λ′1v
′
1 + · · ·+ λ′rv

′
r

for λ′1, . . . , λ
′
r ∈ R>0. Then we may argue as above to define

θ′aj = (τ ′aj , λ
′
ajlaj , ω

′
aj), j ∈ {1, . . . , k′a}, a ∈ {1, . . . , r},

Θ′a = {θ′a1, . . . , θ
′
aka}, a ∈ {1, . . . , r},

with the property that v′a = vΘ′a(t), a ∈ {1, . . . , r}. Therefore,

v ∈ rel int(conv cone({vΘ′1(t), . . . , vΘ′r(t)})).
Thus rel int(K(µ, x0, t0, t)) is contained in union of the fixed interval tangent r-simplex

cones, and thus the closure of the former is contained in the closure of the latter, as desired.
(i)⊂(iii) It is clear from the definition of the fixed interval tangent cone and from Exer-

cise E4.1 that
Φ(µ, x0, t0, τ, t) ·K(µ, x0, t0, τ) ⊂ K(µ, x0, t0, t) (5.1)

for each τ ∈ Leb(µ, x0, t0, t). More generally,

Φ(µ, x0, t0, τ1, t) ·K(µ, x0, t0, τ1) ⊂ Φ(µ, x0, t0, τ2, t) ·K(µ, x0, t0, τ2)

whenever τ1, τ2 ∈ Leb(µ, x0, t0, t) satisfy τ1 < τ2. This shows that the family of sets

Φ(µ, x0, t0, τ, t) ·K(µ, x0, t0, τ), τ ∈ Leb(µ, x0, t0, t),

is an increasing family of subsets of K(µ, x0, t0, t) with respect to inclusion and the natural
order on Leb(µ, x0, t0, t). Moreover, each member of this family of sets is a closed convex
cone by Exercise EB.3, and so their union is a convex cone. Thus the coned convex hull of

cl
(⋃ {Φ(µ, x0, t0, τ, t) ·K(µ, x0, t0, τ) | τ ∈ Leb(µ, x0, t0, t)}

)
is a closed convex cone in K(µ, x0, t0, t) which contains the set⋃
{Φ(µ, x0, t0, τ, t) · v | τ ∈ Leb(µ, x0, t0, t), v is a fixed interval needle variation at τ}.

Since K(µ, x0, t0, t) is the smallest such closed convex cone this shows that

K(µ, x0, t0, t) ⊂ cl
(⋃ {Φ(µ, x0, t0, τ, t) ·K(µ, x0, t0, τ) | τ ∈ Leb(µ, x0, t0, t)}

)
.

(iii)⊂(i) This is clear from (5.1), along with the fact that K(µ, x0, t0, t) is closed. �
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5.3. The free interval tangent cone

The procedure for constructing the free interval tangent cone is a little different than
that for the fixed interval tangent cone since we begin with multi-needle variations. But the
end effect is the same and many of the details we omit since they follow closely the fixed
interval constructions.

5.6 Definition: (Free interval tangent cone) Let Σ = (X, f, U) be a control system, let
x0 ∈ X, let t0, t1 ∈ R satisfy t0 < t1, and let µ ∈ U (x0, t0, [t0, t1]). For t ∈ [t0, t1] we denote
by K±(µ, x0, t0, t) the closure of the coned convex hull of the set⋃
{Φ(µ, x0, t0, τ, t)·v | τ ∈ Leb(µ, x0, t0, t), v is a free interval multi-needle variation at τ}.

We call K±(µ, x0, t0, t) the free interval tangent cone at t. •
In order to elucidate the meaning of the free interval tangent cone, we will proceed as

in the fixed interval case, and introduce the notion of a tangent simplex cone.

5.7 Definition: (Free interval tangent simplex cone) Let Σ = (X, f, U) be a control system,
let x0 ∈ X, let t0, t1 ∈ R satisfy t0 < t1, and let µ ∈ U (x0, t0, [t0, t1]).

(i) Free interval tangent r-simplex cone data is a collection {(Θ1,Ψ1), . . . , (Θr,Ψr)}
of free interval multi-needle variation data such that:

(a) Θa = {θa1, . . . , θaka} and Ψa = (τa, δτa), a ∈ {1, . . . , r} (so defining the notation
for the fixed interval needle variation data θaj , j ∈ {1, . . . , ka}, a ∈ {1, . . . , r},
and the pairs (τa, δτa), a ∈ {1, . . . , r});

(b) θaj = (τaj , laj , ωaj), j ∈ {1, . . . , ka}, a ∈ {1, . . . , r} (so defining the notation
(τaj , laj , ωaj), j ∈ {1, . . . , ka}, a ∈ {1, . . . , r});

(c) the times τa, a ∈ {1, . . . , r}, and τaj , j ∈ {1, . . . , ka}, a ∈ {1, . . . , r}, are distinct
and all in Leb(µ, x0, t0, t1);

(d) if v(Θa,Ψa)(t), a ∈ {1, . . . , r}, are the free interval multi-needle variations associ-
ated to (Θa,Ψa), a ∈ {1, . . . , r}, at time t > τaj , j ∈ {1, . . . , ka}, a ∈ {1, . . . , r},
then the coned convex hull of {v(Θ1,Ψ1)(t), . . . , v(Θr,Ψr)(t)} is an r-simplex cone.

(ii) The r-simplex cone defined by free interval tangent r-simplex cone data
{(Θ1,Ψ1), . . . , (Θr,Ψr)} is a free interval tangent r-simplex cone at time t. •

The following result clarifies the importance of free interval tangent simplex cones.

5.8 Lemma: (Property of free interval tangent simplex cones) Let Σ = (X, f, U) be a control
system, let x0 ∈ X, let t0, t1 ∈ R satisfy t0 < t1, and let µ ∈ U (x0, t0, [t0, t1]). Let
(Θ,Ψ) = {(Θ1,Ψ1), . . . , (Θr,Ψr)} be free interval tangent r-simplex cone data, let λ =
{λ1, . . . , λr} ⊂ R≥0, and let t ∈ [t0, t1] satisfy t > τa, a ∈ {1, . . . , r} and t > τaj, j ∈
{1, . . . , ka}, a ∈ {1, . . . , r}. Denote by v(Θa,Ψa)(t), a ∈ {1, . . . , r}, the free interval multi-
needle variations at time t.

Then, for s0 ∈ R>0 sufficiently small and for each s ∈ [0, s0], there exists a control
µλ,(Θ,Ψ)(s, ·) ∈ U (x0, t0, [t0, t1]) such that

d
ds

∣∣∣
s=0

ξ(µλ,(Θ,Ψ)(s, ·), x0, t0, t) = λ1v(Θ1,Ψ1)(t) + · · ·+ λrv(Θr,Ψr)(t).
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Proof: This follows from Corollary 4.17, along with some (at this point) standard compu-
tations along the lines of those performed in the proofs of Propositions 4.9, 4.12, and 4.16.
We leave the fairly tedious details to the reader. �

The following lemma now shows the relationship between free interval tangent simplex
cones and the free interval tangent cone, along with another useful characterisation of the
latter.

5.9 Lemma: (Characterisations of free interval tangent cone) Let Σ = (X, f, U) be a control
system, let x0 ∈ X, let t0, t1 ∈ R satisfy t0 < t1, and let µ ∈ U (x0, t0, [t0, t1]). For a subset
C ⊂ Rn and for t ∈ [t0, t1] the following statements are equivalent:

(i) C = K±(µ, x0, t0, t);
(ii) C is the closure of the union of the set of free interval tangent r-simplex cones at

time t where r = dim(K±(µ, x0, t0, t));
(iii) C = cl

(⋃ {Φ(µ, x0, t0, τ, t) ·K±(µ, x0, t0, τ) | τ ∈ Leb(µ, x0, t0, t)}
)
.

Proof: (ii)⊂(i) The argument here is like that from the corresponding part of the proof of
Lemma 5.5.

(i)⊂(ii) The argument here is like that from the corresponding part of the proof of
Lemma 5.5.

(i)⊂(iii) We first claim that

Φ(µ, x0, t0, τ1, τ2) ·K±(µ, x0, t0, τ1) ⊂ K±(µ, x0, t0, τ2)

whenever τ1, τ2 ∈ Leb(µ, x0, t0, t) satisfy τ1 < τ2. For brevity denote ξ = ξ(µ, x0, t0, ·).
Since (5.1) holds we need only show that

Φ(µ, x0, t0, τ1, τ2) · f(ξ(τ1), µ(τ1)) ∈ K±(µ, x0, t0, τ2).

We do this by proving the following lemma which is of general interest in any case.

1 Lemma: Let Σ = (X, f, U) be a control system, let x0 ∈ X, let t0, t1 ∈ R satisfy t0 < t1,
and let µ ∈ U (x0, t0, [t0, t1]). Let τ1, τ2 ∈ Leb(µ, x0, t0, t1) then

Φ(µ, x0, t0, τ1, τ2) · f(ξ(µ, x0, t0, τ1), µ(τ1)) = f(ξ(µ, x0, t0, τ2), µ(τ2)).

Proof: Define γτ1(s) = ξ(µ, x0, t0, τ1 + s) for s ∈ [−ε, ε] and ε ∈ R>0 sufficiently small. Note
that

d
ds
γτ1(s) = D4ξ(µ, x0, t0, τ1 + s) = f(ξ(µ, x0, t0, τ1 + s), µ(τ1 + s)),

provided that the derivative exists. Since τ1 is a Lebesgue point we have

d
ds

∣∣∣
s=0

γτ1(s) = lim
s→0

s−1(γτ1(s)− γτ1(0)) = lim
s→0

s−1
∫ s

0

d
dσ
γτ1(σ) dσ

=
∫ τ1+s

τ1
f(ξ(µ, x0, t0, τ1 + σ), µ(τ1 + σ)) dσ = f(ξ(µ, x0, t0, τ1), µ(τ1)).

Thus γτ1 is differentiable at 0. Therefore, γτ2 : s 7→ ξ(µ, γτ1(s), τ1, τ2+s) is also differentiable
by the Chain Rule. Moreover, by the composition property of flows of differential equations
we have

ξ(µ, γτ1(s), τ1, τ2 + s) = ξ(µ, x0, t0, τ2 + s).
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Since τ2 is a Lebesgue point we have, exactly as in our preceding computation,

d
ds

∣∣∣
s=0

γτ2(s) = f(ξ(µ, x0, t0, τ2), µ(τ2)).

However, by Proposition 4.3 we also have

d
ds

∣∣∣
s=0

γτ2(s) = Φ(µ, x0, t0, τ1, τ2)
d
ds

∣∣∣
s=0

γτ1(s) = Φ(µ, x0, t0, τ1, τ2) · f(ξ(µ, x0, t0, τ1), µ(τ1)),

as desired. H

This part of the proposition now follows immediately.
(iii)⊂(i) The argument here is like that from the corresponding part of the proof of

Lemma 5.5. �

5.4. Approximations of the reachable set by cones

Now that we have introduced the cones that we shall use to approximate the reachable
set, let us make precise the actual relationship between these cones and the reachable set.

5.4.1. Approximation by the fixed interval tangent cone. For the fixed interval
case we have the following result.

5.10 Lemma: (Points interior to fixed interval tangent cones are “in” the fixed time reach-
able set) Let Σ = (X, f, U) be a control system, let x0 ∈ X, let t0, t1 ∈ R satisfy t0 < t1,
and let µ ∈ U (x0, t0, [t0, t1]). If v0 ∈ int(K(µ, x0, t0, t)) for t ∈ [t0, t1], then there exists a
cone K ⊂ int(K(µ, x0, t0, t)) and r ∈ R>0 such that

(i) v0 ∈ int(K) and
(ii) such that

{ξ(µ, x0, t0, t) + v | v ∈ K, ‖v‖ < r} ⊂ R(x0, t0, t).

Proof: In the proof we refer implicitly to the material in Section B.4. By Proposi-
tion B.17 let v1, . . . , vn ∈ K(µ, x0, t0, t) be convex combinations of fixed interval multi-
needle variations at t having the property that v0 ∈ int(conv cone({v1, . . . , vn})). We
may assume, as in the proof of Lemma 5.5, that the Lebesgue times for all fixed inter-
val multi-needle variations contributing to the determination of v1, . . . , vn are distinct. Let
K ′ = conv cone({v1, . . . , vn})). Since the fixed interval multi-needle variations form a cone
we may assume that v1, . . . , vn lie in the hyperplane in Rn passing through v0 and orthogo-
nal to v0. This hyperplane is then the affine hull of {v1, . . . , vn}. We may define barycentric
coordinates for K ′ which we denote by (l, λ). Thus every point v ∈ K ′ can be written as

v = l(λ1v1 + · · ·+ λnvn)

for some unique (l, (λ1, . . . , λn)) with l ≥ 0 and λ1, . . . , λn ∈ R≥0 which sum to 1.
By Lemma 5.4, for each point v ∈ K ′ with coordinates (l, λ1, . . . , λn) and for s > 0

sufficiently small we can define a control µv(s, ·) such that

ξ(µv(s, ·), x0, t0, t) = ξ(µv(s, ·), x0, t0, t) + sv + o(s)
= ξ(µv(s, ·), x0, t0, t) + sl(v)(λ1(v)v1 + · · ·+ λn(v)vn) + o(s).
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Let us denote by s(v) the largest value of s such that the control µv(s, ·) explicitly defined
in Definition 4.8 makes sense. If one considers the form of the control variation µv(s) as
given in Definition 4.8, one sees that s(λv) = λ−1s(v). This holds essentially because in the
expression for the control variation associated with fixed interval needle variation data θ,
s and lθ appear only as slθ which is used to determine the length of the interval on which
the control ωθ is applied. Moreover, a similar examination yields µv(λs, ·) = µλv(s, ·) for
λ ∈ R>0 having the property that λs ∈ [0, s(v)). The upshot of this is that, if we think of
s as fixed and l(v) sufficiently small, we can write

ξ(µv(s, ·), x0, t0, t) = ξ(µv(s, ·), x0, t0, t) + sl(v)(λ1(v)v1 + · · ·+ λn(v)vn) + o(l(v)),

i.e., we can swap the limit as s→ 0 for the limit as l(v)→ 0. Since λ1, . . . , λn take values
in the standard n-simplex which is compact, we note that we do indeed have

lim
l(v)→0

l(v)−1(ξ(µv(s, ·), x0, t0, t)− ξ(µv(s, ·), x0, t0, t)
)

= 0,

uniformly in λ1, . . . , λn.
Now we do take s0 > 0 as fixed and think of the map

v 7→ s−1
0

(
ξ(µv(s, ·), x0, t0, t)− ξ(µ, x0, t0, t)

)
= l(v)(λ1(v)v1 + · · ·+ λn(v)vn) + o(l(v)) (5.2)

as a map from an appropriately small tip of the cone K ′ to Rn; let us denote this tip by
C ′. The image of this map can be thought of as being a piece of the reachable set around
the point ξ(µ, x0, t0, t) which has been shifted by −ξ(µ, x0, t0, t) and then scaled by s−1

0 . If
l(v) is sufficiently small, the image will be a subset of the half-space of Rn defined by l > 0.
Thus a cone whose tip is in the image of (5.2) defines a cone with a vertex at ξ(µ, x0, t0, t)
whose tip is contained in the reachable set. The lemma will thus be proved if we can show
that there is a subcone of K ′ whose tip is contained in the image of the map (5.2).

Having used barycentric coordinates to define the map (5.2), we now discard them.
Instead let us use as coordinates for Rn the coordinates (l, ρ) where l measures the distance
from the hyperplane orthogonal to v0 passing through the origin and ρ is a vector in this
hyperplane. Thus we write a point v ∈ Rn, either in K ′ or not, as

v = l(v)
v0

‖v0‖ + ρ(v).

In these coordinates the map (5.2) is given by

v 7→ l(v)
v0

‖v0‖ + ρ(v) + o(l(v)).

Having introduced these coordinates, let us use them but to define the coordinates we
shall actually use in our construction. These coordinates we denote by (l, r) where l is as
previously and where r = ρ

l . Thus these coordinates are only valid in the half-space where
l > 0, but this is all we shall be concerned with in any case. Let K ′′ be a subcone of K ′

with the property that in the coordinates (l, r) we have

K ′′ = {(l, r) | ‖r‖ ≤ a}
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for some a ∈ R>0 sufficiently small. Let P (a, b) be a tip of K ′′ represented in the coordinates
(l, r) by

P (a, b) = {(l, r) | l ∈ [0, b], ‖r‖ ∈ [0, a]}
for b ∈ R>0 sufficiently small. The idea is that the cone K ′′ is represented by a “cylinder” in
these coordinates, its tip being “blown up.” In any case, the map (5.2) in these coordinates
we denote by

(l, r) 7→ (L(l, r), R(l, r)),

and we note that
L(l, r) = l + o(l), R(l, r) = r + o(1).

By defining L(0, r) = 0 and R(0, r) = r this gives a representation of the map (5.2) in
the coordinates (l, r) as being a map f from the set P (a, b) to the half-plane where L >
0. Since liml→0‖R(l, r) − r‖ = 0 uniformly in r, we can choose b sufficiently small that
‖R(l, r) − r‖ < a

4 for all (l, r) ∈ P (a, b). Since L(l, r) − l = o(l) uniformly in r, we have
liml→0(l−1L(l, r)−1) = 0 meaning that we can choose b sufficiently small that |b−1L(b, r)−
1| < 1

4 or |L(b, r) − b| < b
4 . Let us further choose a = 2b. Now consider a point (l0, r0) ∈

P (a, b) with l0 ∈ (0, b4) and ‖r0‖ < a
4 .

We will now use Lemma C.3 to show that (l0, r0) ∈ image(f). To do so we must show
that for all (l, r) ∈ bd(P (a, b)) we have

‖(L(l, r), R(l, r))− (l, r)‖ < ‖(l, r)− (l0, r0)‖. (5.3)

First let us consider boundary points of the form (0, r). Here we simply have

‖(L(0, r), R(0, r))− (0, r)‖ = 0 < ‖(0, r)− (l0, r0)‖,
and so (5.3) is immediately verified. Next consider boundary points of the form (b, r). Here
we have

‖(L(b, r), R(b, r))− (b, r)‖2 = |L(b, r)− b|2 + ‖R(b, r)− r‖2 < b2

16
+
a2

16
and

‖(b, r)− (l0, r0)‖2 = |b− l0|2 + ‖r − r0‖2 > 9b2

16
.

Given our assumptions about a and b, the inequality (5.3) holds in this case as well. Finally,
we consider the boundary points of the form (l, r) where ‖r‖ = a. In this case we have

‖(L(l, r), R(l, r))− (l, r)‖2 = |L(l, r)− l|2 + ‖R(l, r)− r‖2 < b2

16
+
a2

16
and

‖(l, r)− (l0, r0)‖2 = |l − l0|2 + ‖r − r0‖2 > |‖r‖ − ‖r0‖| > 9a2

16
.

Again, given our assumptions on a and b, it follows that (5.3) holds. Thus the point (l0, r0)
is in the image of the map f . Thus a cylinder around the line segment

{(l, 0) | |l| < b
4}

is contained in the image of f . In the undeformed coordinates this cylinder corresponds to
the “tip” of a convex cone, and so this proves the lemma.

In Figure 5.1 we illustrate the idea behind the last part of the proof. �
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b

a

Figure 5.1. An illustration of the constructions in the last part of
the proof of Lemma 5.10. The large box with the solid boundary
represents P (a, b). The dark shaded smaller box with the solid
boundary represents where the points (l0, r0) ∈ image(f) live.
The medium shaded region represents where the boundary of
P (a, b) is mapped under f .

It is important to understand what the lemma is not saying, as this will bear on our
subsequent results. Most importantly, the lemma says nothing when int(K(µ, x0, t0, t)) =
∅. In particular, one cannot replace the condition that v0 ∈ int(K(µ, x0, t0, t)) with the
condition that v0 ∈ rel int(K(µ, x0, t0, t)) as is demonstrated in Exercise E5.2. We shall have
more to say about this somewhat important idea in Section 8.5 where we will encounter an
instance where it comes up in a tangible way. For the moment let us merely say that for a
reader wishing to understand the rôle of the Maximum Principle in control theory, this is
a point that they would do well to appreciate.

5.4.2. Approximation by the free interval tangent cone. For the free interval case
the result we desire is the following.

5.11 Lemma: (Points interior to free interval tangent cones are “in” the reachable set) Let
Σ = (X, f, U) be a control system, let x0 ∈ X, let t0, t1 ∈ R satisfy t0 < t1, and let
µ ∈ U (x0, t0, [t0, t1]). If v0 ∈ int(K±(µ, x0, t0, t)) for t ∈ [t0, t1] then there exists a cone
K ⊂ int(K±(µ, x0, t0, t)) and r ∈ R>0 such that

(i) v0 ∈ int(K) and
(ii) such that

{x0 + v | v ∈ K, ‖v‖ < r} ⊂ R(x0, t0).

Proof: This follows from Lemmata 5.8 and 5.9 in the same way that Lemma 5.10 follows
from Lemmata 5.4 and 5.5. �
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5.5. The connection between tangent cones and the Hamiltonian

At a first glance, the appearance of the Hamiltonian in the statement of the Maximum
Principle is rather mysterious. Its rôle is illuminated in the proof. However, since pointwise
maximisation of the Hamiltonian is connected solely with the tangent cones, and since we
have just now constructed these tangent cones, it seems as if there is no better time than
the present to explain the relationship between the Hamiltonian and the tangent cones. The
reader will note that the results in this section do not depend a priori on any sort of optimal
control problem or on any statements about the reachable set; they are a consequence only
of properties of tangent cones.

Recall from Definition 3.1 the notion of the Hamiltonian. The following completely
trivial lemma actually gives significant insight into the rôle of the Hamiltonian and the
maximum Hamiltonian.

5.12 Lemma: (A property of the maximum Hamiltonian) Let Σ = (X, f, U) be a control
system and let (x, p, ū) ∈ X× Rn × U . Then HΣ(x, p, ū) = Hmax

Σ (x, p) if and only if

〈p, v〉 ≤ 0, v ∈ {f(x, u)− f(x, ū) | u ∈ U}.
Proof: We have

HΣ(x, p, ū) = Hmax(x, p),
⇐⇒ HΣ(x, p, ū) ≥ HΣ(x, p, u), u ∈ U,
⇐⇒ HΣ(x, p, ū)−HΣ(x, p, u) ≥ 0, u ∈ U,
⇐⇒ 〈p, f(x, u)− f(x, ū)〉 ≤ 0, u ∈ U,
⇐⇒ 〈p, v〉 ≤ 0, v ∈ {f(x, u)− f(x, ū) | u ∈ U},

as desired. �

For a system Σ = (X, f, U) and for x ∈ X let us denote

FΣ(x) = {f(x, u) | u ∈ U} ⊂ Rn.

With this notation, in Figure 5.2 we illustrate how one can think of the condition that the
Hamiltonian be maximised: the vector p ∈ Rn is orthogonal to a support hyperplane for
FΣ(x). The existence of such a p implies that the control maximising the Hamiltonian is
on the boundary of conv(FΣ(x)).

The essentially insightful result is the following.

5.13 Lemma: (The Hamiltonian and the fixed interval tangent cone) Let Σ = (X, f, U) be a
control system, let x0 ∈ X, let t0, t1 ∈ R satisfy t0 < t1, and let µ ∈ U (x0, t0, [t0, t1]). For
each t ∈ [t0, t1] let Kt ⊂ Rn be a convex cone such that K(µ, x0, t0, t) ⊂ Kt, and suppose
that at some τ ∈ [t0, t1] there exists λ(τ) ∈ Rn such that

〈λ(τ), v〉 ≤ 0, v ∈ Kτ .

Let t 7→ λ(t) be the adjoint response for Σ along (ξ(µ, x0, t0, ·), µ) equal to λ(τ) at time τ .
Then, for any t ∈ Leb(µ, x0, t0, τ), it holds that

HΣ(ξ(µ, x0, t0, t), λ(t), µ(t)) = Hmax
Σ (ξ(µ, x0, t0, t), λ(t)).
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f(x, ū)

p

Figure 5.2. A depiction of the Hamiltonian maximisation condi-
tion: the shaded region represents FΣ(x)

Proof: Let us abbreviate ξ = ξ(µ, x0, t0, ·). Let t ∈ Leb(µ, x0, t0, τ) and consider the fixed
interval needle variation data (t, 1, ω) for some ω ∈ U . By Lemma 5.5 we then have

Φ(µ, x0, t0, t, τ) · (f(ξ(t), ω)− f(ξ(t), µ(t))
) ∈ K(µ, x0, t0, τ) ⊂ Kτ .

Therefore,

〈λ(τ),Φ(µ, x0, t0, t, τ) · f(ξ(t), ω)〉 − 〈λ(τ),Φ(µ, x0, t0, t, τ) · f(ξ(t), µ(t))〉 ≤ 0.

Using Proposition 4.7 gives

〈λ(t), f(ξ(t), ω)〉 − 〈λ(t), f(ξ(t), µ(t))〉 ≤ 0,

or, in what amounts to the same thing by Lemma 5.12,

HΣ(ξ(t), λ(t), ω) ≤ HΣ(ξ(t), λ(t), µ(t)).

Since this must hold for every ω ∈ U , the lemma follows. �

The idea of the lemma is roughly this. The maximisation of the Hamiltonian almost
everywhere in [t0, τ ] is implied by the existence of a support hyperplane for the free interval
tangent cone at τ . The existence of such a support hyperplane is saying something about
the control being “extremal” in some sense. Somewhat more precisely, by applying needle
variations, trajectories at time τ can be made to move only “one way.” Lemmata 5.12
and 5.13 say that this implies that the control must also have an “extremal” property at
almost all instants preceding τ . (The preceding discussion really only has poignancy when
the free interval tangent cone has a nonempty interior.)

The following elementary result is of a somewhat similar flavour to the preceding one in
that it relates a property of the maximum Hamiltonian to a property of a family of cones
along a controlled trajectory.
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5.14 Lemma: (A condition for the maximum Hamiltonian to be zero) Let Σ = (X, f, U)
be a control system, let x0 ∈ X, let t0, t1 ∈ R satisfy t0 < t1, let µ ∈ U (x0, t0, [t0, t1),
and let τ ∈ [t0, t1]. For each t ∈ [t0, t1] let Kt ⊂ Rn be a convex cone such that
spanR(f(ξ(µ, x0, t0, τ), µ(τ))) ⊂ Kτ . Suppose that there exists a map t 7→ λ(t) such that

〈λ(τ), v〉 ≤ 0, v ∈ Kτ .

Then it holds that
HΣ(ξ(µ, x0, t0, τ), λ(τ), µ(τ)) = 0.

Proof: Since spanR(f(ξ(µ, x0, t0, τ), µ(τ))) ⊂ Kτ we have

〈λ(τ), αf(ξ(µ, x0, t0, τ), µ(τ))〉 ≤ 0

for every α ∈ R. Taking α = 1 and then α = −1 then gives

〈λ(τ), f(ξ(µ, x0, t0, τ), µ(τ))〉 = HΣ(ξ(µ, x0, t0, τ), λ(τ), µ(τ)) = 0,

as desired. �

When the control is bounded, the conclusions of the preceding results can be strength-
ened to show that the maximum Hamiltonian is constant. We state this in the following
form.

5.15 Lemma: (Constancy of the maximum Hamiltonian) Let Σ = (X, f, U) be a control
system, let x0 ∈ X, let t0, t1 ∈ R satisfy t0 < t1, and let µ ∈ U (x0, t0, [t0, t1])∩Ubdd([t0, t1]).
Suppose that λ : [t0, t1]→ Rn is an adjoint response for Σ along (ξ(µ, x0, t0, ·), µ) satisfying

HΣ(ξ(µ, x0, t0, t), λ(t), µ(t)) = Hmax
Σ (ξ(µ, x0, t0, t), λ(t))

for almost every t ∈ [t0, t1]. Then the function

t 7→ Hmax
Σ (ξ(µ, x0, t0, t), λ(t))

is constant.

Proof: Let us abbreviate ξ = ξ(µ, x0, t0, ·). Let B = cl(image(µ)) so that B ⊂ cl(U) is then
compact. Define hmax

Σ : X× Rn → R by

hmax
Σ (x, p) = sup{HΣ(x, p, u) | u ∈ B},

and note that hmax
Σ is bounded and that

hmax
Σ (x, p) ≤ Hmax

Σ (x, p) (5.4)

for all (x, p) ∈ X× Rn. Our hypotheses ensure that

hmax
Σ (ξ(t), λ(t)) = Hmax

Σ (ξ(t), λ(t))

for almost every t ∈ [t0, t1].
We now show that t 7→ hmax

Σ (ξ(t), λ(t)) is absolutely continuous. Since x 7→ f(x, u) is
of class C1 for each u ∈ cl(U) it follows that (x, p) 7→ HΣ(x, p, u) is of class C1 for each
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u ∈ cl(U). Let A ⊂ X×Rn be compact and be such that (ξ(t), λ(t)) ∈ A for every t ∈ [t0, t1].
Let u ∈ B. Then, following Lemma 1 in the proof of Theorem C.1, there exists M ∈ R>0

such that
|HΣ(x, p, u)−HΣ(x′, p′, u)| < M‖(x, p)− (x′, p′)‖

for all (x, p), (x′, p′) ∈ A. The constant M may be chosen independently of u since u lies in
the compact set B. Now, by compactness of B and continuity of the map u 7→ HΣ(x, p, u),
let u, u′ ∈ B be such that

hmax
Σ (x, p) = HΣ(x, p, u), hmax

Σ (x′, p′) = HΣ(x′, p′, u′)

for (x, p), (x′, p′) ∈ A. Since

HΣ(x, p, u′) ≤ HΣ(x, p, u), HΣ(x′, p′, u) ≤ HΣ(x′, p′, u′)

we have

−M‖(x, p)− (x′, p′)‖ ≤ HΣ(x, p, u′)−HΣ(x′, p′, u′)
≤ HΣ(x, p, u)−HΣ(x′, p′, u) ≤M‖(x, p)− (x′, p′)‖.

From this we conclude that

|hmax
Σ (x, p)− hmax

Σ (x′, p′)| ≤M‖(x, p)− (x′, p′)‖,

so showing that hmax
Σ is Lipschitz. Recall that a function t 7→ f(t) on [t0, t1] is absolutely con-

tinuous if and only if, for each ε ∈ R>0, there exists δ ∈ R>0 such that, if {(aj , bj)}j∈{1,...,k}
is a finite collection of disjoint open intervals for which

k∑
j=1

|bj − aj | < δ, (5.5)

then
k∑
j=1

|f(bj)− f(aj)| < ε.

We now show that t 7→ hmax
Σ (ξ(t), λ(t)) is absolutely continuous. Let ε ∈ R>0 and take

δ = M−1ε. Then, if (5.5) is satisfied for a finite collection {(aj , bj)}j∈{1,...,k} of disjoint open
intervals,

k∑
j=1

|hmax
Σ (bj)− hmax

Σ (aj)| ≤
k∑
j=1

M |bj − aj | < ε.

Thus t 7→ hmax
Σ (ξ(t), λ(t)) is absolutely continuous, as desired.

Now we show that the derivative of t 7→ hmax
Σ (ξ(t), λ(t)) is almost everywhere zero,

which will show that the function is constant. Suppose that t′ ∈ [t0, t1] is a point at which
t 7→ hmax

Σ (ξ(t), λ(t)), t 7→ ξ(t), and t 7→ λ(t) are all differentiable. The complement of such
t’s has measure zero. For t > t′ we have

hmax
Σ (ξ(t), λ(t)) ≥ HΣ(ξ(t), λ(t), µ(t′))
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so that

hmax
Σ (ξ(t), λ(t))− hmax

Σ (ξ(t′), λ(t′))
≥ HΣ(ξ(t), λ(t), µ(t′))−HΣ(ξ(t), λ(t′), µ(t′))

+HΣ(ξ(t), λ(t′), µ(t′))−HΣ(ξ(t′), λ(t′), µ(t′)).

Then

d
dt
hmax

Σ (ξ(t′), λ(t′)) ≥D1HΣ(ξ(t′), λ(t′), µ(t′)) · ξ̇(t′) + D2HΣ(ξ(t′), λ(t′), µ(t′)) · λ̇(t′).

A direct computation using the definition of HΣ then gives

d
dt
hmax

Σ (ξ(t′), λ(t′)) ≥ 0.

It can similarly be shown, by considering t < t′, that

d
dt
hmax

Σ (ξ(t′), λ(t′)) ≤ 0.

Thus t 7→ hmax
Σ (ξ(t), λ(t)) has zero derivative almost everywhere, as desired. Thus there

exists C ∈ R such that hmax
Σ (ξ(t), λ(t)) = C for every t ∈ [t0, t1].

Now we show the constancy of Hmax
Σ . We use a lemma that we state in a rather more

general form than is necessary, but which illustrates why Hmax
Σ is lower semicontinuous.

1 Sublemma: Let X be a topological space, let J be an index set, and let {fj}j∈J be a family
of continuous R-valued functions on X. If we define fmax : X → R by

fmax(x) = sup{fj(x) | j ∈ J},
then fmax is lower semicontinuous, i.e., if x0 ∈ X and if ε ∈ R>0, then there exists a
neighbourhood U of x0 such that fmax(x) > fmax(x0)− ε.
Proof: Let a ∈ R and define

Aa = {x ∈ X | fmax(x) ≤ a}, Aj,a = {x ∈ X | fj(x) ≤ a}.
We claim that

Aa = ∩j∈JAj,a.

If x ∈ Aa then
fj(x) ≤ fmax(x) ≤ a,

implying that x ∈ Aj,a for each j ∈ J . Conversely, let x ∈ ∩j∈JAj,a so that fj(x) ≤ a for
every j ∈ J . Let ε ∈ R>0. Then there exists j0 ∈ J such that fj0(x) > fmax(x)− ε. Thus

fmax(x)− ε < fj0(x) ≤ a
This gives fmax(x)− ε < a for every ε ∈ R>0, and so fmax(x) ≤ a and so x ∈ Aa.

The above arguments show that (fmax)−1((a,∞]) is open for each a ∈ R. In particular,
for ε ∈ R>0 the set (fmax)−1((fmax(x0)− ε,∞]) is open. Thus there exists a neighbourhood
U about x0 such that fmax(x) > fmax(x0)− ε. H
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By the lemma, Hmax
Σ is lower semicontinuous. Therefore, for every t′ ∈ [t0, t1] and

ε ∈ R>0 there exists δ ∈ R>0 such that |t− t′| < δ implies that

Hmax
Σ (ξ(t′), λ(t′)) < Hmax

Σ (ξ(t), λ(t)) + ε.

Since
hmax

Σ (ξ(t), λ(t)) = Hmax
Σ (ξ(t), λ(t))

for almost every t ∈ [t0, t1] it follows that there exists t such that this equality holds and
such that |t− t′| < δ. Therefore, for this t,

Hmax
Σ (ξ(t′), λ(t′)) < hmax

Σ (ξ(t), λ(t)) + ε = C + ε.

Since this holds for every ε > 0 we have

Hmax
Σ (ξ(t′), λ(t′)) ≤ C = hmax

Σ (ξ(t′), λ(t′))

for every t′ ∈ [t0, t1]. By (5.4) it follows that t 7→ Hmax
Σ (ξ(t), λ(t)) is constant. �

The proof of the lemma is rather technical, so it is difficult to glean any insight from it.

5.6. Controlled trajectories on the boundary of the reachable set

In this section we assimilate our (not inconsiderable) efforts put forward thus far in this
chapter to prove theorems that will be crucial to the proof of the Maximum Principle. These
results lie at the core of why the Maximum Principle and the developments surrounding it
are so important, not just in optimal control, but in control theory in general.

5.6.1. The fixed interval case. The main result here is the following. Much of the work
in the proof has already been done as a result of our efforts to understand the tangent cones
and their relationship with the Hamiltonian.

5.16 Theorem: (A characterisation of trajectories steered to the boundary of the fixed time
reachable set) Let Σ = (X, f, U) be a control system, let x0 ∈ X, let t0, t1 ∈ R satisfy
t0 < t1, and let µ∗ ∈ U (x0, t0, [t0, t1]). If ξ(µ∗, x0, t0, t1) ∈ bd(R(x0, t0, t1)) then there
exists an adjoint response λ∗ : [t0, t1]→ Rn for Σ along (ξ(µ∗, x0, t0, ·), µ∗) such that

HΣ(ξ(µ∗, x0, t0, t), λ∗(t), µ∗(t)) = Hmax
Σ (ξ(µ∗, x0, t0, t), λ∗(t))

for almost every t ∈ [t0, t1]. Moreover, if additionally µ∗ ∈ Ubdd([t0, t1], then the function

t 7→ Hmax
Σ (ξ(µ∗, x0, t0, t), λ∗(t))

is constant.

Proof: Let us abbreviate ξ∗ = ξ(µ∗, x0, t0, ·). Since ξ∗(t1) ∈ bd(R(x0, t0, t1)) there exists a
sequence {xj}j∈Z>0 in X \ cl(R(x0, t0, t1)) which converges to ξ∗(t1). Let vj = xj−ξ∗(t1)

‖xj−ξ∗(t1)‖
so that {vj}j∈Z>0 is a sequence in Sn−1. By the Bolzano–Weierstrass Theorem there exists
a subsequence {vjk}k∈Z>0 which converges to some unit vector v0. We claim that v0 6∈
int(K(µ∗, x0, t0, t1)). Indeed, were this not the case, then for some sufficiently large N it



The Maximum Principle in control and in optimal control 65

would hold that vjk ∈ int(K(µ∗, x0, t0, t1)) for k ≥ N . By Lemma 5.10 this implies that
xjk ∈ int(R(x0, t0, t1)) for all k sufficiently large. This violates the assumption that xjN 6∈
cl(R(x0, t0, t1)). Thus either v0 ∈ bd(K(µ∗, x0, t0, t1)) or v0 6∈ bd(K(µ∗, x0, t0, t1)) since
K(µ∗, x0, t0, t) is closed. By Corollary B.20 it follows that there exists a hyperplane P (t1)
such that v0 is contained in one of the closed half-spaces defined by P (t1) and K(µ, x0, t0, t1)
is contained in the other closed half-space. Let λ∗(t1) be a vector orthogonal to P (t1)
contained in a half-space not containingK(µ, x0, t0, t). Let λ∗ be the unique adjoint response
for Σ along (ξ∗, µ∗) having the property that it takes the value λ∗(t1) at time t1. Note that

〈λ∗(t1), v〉 ≤ 0, v ∈ K(µ∗, x0, t0, t1).

The theorem now follows from Lemmata 5.13 and 5.15. �

In Figure 5.3 we illustrate the idea behind the proof of the preceding theorem. The

ξ∗(t1)

P (t1)

λ∗(t1)

K(µ∗, x0, t0, t1)

ξ∗(t0)

ξ∗(t1)

P (t1)
λ∗(t1)

ξ∗(τ)
λ∗(τ)

P (τ)

R(x0, t0, t1)

R(x0, t0, τ)

Figure 5.3. A depiction of the proof of Theorem 5.16. The cartoon
on the left shows the tangent cone at the terminal time and the
cartoon on the right shows the transport of hyperplanes along
the trajectory.

idea behind the picture on the left is where the proof starts, and so this is perhaps the
most important thing to understand. The intuition is that, since the final point of the
trajectory is on the boundary, any variation of the trajectory will move “inwards” and so the
cone K(µ∗, x0, t0, t1) will point “into” the reachable set. There is, therefore, a hyperplane
separating the cone from a vector λ∗(t1) which points “out” of the reachable set. This is
what is depicted on the left in Figure 5.3. With the final value of the adjoint response
given by λ∗(t1), this can be translated backwards along the trajectory. Moreover, at each
point on the trajectory, the picture on the left in Figure 5.3 will be duplicated by virtue of
Proposition 4.5 and Lemma 5.5. This is the situation depicted on the right in Figure 5.3.
With the adjoint response defined, one can now define the Hamiltonian, which is perhaps
the most mysterious aspect in the statement of Theorem 5.16. But the properties of the
Hamiltonian are shown by Lemma 5.13 to follow from the picture on the left in Figure 5.3.

Corresponding to our comments following the statement of Lemma 5.10, one should
be careful about what Theorem 5.16 is saying when int(K(µ∗, x0, t0, t1)) = ∅. While the
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theorem applies in this case, it just may not be giving the sort of information that one
expects based on the “standard” picture in Figure 5.3. The interested reader can think
about this a little in Exercise E5.2. Here we shall only point out that this sort of discussion
is where the deep connections between controllability theory and optimal control arise.

It is interesting to note that if a controlled trajectory hits the boundary of the reachable
set at some time, it must have been at the boundary for all preceding times. The following
result is equivalent to this, although it is stated in different terms.

5.17 Proposition: (Trajectories in the interior of the fixed time reachable set remain in the
interior) Let Σ = (X, f, U) be a control system, let x0 ∈ X, let t0, t1 ∈ R satisfy t0 < t1,
and let µ ∈ U (x0, t0, [t0, t1]). Suppose that for some τ ∈ [t0, t1) we have ξ(µ, x0, t0, τ) ∈
int(R(x0, t0, τ)). Then ξ(µ, x0, t0, t) ∈ int(R(x0, t0, t)) for all t ∈ (τ, t1].

Proof: Let U be a neighbourhood of ξ(µ, x0, t0, τ) contained in R(x0, t0, τ). For each x ∈ U

there then exists a control µx ∈ U (x0, t0, [t0, τ ]) such that ξ(µx, x0, t0, τ) = x. For t′ ∈ [τ, t1]
extend µx to a control in U (x0, t0, [t0, t′]) as follows:

µx(t) =

{
µx(t), t ∈ [t0, τ ],
µ(t), t ∈ (τ, t′],

where we make a slight abuse of notation. We then define a map F : U → R(x0, t0, t
′) by

x 7→ ξ(µx, x0, t0, t
′). Thus F sends x to the solution at t′ of the initial value problem

ξ̇(t) = f(ξ(t), µx(t)), ξ(τ) = x.

This map is then a diffeomorphism onto its image, and so F (U) is open. Moreover, it clearly
contains ξ(µ, x0, t0, t

′), and so ξ(µ, x0, t0, t
′) ∈ int(R(x0, t0, t

′)). �

5.6.2. The free interval case. The discussion above carries over more or less verbatim to
characterisations of the boundary of the reachable set (as opposed to the fixed time reachable
set). Thus we shall merely state the results and omit detailed proofs and discussion.

5.18 Theorem: (A characterisation of trajectories steered to the boundary of the reachable
set) Let Σ = (X, f, U) be a control system, let x0 ∈ X, let t0, t1 ∈ R satisfy t0 < t1, and
let µ∗ ∈ U (x0, t0, [t0, t1]). If ξ(µ∗, x0, t0, t1) ∈ bd(R(x0, t0)) then there exists an adjoint
response λ∗ : [t0, t1]→ Rn for Σ along (ξ(µ∗, x0, t0, ·), µ∗) such that

HΣ(ξ(µ∗, x0, t0, t), λ∗(t), µ∗(t)) = Hmax
Σ (ξ(µ∗, x0, t0, t), λ∗(t)) = 0

for almost every t ∈ [t0, t1]. Moreover, if additionally µ∗ ∈ Ubdd([t0, t1], then the function

t 7→ Hmax
Σ (ξ(µ∗, x0, t0, t), λ∗(t))

is everywhere zero.

Proof: The existence of an adjoint response such that the Hamiltonian is maximised almost
everywhere follows in the same manner as the proof of Theorem 5.16 except that one uses
K±(µ∗, x0, t0, t) in place of K(µ∗, x0, t0, t) and R(x0, t0) in place of R(x0, t0, t1). That the
Hamiltonian and the maximum Hamiltonian are almost everywhere zero follows from Lem-
mata 5.13 and 5.14, noting that K(µ∗, x0, t0, t) ⊂ K±(µ∗, x0, t0, t) for every t ∈ [t0, t1] and
that spanR(f(ξ∗(t), µ∗(t))) ⊂ K±(µ∗, x0, t0, t) for almost every t ∈ [t0, t1]. The constancy
of the maximum Hamiltonian follows from Lemma 5.15. �
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We also have the statement that trajectories in the interior of the reachable set remain
in the interior.

5.19 Proposition: (Trajectories in the interior of the reachable set remain in the interior)
Let Σ = (X, f, U) be a control system, let x0 ∈ X, let t0, t1 ∈ R satisfy t0 < t1, and let µ ∈
U (x0, t0, [t0, t1]). Suppose that for some τ ∈ [t0, t1)] we have ξ(µ, x0, t0, τ) ∈ int(R(x0, t0)).
Then ξ(µ, x0, t0, t) ∈ int(R(x0, t0)) for all t ∈ (τ, t1].
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Exercises

E5.1 Take M = R2, m = 1, U = [−1, 1], and define f((x1, x2), u) = (u, (x2)2). Show
that the reachable sets R((0, 0), 0, T ) and R((0, 0), 0) are as depicted in Figure E5.1,
where the left and right boundaries for R((0, 0), 0) are given by the graph of the

Figure E5.1. Reachable sets: the shaded area represents
R((0, 0), 0) and the hatched area represents R((0, 0), 0, T ) for
some T > 0.

function x2(x1) = 1
3 |x1|3, and that the upper boundary for R((0, 0), 0, T ) is given by

the graph of the function

x2(x1) = −|x
1|3
4

+
T |x1|2

4
+
T 2|x1|

4
+
T 3

12
.

In particular, R((0, 0), 0, T ) is not convex.

In the next exercise you will explore what can happen when the interior of the fixed interval
tangent cone is empty.

E5.2 Let X = R2, let m = 1, define

f((x1, x2), u) = (−x2u, x1u),

and take U = [−1, 1]. For the system Σ = (X, f, U), answer the following questions.

(a) Show that for any admissible control u the resulting trajectory with initial
condition (x1

0, x
2
0) takes values in the circle of radius ‖(x1

0, x
2
0)‖.

(b) Show that K(u, (x1
0, x

2
0), 0, t) ⊂ spanR(−ξ2(t), ξ1(t)) for any admissible control

u, where (ξ1(t), ξ2(t)) = ξ(u, (x1
0, x

2
0), 0, t). Note that int(K(u, (x1

0, x
2
0), 0, t)) =

∅.
(c) Show that(

ξ(u, (x1
0, x

2
0), 0, t) +K(u, (x1

0, x
2
0), 0, t)

) ∩ R((x1
0, x

2
0), 0, t) = ∅.
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(d) Let t 7→ (λ1(t), λ2(t)) be an adjoint response satisfying

〈(λ1(t0), λ2(t0)), (−ξ2(t0), ξ1(t0))〉 = 0.

Show that
〈(λ1(t), λ2(t)), (−ξ2(t), ξ1(t))〉 = 0

for all t.
(e) Show that for any controlled trajectory, the conclusions of Theorem 5.16 or

Theorem 5.18 hold with an adjoint response in part (d).
(f) What is the point of this exercise?



Chapter 6

A proof of the Maximum Principle

In this chapter we complete the proof of the Maximum Principle. As we shall see, much
of the heavy lifting has been done in Chapter 5. We will break the proof up into various
components. We will prove Theorems 3.4 and 3.5 simultaneously since their proofs differ
only in a few places. We shall be careful to point out the places where the two cases need
to be considered separately.

6.1. The extended system

It is very helpful in optimal control in general to include the cost as a variable in the
problem, thereby extending the state space.

6.1 Definition: (Extended system) Let Σ = (X, f, U) be a control system and let L be a
Lagrangian for Σ. The extended system is the system Σ̂ = (X̂, f̂, U) defined by asking
that

(i) X̂ = R× X and
(ii) f̂((x0, x), u) = (L(x, u), f(x, u)). •

Note that the equations governing the extended system are

ξ̇0(t) = L(ξ(t), µ(t)),

ξ̇(t) = f(ξ(t), µ(t)).

This immediately gives

ξ0(t) =
∫ t

t0
L(ξ(τ), µ(τ)) dτ,

so that ξ0(t) is the cost accrued by the controlled trajectory up to time t. Thus the extended
system essentially has the cost added as an extra variable.

We will adopt the convention of placing a “hat” on everything associated to the extended
system. Thus, for example, the state for Σ̂ will be denoted by x̂ = (x0, x), a trajectory for Σ̂
will be denoted by ξ̂, the reachable set for Σ̂ will be denoted by R̂(x0, t0), and K̂(µ, x̂0, t0, t)
will denote a fixed interval tangent cone for the extended system. We will not bother to
explicitly define all of the new symbols arising from this convention as it should be patently
obvious what they mean.

70
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6.2. Optimal trajectories lie on the boundary of the reachable set of the
extended system

The first part of the proof of the Maximum Principle makes the connection between
optimal control and the results concerning the reachable set in Chapter 5. This connection
lies at the heart of the reason why the Maximum Principle has to do with so much more
than just optimal control.

The main result is the following.

6.2 Lemma: (Optimal trajectories lie on the boundary of the reachable set of the extended
system) Let Σ = (X, f, U) be a control system, let L be a Lagrangian for Σ, and let
S0, S1 ⊂ X be subsets. Suppose that (ξ∗, µ∗) ∈ P(Σ, L, S0, S1, [t0, t1]) or that (ξ∗, µ∗) ∈
P(Σ, L, S0, S1) is defined on [t0, t1], respectively. Then ξ̂∗(t1) ∈ bd(R̂(ξ̂∗(t0), t0, t1)) or
ξ̂∗(t1) ∈ bd(R̂(ξ̂∗(t0), t0)), respectively.

Proof: Let us first consider the case where (ξ∗, µ∗) ∈P(Σ, L, S0, S1, [t0, t1]). We claim that
ξ̂∗(t1) = (ξ0

∗(t1), ξ∗(t1)) has the property that

ξ0
∗(t1) = inf{x0 ∈ R | (x0, ξ∗(t1)) ∈ R̂(ξ̂(t0), t0, t1)}.

That is to say, the final cost ξ0
∗(t1) is the lowest possible among all elements of (ξ, µ) ∈

Carc(Σ, L, S0, S1, [t0, t1]) that steer ξ∗(t0) to ξ∗(t1). Said this way, the claim is obvious since
(ξ∗, µ∗) is assumed to be optimal. To see that this implies that ξ̂∗(t1) ∈ bd(R̂(ξ̂∗(t0), t0, t1)),
let U be a neighbourhood of ξ̂∗(t1) in X̂. Since any such neighbourhood will contain points
of the form (x0, ξ∗(t1)) with x0 < ξ0

∗(t1), and since such points are not in R̂(ξ̂(t0), t0, t1),
this means that ξ̂∗(t1) ∈ bd(R̂(ξ̂∗(t0), t0, t1)), as desired.

The argument in the case where (ξ∗, µ∗) ∈ P(Σ, L, S0, S1) follows similarly, the only
difference being that the final times are free both in the optimal control problem and in the
reachable set. �

In Figure 6.1 we depict the idea behind the proof of the preceding lemma.

6.3. The properties of the adjoint response and the Hamiltonian

Using Lemma 6.2 it is easy to deduce the Hamiltonian components of the Maximum
Principle. We begin be asserting the existence of an adjoint response having the properties
asserted in the Maximum Principle.

6.3 Lemma: (The adjoint response) Let Σ = (X, f, U) be a control system, let L be a
Lagrangian for Σ, and let S0, S1 ⊂ X be subsets. Suppose that (ξ∗, µ∗) ∈P(Σ, L, S0, S1) is
defined on [t0, t1] or that (ξ∗, µ∗) ∈P(Σ, L, S0, S1, [t0, t1]). Then there exists an absolutely
continuous map λ∗ : [t0, t1]→ Rn and λ0

∗ ∈ {0,−1} with the following properties:
(i) either λ0

∗ = −1 or λ∗(t0) 6= 0;
(ii) λ∗ is an adjoint response for (Σ, λ0

∗L) along (ξ∗, µ∗);
(iii) HΣ,λ0∗L(ξ∗(t), λ∗(t), µ∗(t)) = Hmax

Σ,λ0∗L
(ξ∗(t), λ∗(t)) for almost every t ∈ [t0, t1].

Proof: Let us first consider the fixed interval problem. We shall refine slightly the first
steps in the proofs of Theorem 5.16 since in this case we have the additional structure of
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ξ∗(t0)

ξ∗(t1)

R̂(x0, t0, t1)

X

Figure 6.1. The idea of the proof of Lemma 6.2

our system being the extended system associated with an optimal control problem. The
key element of the refinement is the observation that the vector (−1, 0) ∈ R⊕Rn cannot lie
in the interior of K̂(µ∗, x̂0, t0, t1). Indeed, if this were not the case then, by Lemma 5.10,
there must be points in R̂(ξ̂∗(t0), t0, t1) whose final cost would be lower than ξ0

∗(t1), and this
would violate the optimality of (ξ∗, µ∗). Therefore, there exists a hyperplane P̂ (t1) such that
(−1, 0) is contained in one of the closed half-spaces defined by P̂ (t1) and K̂(µ∗, x̂0, t0, t1) is
contained in the other closed half-space. We take λ̂∗(t1) to be a vector orthogonal to P̂ (t1)
and contained in the half-space not containing K̂(µ∗, x̂0, t0, t1), and note that

〈λ̂∗(t1), (−1, 0)〉 ≥ 0,

〈λ̂∗(t1), v̂〉 ≤ 0, v̂ ∈ K̂(µ∗, x̂0, t0, t1).

Note that this implies that λ0
∗(t1) ≤ 0. We then define λ̂∗ to be the adjoint response equal

to λ̂∗(t1) at time t1. From the equations for the adjoint response we immediately have
λ̇0
∗(t) = 0 (since f̂ is independent of x0) and so λ0

∗ is constant and nonpositive. If λ0
∗ 6= 0

then we can redefine λ̂∗ to be −(λ0
∗)
−1λ̂∗, and this ensures that λ̂∗(t) = (λ0

∗, λ∗(t)) with
λ0
∗ ∈ {0,−1}.

Since

ĤΣ̂((x0, x), (p0, p), u) = 〈p, f(x, u)〉+ p0L(x, u) = HΣ,p0L(x, p, u),

it follows from Theorem 5.16 that

HΣ,λ0∗L(ξ∗(t), λ∗(t), µ∗(t)) = Hmax
Σ,λ0∗L

(ξ∗(t), λ∗(t))

for almost every t ∈ [t0, t1].
The condition that λ0

∗ = −1 or λ∗(t0) 6= 0 follows since λ̂∗(t) 6= 0 for every t ∈ [t0, t1] by
virtue of linearity of the adjoint equation. This gives the lemma in the fixed interval case.

The argument in the free interval case is essentially the same, but with K̂±(µ∗, x̂0, t0, t1)
replacing K̂(µ∗, x̂0, t0, t1) and with R̂(ξ̂∗(t0), t0) replacing R̂(ξ̂∗(t0), t0, t1). �
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The lemma, along with Theorems 5.16 and 5.18, give the following corollary.

6.4 Corollary: (Constancy of the Hamiltonian) Let Σ = (X, f, U) be a control system,
let L be a Lagrangian for Σ, and let S0, S1 ⊂ X be subsets. Suppose that (ξ∗, µ∗) ∈
P(Σ, L, S0, S1, [t0, t1]) or that (ξ∗, µ∗) ∈ P(Σ, L, S0, S1) is defined on [t0, t1], respectively.
Also suppose that µ∗ ∈ Ubdd([t0, t1]). If λ0

∗ ∈ {0,−1} and λ∗ : [t0, t1] → Rn are as in
Lemma 6.3, then

t 7→ Hmax
Σ,λ0∗L

(ξ∗(t), λ∗(t))

is constant or everywhere zero, respectively.

6.4. The transversality conditions

The verification of the transversality conditions takes a significant amount of additional
work. Our discussion will begin by taking a rather general form, ostensibly having nothing
to do with optimal control. For readers familiar with the notion of a manifold with boundary,
it is possible to skip the first rather clumsy steps which attempt to mimic this idea without
going through the complete programme.

6.5 Definition: (Edged set) An edged set in Rn is a subset E such that E = φ(U) where
(i) U ⊂ Rk has the form

U = U′ ∩ {(y1, . . . , yk) | yk ≥ 0}
where U′ is a neighbourhood of 0, and where

(ii) φ : U′ → Rn is a homeomorphism onto its image with Dφ(y) injective for each y ∈ U′.
The boundary of E is the set

bd(E) = {φ(y1, . . . , yk−1, 0) | (y1, . . . , yk−1, 0) ∈ U}.

The dimension of such an edged set is dim(E) = k. •
Note that the boundary of an edged set E will not generally agree with the boundary

of E as a subset of Rn. This might cause confusion but for the fact that in our discussion
we will always mean the boundary of an edged set E to be as in Definition 6.5.

The picture one might have in mind for an edged set is depicted in Figure 6.2. At points
x ∈ E that are not in the boundary of E, the usual notion of tangent space applies, i.e., the
tangent space is the image of Dφ(y) where φ(y) = x. At points on the boundary we use
the following notion.

6.6 Definition: (Tangent half space) Let E be an edged set with E = φ(U) and with U and
φ as in Definition 6.5. For x ∈ bd(E) let y ∈ U have the property that φ(y) = x. The
tangent half-space to E at x is

T+
x E = Dφ(y)({(v1, . . . , vk) | vk ≥ 0}). •

The idea behind the tangent half-space is depicted in Figure 6.3.
Let us now suppose that S0 is a smooth constraint set being defined by S0 = Φ−1

0 (0).
We denote TxS0 = ker(DΦ0(x)) the tangent space to S0 at a point x ∈ S0. Now let us
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U

(y1, . . . , yk−1)

yk

E
φ

Figure 6.2. A depiction of an edged set

x
E

Figure 6.3. A depiction of the tangent half-space

suppose that we have an initial point x0 ∈ S0, a control µ ∈ U (x0, t0, [t0, t1]), and a point
τ ∈ (t0, t1) ∩ Leb(µ, x0, t0, t1). For brevity denote ξ = ξ(µ, (0, x0), t0, ·). Let us denote

K (µ, x0, t0, t) = cl(conv cone(Φ(µ, x0, t0, t0, t)(Tξ(t0)S0) ∪K(µ, x0, t0, t))).

With these ideas at hand, we state a result which is somewhat analogous to Lemma 5.10.
The lemma is stated in a way that it has nothing a priori to do with optimal control, just
as is the case with Lemma 5.10.

6.7 Lemma: (Fixed interval tangent cones and tangent half-spaces that are not separable)
Let Σ = (X, f, U) be a control system, let S0 = Φ−1(0) be a constraint set, let x0 ∈ S0, let
t0, t1 ∈ R satisfy t0 < t1, let µ ∈ U (x0, t0, [t0, t1]), and let τ ∈ (t0, t1) ∩ Leb(µ, x0, t0, t1).
Let E be an edged set with ξ(µ, x0, t0, τ) ∈ bd(E) and suppose that the tangent half-space of
E at ξ(µ, x0, t0, τ) and the cone K (µ, x0, t0, τ) are not separable. Then there exists x′0 ∈ S0

such that the set
(E \ bd(E)) ∩ R(x′0, t0, t1)
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is nonempty.

Proof: We will be slightly sketchy about the proof here since it has many similarities to the
proof of Lemma 5.10 which we presented in some detail.

Let ξ = ξ(µ, x0, t0, ·). Since T+
ξ(τ)E and K (µ, x0, t0, τ) are not separable there can be

no proper subspace of Rn containing both by Theorem B.22. That is,

Rn = spanR(T+
ξ(τ)E) + spanR(K (µ, x0, t0, τ)).

Moreover, since the cones T+
ξ(τ)E and K (µ, x0, t0, τ) are not separable, their relative interiors

have a nonempty intersection by Theorem B.22. Therefore,

spanR(T+
ξ(τ)E) ∩ spanR(K (µ, x0, t0, τ)) 6= {0}.

Thus we can choose a subcone Hτ of T+
ξ(τ)E such that

Rn = Hτ + spanR(K (µ, x0, t0, τ)), dim(Hτ ∩K (µ, x0, t0, τ)) = 1.

Let us now choose coordinates for Rn in order to simplify the problem. First, by an
orthogonal change of coordinates we can suppose that

Hτ ∩K (µ, x0, t0, τ) = spanR((1, 0, . . . , 0)).

Let Pτ denote the orthogonal complement to (1, 0, . . . , 0) in aff(K (µ, x0, t0, τ). By a linear
change of coordinates we can suppose that Pτ is orthogonal to Hτ . We suppose that our
coordinates are chosen such that the first k basis vectors span the subspace generated by
Hτ and the last n−k basis vectors span Pτ . We depict the situation in the new coordinates
in Figure 6.4.

Pτ

x1

(x2, . . . , xk)

(xk+1, . . . , xn)

Hτ

K (µ, x0, t0, τ)

Figure 6.4. A depiction of the constructions used in the proof of
Lemma 6.7

Now let v0 ∈ rel int(Hτ )∩rel int(K (µ, x0, t0, τ)). We define two simplex cone neighbour-
hoods of v0, one in Hτ and another in K (µ, x0, t0, τ). The existence of such neighbourhoods
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is ensured by Proposition B.17. The simplex cone neighbourhood K1 in Hτ we define as
follows. For x ∈ E let us denote by f̃−1

1 (x) the orthogonal component of x − ξ(τ) in the
subspace generated T+

ξ(τ)E. In a sufficiently small simplex cone neighbourhood K̃1 of v0 in

T+
ξ(τ)E the notation makes sense and f̃1 defines a homeomorphism from a tip C ′1 of the cone

K ′1 to a neighbourhood of ξ(τ) in E. We then take K ′1 to be a simplex cone neighbourhood
of v0 in Hτ that is contained in K̃1∩Hτ . We take K ′2 to be any simplex cone neighbourhood
of v0 in K (µ, x0, t0, τ). We may choose the vectors generating the cone K ′2 to lie in the
plane Pτ passing through v0.

Let us now consider the effects of perturbing the initial condition from x0 in S0. To do
this, we parameterise S0 in a neighbourhood U0 of x0 in S0 as follows. We let Tx0S0 be the
tangent space to S0 at x0. We then write x ∈ S0 as x = x0 + v(x) + u(x) for some uniquely
defined v(x) ∈ Tx0S0 and u(x) orthogonal to Tx0S0. If x ∈ U0 and if U0 is sufficiently small,
then the map x 7→ v(x) is a diffeomorphism, essentially by the Implicit Function Theorem
(we leave the details of this for the reader to sort out). If x ∈ U0 and if s ∈ R is sufficiently
small, then we have

ξ(µ, x, t0, τ) = ξ(τ) + sΦ(µ, x0, t0, t0, τ) · v(x) + o(s).

In arriving at this formula, one uses the fact that τ is a Lebesgue point, along with compu-
tations like those used in the proofs of Propositions 4.9, 4.12, and 4.16. If, additionally, Θ is
fixed interval needle variation data, then we have, again following our familiar computations,

ξ(µΘ(s, ·), x, t0, τ) = ξ(τ) + svΘ(τ) + sΦ(µ, x0, t0, t0, τ) · v(x) + o(s), (6.1)

where vΘ(τ) is the fixed interval multi-needle variation for Θ at time τ . The equa-
tion (6.1) then defines (after some details which we leave to the reader; but cf. the proof of
Lemma 5.10) a map f̃2 from a tip C ′2 of the cone K ′2 to Rn.

Now, just as in Lemma 5.10, we use coordinates (l, r1) and (l, r2) to parameterise the
cones K ′1 and K ′2. Under this parameterisations, the tips C ′1 and C ′2 of these cones become
cubes in Rk and Rn−k+1, respectively. We also use coordinates (L1, R1) and (L2, R2) for
the codomain of the maps f̃1 and f̃2 in the coordinates (l, r1) and (l, r2), respectively. This
notation mirrors that in Lemma 5.10. We let f1 and f2 denote the representations of the
maps f̃1 and f̃2 in these coordinates. We then have f1 and f2 given by

f1(l, r1) = (L1, R1), f2(l, r2) = (L2, R2)

where

L1(l, r1) = l, R1(l, r1) = r1 + o(1), L2(l, r2) = l + o(l), R2(l, r2) + o(1).

We can extend these maps to be defined at l = 0 by taking

L1(0, r1) = 0, R1(0, r1) = r1, L2(0, r1) = 0, R2(0, r2) = r2.

Now, for a ∈ R>0 define

C(a) =
{
x+ a

2 (1, 0, . . . , 0)
∣∣ max{|x1|, . . . , |xn|} ≤ a}
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to be the cube with sides of length a shifted by a
2 in the direction of v0. For b ∈ R>0 define

P1(a) = {(x1, . . . , xn) ∈ C(a) | xk+1 = · · · = xn = 0},
P2(a, b) =

{
(x1, . . . , xn) ∈ C(a)

∣∣ x1 = b, x2 = · · · = xk = 0
}
.

For a sufficiently small, C(a) is in the domain of f1 and f2. Moreover, a can be chosen
sufficiently small (cf. the proof of Lemma 5.10) that

‖f1(x1)− x1‖ < a
4 , ‖f2(x2)− x2‖ < a

4

for x1 ∈ P1(a) and x2 ∈ P2(a, 1
2)). By Lemma C.4, f1(P1(a)) ∩ f2(P2(a, a2 )) 6= ∅. Note that

points of the form
f1(x1, . . . , xk, 0, . . . , 0), x1 ∈ R>0,

are in E \ bd(E). Also, points in f2(P2(a, a2 )) are in R(x′0, t0, τ) for some x′0 ∈ S0. This
proves the lemma. �

Of course, there is a free interval version of the lemma which we merely state. Its proof
is a simple adaptation of the previous proof. To state the result we denote

K ±(µ, x0, t0, τ) = cl(conv cone(Φ(µ, x0, t0, t0, τ)(Tξ(t0)S0) ∪K±(µ, x0, t0, τ))),

the obvious adaptation of the fixed interval definition.

6.8 Lemma: (Free interval tangent cones and tangent half-spaces that are not separable)
Let Σ = (X, f, U) be a control system, let S0 = Φ−1(0) be a constraint set, let x0 ∈ S0, let
t0, t1 ∈ R satisfy t0 < t1, let µ ∈ U (x0, t0, [t0, t1]), and let τ ∈ (t0, t1) ∩ Leb(µ, x0, t0, t1).
Let E be an edged set with ξ(µ, x0, t0, τ) ∈ bd(E) and suppose that the tangent half-space
of E at ξ(µ, x0, t0, τ) and the cone K ±(µ, x0, t0, τ) are not separable. Then there exists
x′0 ∈ S0 such that the set

(E \ bd(E)) ∩ R(x′0, t0)

is nonempty.

Now let us apply the preceding lemmata to the transversality conditions of the Maximum
Principle. To do so we need some notation. We will now resume using the notation from
the statement of the Maximum Principle, since we are assuming that we have an optimal
trajectory. We denote

T̂xSa = {(0, v) ∈ R⊕ Rn | v ∈ TxSa}, a ∈ {1, 2},
Ŝ1 =

{
(x0, x) ∈ X̂

∣∣ x0 ≤ ξ0
∗(t1), x ∈ S1

}
,

Ŝτ =
{
ξ̂(τ)

∣∣ ˙̂
ξ(t) = f̂(ξ̂(t), µ∗(t)), ξ̂(t1) ∈ Ŝ1

}
, τ ∈ (t0, t1).

Note that Ŝ1 and (therefore) Ŝτ are edged sets. More precisely, in a neighbourhood of ξ̂∗(t1)
(resp. ξ̂∗(τ)), Ŝ1 (resp. Ŝτ ) is an edged set. Note that

T+

ξ̂∗(t1)
Ŝ1 = conv cone

({(−1, 0)} ∪ T̂ξ̂∗(t1)S1
)
,

T+

ξ̂∗(τ)
Ŝτ = conv cone

({(−1, 0)} ∪ Φ̂(µ∗, x̂0, t0, t1, τ)(T̂ξ̂∗(t1)Ŝ1)
)
,
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the latter equality holding since (−1, 0) is transported to (−1, 0) by the variational equation
for the extended system. We also denote K̂ (µ∗, x̂0, t0, t) (resp. K̂ ±(µ∗, x̂0, t0, t)) as the
closed convex hull of Φ̂(µ∗, x̂0, t0, t0, t)(T̂x0S0) and K̂(µ∗, x0, t0, t) (resp. K̂±(µ∗, x0, t0, t)).

With this notation, we have the following result.

6.9 Lemma: (Separation of cones for transversality conditions) Let Σ = (X, f, U) be a con-
trol system, let L be a Lagrangian for Σ, and let S0, S1 ⊂ X be constraint sets. Suppose
that (ξ∗, µ∗) ∈P(Σ, L, S0, S1, [t0, t1]) or that (ξ∗, µ∗) ∈P(Σ, L, S0, S1) is defined on [t0, t1],
respectively. Then the cones K̂ (µ∗, x̂0, t0, t1) (resp. K̂ ±(µ∗, x̂0, t0, t1)) and T+

ξ̂∗(t1)
Ŝ1 are

separable.

Proof: We will carry out the proof in the fixed interval case, the free interval case following
along entirely similar lines.

Suppose that K̂ (µ∗, x̂0, t0, t1) and T+

ξ̂∗(t1)
Ŝ1 are not separable. Since

K̂ (µ∗, x̂0, t0, t1) = ∪t∈(t0,t1)K̂ (µ∗, x̂0, t0, t),

there exists τ ∈ Leb(µ∗, x0, t0, t1) such that Φ̂(µ∗, x̂0, t0, τ, t1)(K̂ (µ∗, x̂0, t0, τ)) and T+

ξ̂∗(t1)
Ŝ1

are not separable. Thus K̂ (µ∗, x̂0, t0, τ) and Φ̂(µ∗, x̂0, t0, t1, τ)(T+

ξ̂∗(t1)
Ŝ1) are also not sepa-

rable. The latter cone is simply T+

ξ̂∗(τ)
Sτ . We now apply Lemma 6.7 to conclude that there

is a control µ̃ defined on [t0, τ ] and a point x′0 ∈ S0 such that ξ(µ̃, x′0, t0, τ) ∈ Ŝτ \ bd(Ŝτ ).
One can extend µ̃ to a control µ defined on [t0, t1] by having it agree with µ∗ on [τ, t1]. The
resulting control will steer x′0 to a point in Ŝ1 \ bd(Ŝ1). This contradicts the optimality of
(ξ∗, µ∗). �

Finally, we show that the preceding lemma implies that the transversality conditions
can be met. We work in the fixed interval setting; the free interval case follows in a similar
vein. By Lemma 6.9 we know that the cones K̂ (µ∗, x̂0, t0, t1) and T+

ξ̂∗(t1)
Ŝ1 are separable.

Choose λ̂∗(t1) = (λ0
∗, λ∗(t1)) such that〈

λ̂∗(t1), v
〉 ≤ 0, v̂ ∈ K̂ (µ∗, x̂0, t0, t1),〈

λ̂∗(t1), v
〉 ≥ 0, v̂ ∈ T+

ξ̂∗(t1)
Ŝ1.

Since K̂(µ∗, x̂0, t0, t1) ⊂ K̂ (µ∗, x̂0, t0, t1) the adjoint response t 7→ λ∗(t) defined such that
λ∗ agrees with λ∗(t1) at time t1 satisfies the conclusions of the Maximum Principle. Since
T̂ξ̂(t1)S1 ⊂ T+

ξ̂∗(t1)
Ŝ1 we have

〈λ∗(t1), v〉 ≤ 0, v ∈ Tξ∗(t1)S1.

Since Tξ∗(t1)S1 is a subspace, this means that λ∗(t1) is orthogonal to Tξ∗(τ)S1 which is the
transversality condition at the terminal point. Since

Φ̂(µ∗, x̂0, t0, t1)(T̂x̂0S0) ⊂ K̂ (µ∗, x̂0, t0, t1),

a similar argument shows that λ∗(t1) is orthogonal to Φ(µ∗, x0, t0, t1)(Tx0S0). Now Propo-
sition 4.5 implies that λ∗(t0) is orthogonal to Tx0S0. This is the transversality condition at
the initial point.



Chapter 7

A discussion of the Maximum
Principle

Now that we have stated and proved the Maximum Principle, plus gone to some lengths
to describe the elements in the proof, we are in the pleasant position of being able to say
some things about what the Maximum Principle “means.” There is much that one can say
here, and we merely touch on a few of the more “obvious” things.

7.1. Normal and abnormal extremals

Extremals can have distinguishing characteristics that are interesting to study. Here we
focus only on two aspects of a possible characterisation. The first concerns the distinction
between “normal” and “abnormal.” This has to do with the seemingly mysterious constant
λ0 appearing in the statement of the Maximum Principle.

7.1 Definition: (Normal and abnormal extremals) Let Σ = (X, f, U) be a control system,
let L be a Lagrangian, let t0, t1 ∈ R satisfy t0 < t1, and let S0, S1 ⊂ X be sets.

(i) A controlled extremal (ξ, µ) for P(Σ, L, S0, S1) (resp. for P(Σ, L, S0, S1, [t0, t1])) is
normal if it is possible to satisfy the necessary conditions of Theorem 3.4 (resp. The-
orem 3.5) with the constant λ0 taken to be −1.

(ii) A controlled extremal (ξ, µ) for P(Σ, L, S0, S1) (resp. for P(Σ, L, S0, S1, [t0, t1])) is
possibly abnormal if it is possible to satisfy the necessary conditions of Theorem 3.4
(resp. Theorem 3.5) with the constant λ0 taken to be 0.

(iii) A controlled extremal (ξ, µ) for P(Σ, L, S0, S1) (resp. for P(Σ, L, S0, S1, [t0, t1])) is
abnormal if it is only possible to satisfy the necessary conditions of Theorem 3.4
(resp. Theorem 3.5) with the constant λ0 taken to be 0.

An extremal ξ for P(Σ, L, S0, S1) (resp. for P(Σ, L, S0, S1, [t0, t1])) is normal , possibly
abnormal , or abnormal if there exists an admissible control µ such that (ξ, µ) is a nor-
mal, possibly abnormal, or abnormal, respectively, controlled extremal for P(Σ, L, S0, S1)
(resp. for P(Σ, L, S0, S1, [t0, t1])). •

One needs to be a little careful to understand what the definition says. It does not say
that an extremal is abnormal if the constant λ0 in the statement of the Maximum Principle
is zero; for the extremal to be abnormal the constant λ0 must be zero. Some authors refer to
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what we call “possibly abnormal” as “abnormal” and what we call “abnormal” as “strictly
abnormal.”

The existence of abnormal extremals seems a little tough to swallow at first glance. For
example, an abnormal extremal ξ, along with its corresponding adjoint response λ, satisfy
the differential equation

ξ̇(t) = f(ξ(t), µ(t)),

λ̇(t) = −D1f
T (ξ(t), µ(t)) · λ(t),

since λ0 = 0. The peculiar thing is that this differential equation, while being a necessary
condition for the optimal control problem with Lagrangian L, is itself not dependent on L
in any way. Despite the seeming implausibility of this, the notion of an abnormal extremal
is actually easy to interpret. The proof of the following result is achieved by understanding
the proof of Lemma 6.3. We encourage the reader to do just this in Exercise E7.1.

7.2 Proposition: (Characterisation of abnormality) A controlled extremal (ξ, µ) for
P(Σ, L, S0, S1, [t0, t1]) (resp. for P(Σ, S0, S1) and defined on [t0, t1]) is abnormal if and
only if (−1, 0) ∈ bd(K̂(µ, x0, t0, t1)) (resp. (−1, 0) ∈ bd(K̂±(µ, x0, t0, t1))).

It can happen that abnormal extremals may be actually optimal. We shall see an
instance of this in Section 9.3. In Section 8.5 we consider the problem of abnormality
in linear quadratic optimal control. In this section the reader can observe that possibly
abnormal extremals can arise in trivial ways. We also observe that a phenomenon entirely
similar to abnormality occurs in constrained minimisation in finite dimensions using the
Lagrange multiplier method. We explore this in Exercise E3.2.

7.2. Regular and singular extremals

The next classification of extremals we consider accounts for the fact that one may not
be able to determine the extremal controls explicitly just from the Maximum Principle.
When this happens, the extremal is said to be “singular.” However, it turns out that there
are many possible flavours of singularity, and one must really make some sort of choice as
to what one means by singular in a given instance, often guided by particular features of
the problem one is considering.

But the essential idea of singularity is as follows. Let Σ = (X, f, U) be a control system,
let L be a Lagrangian, let t0, t1 ∈ R satisfy t0 < t1, and let S0, S1 ⊂ X be subsets. Let
(ξ, µ) be a controlled extremal for P(Σ, L, S0, S1) (resp. for P(Σ, L, S0, S1, [t0, t1])) with
λ0 ∈ {0,−1} and λ : [t0, t1]→ Rn as in the statement of Theorem 3.4 (resp. Theorem 3.5).
At almost every time t ∈ [t0, t1] the extremal control must satisfy

HΣ,L(ξ(t), λ(t), µ(t)) = Hmax
Σ,L (ξ(t), λ(t)).

The notion of singularity deals with the nature of the problem of solving the equation

HΣ,L(x, p, µ) = Hmax
Σ,L (x, p) (7.1)

for the extremal control µ. If one is able to do this, then this gives the control as a function
of x and p. In some cases, one can examine the matter of solving the equation (7.1) by
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differentiating with respect to u and using the Implicit Function Theorem. However, in
many optimal control problems differentiation is not valid, usually because the control set
has a boundary and the extremal control may lie on the boundary. Thus one is led to
consider the map, defined for (x, p) ∈ X× Rn,

hΣ,L(x, p) : U → R
u 7→ HΣ,L(x, p, u),

and the corresponding problem of solving the equation

hΣ,L(x, p) · u = Hmax
Σ,L (x, p).

For α ∈ R let us denote

kerα(hΣ,L(x, p)) = {u ∈ U | hΣ,L(x, p) · u = α}.
Thus, for example, kerα(hΣ,L(ξ(t), λ(t))) is the collection of possible values of the extremal
control in the case when α = Hmax

Σ,L (ξ(t), λ(t)).
The following example shows that it might trivially be the case that the extremal control

will never be uniquely determined by asking that it lie in kerα(hΣ,L(t)), no matter the value
of α.

7.3 Example: (An example where all extremals are “singular”) Let X = R2, m = 2, and
take

f((x1, x2), (u1, u2)) = (x1, x2 + u1), L((x1, x2), (u1, u2)) = 1
2((x1)2 + (x2)2) + 1

2(u1)2.

Since f and L do not depend on u2, it follows that for any (x, p) ∈ X × R2 and for any
α ∈ R we will have

{(0, u2) | u2 ∈ R} ⊂ kerα(hΣ,L(x, p)).

Thus we will never be able to solve uniquely for the extremal control. •
This example is obviously stupid and contrived; we cannot solve uniquely for the ex-

tremal control because the control set is “too large.” However, it does point the way towards
some sort of reasonable notion of singularity. For x ∈ X we define a map

FΣ(x) : U → Rn

u 7→ f(x, u),

and for v ∈ Rn define

kerv(FΣ(x)) = {u ∈ U | FΣ(x) · u = v}.
With this notation we make the following definition of singularity.

7.4 Definition: (Regular and singular extremals) Let Σ = (X, f, U) be a control system, let
L be a Lagrangian, let t0, t1 ∈ R satisfy t0 < t1, and let S0, S1 ⊂ X be sets. Let (ξ, µ) be a
controlled extremal for P(Σ, L, S0, S1) (resp. for P(Σ, L, S0, S1, [t0, t1])) with λ0 ∈ {0,−1}
and λ : [t0, t1]→ Rn as in the statement of Theorem 3.4 (resp. Theorem 3.5). Suppose that
t ∈ [t0, t1] has the property that

HΣ,λ0L(ξ(t), λ(t), µ(t)) = Hmax
Σ,λ0L(ξ(t), λ(t))

(note that this holds for almost every t).
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(i) The controlled extremal (ξ, µ) is regular at t if

kerHmax
Σ,L (ξ(t),λ(t)) hΣ,L(ξ(t), λ(t)) = kerf(ξ(t),µ(t)) FΣ(ξ(t)).

(ii) The controlled extremal (ξ, µ) is singular at t if it is not regular at t.
(iii) If I ⊂ [t0, t1] is a subinterval of [t0, t1] then the controlled extremal (ξ, µ) is regular

(resp. singular) on I if it is regular (resp. singular) for almost every t ∈ I. •
The idea of a regular extremal, according to our definition, is that one can solve for

the extremal control in a way that is unique in the sense that any two possible extremal
controls will give the same dynamics for the system. For a singular extremal, on the other
hand, one may have another extremal control for which the dynamics of the system are
actually different. In these cases, to discriminate between different extremal controls, one
must consider so-called higher-order necessary conditions; see, for example [Krener 1977].
A great deal has been done along these lines for second-order conditions by Agrachev and
various coauthors (see, for example, [Agrachev and Sachkov 2004]).

While we have attempted to make our definition quite general, there are other possible
notions of singularity that come up, particularly in time-optimal control. We refer the
reader to [Bonnard and Chyba 2003] for a thorough discussion of singular extremals.

This is all we shall say here about the interesting and important notion of singularity.

7.3. Tangent cones and linearisation

Much of the Maximum Principle rests on the fact that the tangent cones K(µ, x0, t0, t)
and K±(µ, x0, t0, t) approximate the reachable set in the sense given by Lemmata 5.10
and 5.11, respectively. In order to get some sense of what this approximation means, we
shall consider the tangent cones in a special case. The discussion in this section is quite
unrelated to optimal control, and should rather be thought of as an attempt to understand
the tangent cones.

We consider a control system Σ = (X, f, U) and we suppose that 0 ∈ U . We also let
(x0, 0) ∈ X× U be a controlled equilibrium , by which we mean that f(x0, 0) = 0. Thus
(t 7→ x0, t 7→ 0) is a controlled trajectory for the system. Let us abbreviate the zero control,
t 7→ 0, merely by 0 and suppose this to be defined on an interval [t0, t1]. Note that the
variational equation is

v̇(t) = D1f(x0, 0) · v(t),

which is simply the standard Jacobian linearisation of the system about x0 subject to the
zero control. Let us abbreviate A = D1f(x0, 0) so that, following Example 1.3,

Φ(0, x0, t0, τ, t) · v = exp(A(t− τ)) · v.

A fixed interval needle variation at τ ∈ [t0, t1] will then have form vθ = lθf(x0, u) for u ∈ U ,
using the fact that f(x0, 0) = 0. Therefore, the fixed interval tangent cone K(0, x0, t0, t) is
the closed convex hull of the set of vectors of the form exp(A(t− τ)) · f(x0, u) for τ ∈ [t0, t]
and for u ∈ U .

The following result encodes the character of the fixed interval tangent cone in the
special case that is most commonly encountered.
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7.5 Proposition: (Tangent cones and linearisation) Suppose that

conv cone({f(x0, u) | u ∈ U})
is a subspace. Then, with the constructions above, K(0, x0, t0, t) is the smallest subspace
containing {f(x0, u) | u ∈ U} and which is invariant under A. Explicitly,

K(0, x0, t0, t) = conv cone({Ajf(x0, u) | j ∈ Z≥0, u ∈ U}).
Proof: We first prove a lemma which is sort of interesting on its own.

1 Lemma: Let V ⊂ Rn be a subspace and let A ∈ L(Rn; Rn). Then the following statements
are equivalent:

(i) V is invariant under A;
(ii) there exists an interval I ⊂ R with nonempty interior such that V is invariant under

exp(At) for each t ∈ I.

Proof: Suppose that V is A-invariant, let x ∈ V , and let I ⊂ R≥0 be an interval with
nonempty interior. Then Akx ∈ V for each k ∈ Z≥0. Thus, for each N ∈ Z>0 and for each
t ∈ I we have

N∑
k=1

tkAk

k!
x ∈ V

since V is a subspace. Since V is closed we have

exp(At)x = lim
N→∞

N∑
k=1

tkAk

k!
x ∈ V.

Now suppose that I ⊂ R≥0 is an interval with nonempty interior and that exp(At)x ∈ V
for every t ∈ I and x ∈ V . Let t0 ∈ int(I) and let x ∈ V so that exp(−At0)x ∈ V (we use
that fact that V is invariant under an invertible linear map L if and only if it is invariant
under L−1). Thus the curve t 7→ exp(At) exp(−At0)x takes values in V for all t sufficiently
near t0. Since V is a subspace we have

d
dt

∣∣∣
t=t0

exp(At) exp(−At0)x = Ax ∈ V,

and so V is A-invariant. H

From the lemma, the proposition follows immediately since K(0, x0, t0, t) is clearly the
smallest subspace containing {f(x0, u) | u ∈ U} which is invariant under exp(A(τ − t0)) for
τ ∈ [t0, t]. �

For control-affine systems one can make this result even more compelling. Thus we let
Σ = (X, f, U) be a control-affine system, i.e.,

f(x, u) = f0(x) + f1(x) · u,
for maps f0 : X→ Rn and f1 : X→ L(Rm; Rn). Given x0 ∈ X such that f0(x0) = 0 we then
have, using our notation from above, A = Df0(x0). Let us also define B = f1(x0). We
then have the following result which follows immediately from Proposition 7.5.
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7.6 Corollary: (Tangent cones and linearisation for control-affine systems) For a control-
affine system with the constructions above and with

0 ∈ int(conv({B(u) | u ∈ U})),
K(0, x0, 0, t) is the smallest A-invariant subspace of Rn containing image(B).

For readers familiar with linear control theory, and more specifically the geometric point
of view adopted in, say, [Wonham 1985], we comment that this means that K(0, x0, 0, t) is
equal to the columnspace of the Kalman controllability matrix[

B AB A2B · · · An−1B
]
.

The bottom line for the whole discussion is the following somewhat imprecisely stated
punchline.

The cone K(µ, x0, t0, t1) (or K±(µ, x0, t0, t1)) having a nonempty interior is a
generalisation of the system having a controllable linearisation.

7.7 Remark: (The relationship between controllability and optimal control) There is a say-
ing that goes, “Necessary conditions for optimality are sufficient conditions for controlla-
bility, and vice versa.” The punchline above illustrates what this saying might mean as
concerns the necessary conditions of the Maximum Principle and the sufficient condition
for controllability given by the controllability of the linearisation. Expansions of this say-
ing beyond the Maximum Principle and beyond linearised controllability require so-called
“higher-order” conditions. Such things are explored, for example, by Krener [1977]. Here
let us merely remark that this is related to the notion of singular extremals. •

7.4. Differential geometric formulations

A much better conceptual understanding of the Maximum Principle is possible if all of
the constructions surrounding it are carried out in the framework of differential geometry.
Many of the constructions are simply more natural and intuitive when stated in terms of
manifolds, tangent spaces, vector fields, one-forms, etc. We have stopped short of doing this
explicitly in our development in order to make the presentation accessible (note easy, note)
to those who do not know any differential geometry. In this section we shall sketch how
one can translate at least some of the constructions into the differential geometric world.
Readers familiar with differential geometry can then easily complete the process on their
own. For readers unfamiliar with differential geometry, we can only recommend that, as a
matter of course, they take steps to undo their plight.

Sussmann has devoted some effort to understanding the geometry behind the Maximum
Principle. A good account of some part of this can be found in the paper [Sussmann 1997].

7.4.1. Control systems. The first abstraction one makes is to use a manifold M as the
state space. If we keep the control set U as a subset of Rm, then the map f giving the
system dynamics becomes a map f : M×cl(U)→ TM with the property that f(x, u) ∈ TxM
for every (x, u) ∈ M× cl(U). The system equations then take the form

ξ′(t) = f(ξ(t), µ(t)).
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Different and/or more general notions of control systems are possible, but we do not elect
to pursue this here. The definitions of various classes of controls and controlled trajectories
can be made exactly as in our non-differential geometric formulation. One must be careful
to understand what is meant by an absolutely continuous curve on a manifold, but this is
easily done.

One can also define Lagrangians for control systems on manifolds in the same manner
as we have done. This, of course, then allows one to formulate analogues of the standard
optimal control problems, Problems 1.7 and 1.8.

7.4.2. The Maximum Principle. The Maximum Principle can also easily be stated for
control systems and corresponding optimal control problems on manifolds. For example,
the Hamiltonian can be defined exactly as we have done in our treatment. The only thing
one needs to be aware of is that the manifold will not generally have an inner product,
and so in the definition of the Hamiltonian, one should think of “p” as being an element of
the cotangent space at x ∈ M. Thus the Hamiltonian and the maximum Hamiltonian are
functions on T∗M× U and T∗M, respectively. Some readers may be aware of the fact that
the cotangent bundle has a canonical symplectic structure. This introduces a fairly deep
connection with optimal control to symplectic geometry. Indeed, this connection lies behind
the “derivation” of the Maximum Principle from the calculus of variations in Section 2.4.

The other part of the Maximum Principle that one must be careful to understand
properly is the adjoint response. In the geometric formulation, the adjoint response is an
absolutely continuous one-form field along the trajectory of the system. The differential
equation for the adjoint response as given in Definition 3.2 is the Hamiltonian vector field
associated with the system’s natural Hamiltonian and the canonical cotangent bundle sym-
plectic structure. We will see in a moment another interpretation of the differential equation
for the adjoint response.

The final ingredient in the Maximum Principle is the transversality conditions. First
of all, in the differential geometric formulation one should replace our clumsy notion of a
“smooth constraint set” with the more natural notion of a submanifold. In this case, the
transversality condition is that the adjoint response should annihilate the tangent spaces
to S0 and S1 at the endpoints.

7.4.3. The variational and adjoint equations, and needle variations. The varia-
tional and adjoint equations have analogues in the differential geometric setting. To make
this development precise requires a pile of notation, so we shall merely sketch things here.
We refer to [Lewis and Tyner 2003, Sussmann 1997] for details.

The variational equation describes, as is made precise in Proposition 4.3, the linearisa-
tion of a control system along a trajectory. There are various ways to think about this in
a geometric setting. Two natural ways are the following.
1. The tangent lift: Given a time-dependent vector field X : R×M→ TM (such as might

be obtained by substituting a specific control into the equations for a control system),
one can define its tangent lift , a time-dependent vector field on TM, in coordinates by

XT (t, vx) = Xi(t, x)
∂

∂xi
+
∂Xi

∂xj
(t, x)vj

∂

∂vi
.
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The integral curves of this vector field are easily seen to be vector fields along inte-
gral curves of X. One can show that these integral curves are related to infinitesimal
variations of integral curves of X exactly in the manner described by Proposition 4.3.

2. The differential operator point of view: One can think of the variational equation as a
differential operator on the absolutely continuous vector fields along a trajectory of the
system. There are many such possible choices of differential operator (for example, one
such differential operator can be assigned in a natural way given an affine connection on
M). There is, however, a natural one associated to the integral curve of a vector field.
This natural one corresponds to what is often called the “Lie drag.” Moreover, this
natural one also agrees with the use of the tangent lift to give the variational equation.

In this way, after some technical work, one can understand the variational equation in the
differential geometric sense.

For the adjoint equation, there are similarly (at least) two alternative and equivalent
ways of thinking of it.
1. The cotangent lift: For a time-dependent vector field X on M its cotangent lift is the

time-dependent vector field on T∗M defined in coordinates by

XT ∗(t, αx) = Xi(t, x)
∂

∂xi
− ∂Xj

∂xi
(t, x)pj

∂

∂pi
.

This vector field can be defined intrinsically as the Hamiltonian vector field for the
time-dependent Hamiltonian HX(t, αx) = 〈αx;X(t, x)〉. Similarly to the tangent lift,
the integral curves of the cotangent lift are one-form fields along integral curves of X.
These one-form fields satisfy the adjoint equation in our sense in local coordinates.

2. The differential operator point of view: A differential operator on vector fields along a
curve induces in a natural way a differential operator on tensor fields along the same
curve. In particular, the variational equation induces a differential operator on the
one-form fields along a curve. If one chooses the natural differential operator for the
vector fields along a trajectory of a control system, the corresponding natural differential
operator for one-form fields is exactly the adjoint equation.
With the variational equation understood, one can now define the various notions of nee-

dle variations just as we have done, and prove the similar results concerning their existence
and form.

7.4.4. Tangent cones. The definitions of the tangent cones can be made pretty much
exactly as we have done in our treatment. The only thing one needs to be aware of is
that, in the geometric formulation, the tangent cones K(µ, x0, t0, t) and K±(µ, x0, t0, t) are
subsets of Tξ(t)M where ξ = ξ(µ, x0, t0, ·). This is one of the places in the development
where the geometric formulation really helps to clarify what one is doing. In our non-
geometric development, one get confused about where these cones really live, and this
makes the interpretation of Lemmata 5.10 and 5.11 more difficult that it should be. Indeed,
in Exercise E7.5 we invite the reader to provide geometric formulations of lemmata. We
recommend that the reader do this in order to really understand what is really going on here.
Once one has done this, then a deeper understanding of the very important Theorems 5.16
and 5.18 will also follow.
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Exercises

E7.1 Prove Proposition 7.2.

E7.2 Consider the control system Σ = (X, f, U) defined by
(i) X = R2,
(ii) f(x, u) = (x2, u),

(iii) U = [−1, 1].
Define a Lagrangian for Σ by L((x1, x2), u) = 1. We consider the problem
P = P(Σ, L, {(0, 0)}, {(x1

0, x
2
0)}) of steering the system from the origin to a point

(x1
0, x

1
0) ∈ X in minimum time.

While our main interest is in extremal trajectories emanating from (0, 0), many of
the questions below actually are true for more general extremal trajectories. There-
fore, we ask that you take (0, 0) as the original point only in those cases where you
are explicitly asked to do so.

(a) Determine the extremal control u as a function of (x1, x2, p1, p2).
(b) Show that if a curve t 7→ (x1(t), x2(t)) solves P then there exists a curve

t 7→ (p1(t), p2(t)) such that

ẋ1 = x2, ẋ2 = u, ṗ1 = 0, ṗ2 = −p1.

(c) Based on your answer in (a), why does it make sense to call the set

S = {(x1, x2, p1, p2) ∈ X× R2 | p2 = 0}

the switching surface?
(d) Show that every solution to P intersects S at most once.
(e) Show that the extremals then satisfy the equations

ẋ1 = x2, ẋ2 = ±1.

Sketch the solutions to these differential equations for fixed sign of the control.
(f) For the initial condition (0, 0) and a given final condition (x1

0, x
2
0), indicate how

to determine whether the control starts as u = +1 or u = −1, and determine
the time at which a switch must occur.

(g) Show that all abnormal extremals are contained in the surface p1x2 +
sign(p2)p2 = 0.

(h) Show that if ts is the switching time for an abnormal extremal then x2(ts) = 0.
(i) Argue that any abnormal extremal originating from (0, 0) contains no switches.
(j) Sketch the set of points reachable from (0, 0) in time T > 0. Argue based on

the material in Section 7.1 that the extremal trajectories originating from (0, 0)
are normal.

The following exercise exhibits the so-called “Fuller phenomenon,” first pointed out by
Fuller [1960].
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E7.3 Consider the control system Σ = (X, f, U) defined by
(i) X = R2,
(ii) f(x, u) = (x2, u),
(iii) U = [−1, 1].
Define a Lagrangian for Σ by L((x1, x2), u) = 1

2(x1)2. We consider the problem P ,
P(Σ, L, {(x1

0, x
2
0)}, {(0, 0)}, [0, T ]) of steering the system from a point (x1

0, x
2
0) ∈ X

to the origin in time T while minimising the integral of the square of the distance of
x1 from 0.

(a) Determine the extremal control u as a function of (x1, x2, p1, p2).
(b) Show that if a curve t 7→ (x1(t), x2(t)) solves P then there exists a curve

t 7→ (p1(t), p2(t)) and λ0 ∈ {0,−1} such that

ẋ1 = x2, ẋ2 = u, ṗ1 = −λ0x1, ṗ2 = −p1.

(c) Based on your answer in (a), why does it make sense to call the set

S = {(x1, x2, p1, p2) ∈ X× R2 | p2 = 0}

the switching surface?
(d) Show that the extremals then satisfy the equations

ẋ1 = x2, ẋ2 = ±1.

Sketch the solutions to these differential equations for fixed sign of the control.
(e) Show that it is not possible for an extremal to start on S \ {((0, 0), (0, 0))} and

reach ((0, 0), (0, 0)) ∈ X×R2 without again passing through S \ {((0, 0), (0, 0))}
(just consider the case when λ0 = −1).

E7.4 Consider a control system Σ = (X, f, U),

f(x, u) = f0(x) + f1(x) · u,

with U = Rm and with f1(x) injective for each x ∈ X. Show that all abnormal
extremals associated with a given Lagrangian L are singular.

E7.5 (For readers who know some differential geometry.) State Lemmata 5.10 and 5.11 in
a differential geometric formulation for control systems.



Chapter 8

Linear quadratic optimal control

One of the more spectacular successes of the theory of optimal control concerns linear
systems with quadratic Lagrangians. A certain variant of this problem, which we discuss in
Section 8.4, leads rather surprisingly to a stabilising state feedback law for linear systems.
This state feedback law is so effective in practice that it sees many applications in that
place some refer to as “the real world.”

We shall not attempt to be as exhaustive in our treatment in this section as we have
been up to this point. Our intent is principally to illustrate the value of the Maximum
Principle in investigating problems in optimal control. As we shall see, even in this case it
is typical that work remains to be done after one applies the Maximum Principle.

The ideas in this chapter originate with the seminal paper of Kalman [1960], and have
been extensively developed in the literature. They now form a part of almost any graduate
course on “linear systems theory.” There are many texts for such a course, indeed too many
to make it sensible to mention even one (almost such as might be the case with, say, texts
on calculus or linear algebra). We will let the reader discover which one they like best.

8.1. Problem formulation

We consider a linear system Σ = (A,B,U) and take U = Rm. Thus the dynamics of
the system are governed by

ξ̇(t) = A(ξ(t)) +B(µ(t)).

In order to eliminate uninteresting special cases, we suppose make the following assump-
tion throughout this section.

8.1 Assumption: (Property of B) The matrix B is full rank and m ∈ Z>0. •
We next consider symmetric matrices Q ∈ L(Rn; Rn) and R ∈ L(Rm; Rm) with R

positive-definite (denotedR > 0). It is sometimes possible to relax the definiteness condition
on R. However, this adds complications to the problem that we will simply not consider
here. The Lagrangian we use is then given by

L(x, u) = 1
2x

TQx+ 1
2u

TRu.

Note that the cost for a controlled trajectory (ξ, µ) defined on [t0, t1] is

JΣ,L(ξ, µ) =
∫ t1

t0

(
1
2ξ(t)

TQξ(t) + 1
2µ(t)TRµ(t)

)
dt,

89
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which can be thought of as the sum of weighted L2-norms of the state and the control.
This way of thinking of the cost function opens the door to a rich function analytic way of
thinking about linear quadratic optimal control. We will have nothing to say about this,
but refer to [Dullerud and Paganini 1999] as a fairly recent reference in an area where much
has been published.

For a given linear system Σ = (A,B,Rm) and given symmetric matrices Q and R > 0,
we will be interested in the fixed interval optimal control problem of steering from an initial
state x0 ∈ Rn at time t0 to an unspecified final state at time t1 (thus the final constraint
set is S1 = Rn). Let us denote the set of optimal controlled trajectories for this problem
by P(A,B,Q,R, x0, t0, t1).

8.2. The necessary conditions of the Maximum Principle

It is fairly easy to characterise the controlled extremals for the linear quadratic optimal
control problem.

8.2 Proposition: (The Maximum Principle for linear quadratic optimal control) Let Σ =
(A,B,Rm) be a linear control system, let Q ∈ L(Rn; Rn) and R ∈ L(Rm; Rm) be sym-
metric with R > 0, let x0 ∈ Rn, and let t0, t1 ∈ R satisfy t0 < t1. If (ξ∗, µ∗) ∈
P(A,B,Q,R, x0, t0, t1) then there exists a map λ∗ : [t0, t1] → Rn such that together ξ∗
and λ∗ satisfy the initial/final value problem[

ξ̇∗(t)
λ̇∗(t)

]
=

[
A −S
Q −AT

] [
ξ∗(t)
λ∗(t)

]
, ξ∗(t0) = x0, λ∗(t1) = 0,

where S = BR−1BT .

Proof: We first note that we have λ∗(t1) = 0 by the transversality conditions of the Max-
imum Principle. In this case, the fact that the total adjoint response must be nonzero
ensures that λ0

∗ = −1. Thus the maximum Hamiltonian is

HΣ,−L(x, p, u) = 〈p,Ax+Bu〉 − (1
2x

TQx+ 1
2u

TRu
)
,

which is a quadratic function of u with a negative-definite second derivative. Thus the
unique maximum occurs at the point where the derivative of the Hamiltonian with respect
to u vanishes. That is to say, for almost every t ∈ [t0, t1] we have

µ∗(t) = −R−1BTλ∗(t),

as may be verified by a direct computation. Since the adjoint equations for the extended
system are

ξ̇0(t) = 1
2ξ
T
∗ (t)Qξ∗(t) + 1

2µ
T
∗ (t)Rµ∗(t),

ξ̇(t) = A(ξ(t)) +B(µ(t)),

λ̇0(t) = 0,

λ̇(t) = Q(ξ(t))−AT (λ(t)),

one can substitute the form of the optimal control into the second of these equations to get
the differential equations in the statement of the result. Obviously we must have ξ∗(t0) = x0.
That λ∗(t1) = 0 follows since the terminal condition is unspecified (i.e., S1 = Rn). �
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8.3. The rôle of the Riccati differential equation

In this section we introduce an important player in the theory of linear quadratic op-
timal control, the Riccati equation. For symmetric matrices Q and S the Riccati dif-
ferential equation is the following differential equation for the n × n matrix function
F : I → L(Rn; Rn):

Ḟ (t) + F (t)A+ATF (t)− F (t)SF (t) +Q = 0.

This is a nonlinear differential equation so it is not trivial to characterise its solutions in a
useful way. In particular, one must typically obtain solutions numerically. For us, the main
question of interest will be, “When does the Riccati equation possess solutions?” As we
shall see, this is intimately connected with the linear quadratic optimal control problem.

Indeed, we have the following theorem.

8.3 Theorem: (Characterisation of solutions of linear quadratic optimal control problem)
Let Σ = (A,B,Rm) be a linear control system, let Q ∈ L(Rn; Rn) and R ∈ L(Rm; Rm) be
symmetric with R > 0, and let t0, t1 ∈ R satisfy t0 < t1. Then the following statements are
equivalent:

(i) for each t′0 ∈ [t0, t1] and x0 ∈ Rn, P(A,B,Q,R, x0, t
′
0, t1) 6= ∅;

(ii) for each t′0 ∈ [t0, t1] and x0 ∈ Rn, P(A,B,Q,R, x0, t
′
0, t1) is a singleton;

(iii) the solution of the Riccati differential equation exists and is bounded on [t0, t1] when
subject to the final condition F (t1) = 0n×n;

(iv) the solution to the final value problem[
Ξ̇(t)
Λ̇(t)

]
=

[
A −S
−Q −AT

] [
Ξ(t)
Λ(t)

]
, Ξ(t1) = In, Λ(t1) = 0n×n, (8.1 )

for matrices Ξ,Λ ∈ L(Rn; Rn) has the property that det Ξ(t) 6= 0 for each t ∈ [t0, t1].

Proof: The following “completing the squares” lemma, while simple, is integral to the prob-
lem.

1 Lemma: Let F : [t0, t1] → L(R; R) be absolutely continuous and let (ξ, µ) be a controlled
trajectory for (A,B,Rm). Then

∫ t1

t0

[
µ(t)
ξ(t)

]T [
0n×n BTF (t)
F (t)B Ḟ (t) +ATF (t) + F (t)A

] [
µ(t)
ξ(t)

]
dt

= (ξ(t1)TF (t1)ξ(t1)− ξ(t0)TF (t0)ξ(t0)).

Proof: We have

d
dt
(
ξ(t)TF (t)ξ(t)

)
= ξ̇(t)TF (t)ξ(t) + ξ(t)T Ḟ (t)ξ(t) + ξ(t)F (t)ξ̇(t),

and the result follows by integrating both sides and substituting ξ̇(t) = A(ξ(t))+B(µ(t)).H
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(i) =⇒ (ii) According to the proof of Proposition 8.2, if (ξ∗, µ∗) ∈
P(A,B,Q,R, x0, t

′
0, t1) then

µ∗(t) = −R−1BTλ∗(t),

where λ∗ is determined by it, along with ξ∗, satisfying the initial/final value problem in the
statement of Proposition 8.2.

(ii) =⇒ (i) This is trivial.
(iii) =⇒ (i) With F being the bounded solution to the Riccati differential equation with

F (t1) = 0n×n, we add the identity from Lemma 1 to the cost function, i.e., add zero to
the cost function. After some straightforward manipulations we determine that the cost
function for P(A,B,Q,R, x0, t

′
0, t1) is∫ t1

t′0
‖µ(t) +R−1BTF (t)ξ(t)‖2dt+ ξ(t′0)TF (t′0)ξ(t′0).

Thus we see that taking
µ∗(t) = −R−1BTF (t)ξ∗(t),

immediately renders (ξ∗, µ∗) as an optimal trajectory.
(i) =⇒ (iii) Suppose that there exists t′0 ∈ [t0, t1] such that limt↓t′0‖F (t)‖ =∞ where F

is the solution to the Riccati differential equation with F (t1) = 0n×n. We suppose that the
solution is bounded on [τ, t1] for any τ ∈ [t′0, t1], which we may do using the local existence
of solutions of the Riccati differential equation near t1. We let x0 ∈ Rn have the property
that

lim
t↓t′0
|xT0 F (t)x0| =∞.

Using our computations from the preceding part of the proof, if (ξ, µ) is a controlled trajec-
tory defined on [t′0, t1] satisfying ξ(t′0) = x0, then we have the cost from τ to t1 as bounded
below by ξ(τ)TF (τ)ξ(τ). Thus

lim
τ↓t′0
|ξ(τ)TF (τ)ξ(τ)| =∞,

meaning that P(A,B,Q,R, x0, t
′
0, t1) = ∅.

(i) =⇒ (iv) We first use a lemma.

2 Lemma: For curves ξ, λ : [t0, t1]→ Rn, consider the following statements:
(i) the curves are a solution to the initial/final value problem[

ξ̇(t)
λ̇(t)

]
=

[
A −S
−Q −AT

] [
ξ(t)
λ(t)

]
, ξ(t0) = x0, λ(t1) = 0;

(ii) ξ(t) = Ξ(t)ξ(t1) and λ(t) = Λ(t)ξ(t1) where Ξ and Λ satisfy (8.1).
Then (i) =⇒ (ii).

Proof: With ξ and λ defined as satisfying the initial/final value problem from part (i),
define ξ̂(t) = Ξ(t)ξ(t1) and λ̂(t) = Λ(t)ξ(t1) where Ξ and Λ satisfy the final value problem
from part (ii). One can then verify by direct computation that ξ and λ together satisfy
the same differential equations as ξ̂ and λ̂. Moreover, we immediately have ξ̂(ξ1) = ξ(t1)
and λ̂(t1) = 0. Thus ξ̂ and λ̂ agree with ξ and λ at time t1, and so agree by uniqueness of
solutions of differential equations. H
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Now, given x0 ∈ Rn we will show that x0 ∈ image(Ξ(t′0)) for each t′0 ∈ [t0, t1]. Let
(ξ∗, µ∗) ∈ P(A,B,Q,R, x0, t

′
0, t1). By Lemma 2, ξ∗(t) = Ξ(t)ξ∗(t1) and the corresponding

adjoint response λ∗ defined in the proof of Proposition 8.2 satisfies λ∗(t) = Λ(t)ξ∗(t1) where
Ξ and Λ are the solution of the final value problem (8.1). We then have

x0 = ξ∗(t′0) = Ξ(t′0)ξ∗(t1),

meaning that Ξ(t′0) is surjective. Thus det Ξ(t′0) 6= 0.
(iv) =⇒ (iii) We define F (t) = Λ(t)Ξ(t)−1 and claim that F satisfies the Riccati differ-

ential equation with F (t1) = 0. The final condition clearly holds, so we need only check
that F satisfies the Riccati differential equation. Let x′ ∈ Rn and let t′ ∈ [t0, t1]. Define
x1 ∈ Rn by Ξ(t′)x1 = x′, this being possible since Ξ is invertible on [t0, t1]. Now let ξ and
λ solve the final value problem[

ξ̇(t)
λ̇(t)

]
=

[
A −S
−Q −AT

] [
ξ(t)
λ(t)

]
, ξ(t1) = x1, λ(t1) = 0.

By Lemma 2 we have ξ(t) = Ξ(t)ξ(t1) and λ(t) = Λ(t)ξ(t1) where Ξ and Λ satisfy (8.1).
Therefore, λ(t) = F (t)ξ(t). We now have the four relations

ξ̇(t) = A(ξ(t))− S(λ(t)),

λ̇(t) = −Q(ξ(t))−AT (λ(t)),
λ(t) = F (t)ξ(t),

λ̇(t) = Ḟ (t)ξ(t) + F (t)ξ̇(t).

(8.2)

Equating the right-hand sides of the second and fourth of these equations, and using the
first and third of the equations, gives(

Ḟ (t) + F (t)A+ATF (t)− F (t)SF (t) +Q
)
ξ(t) = 0.

Evaluating at t′ gives(
Ḟ (t′) + F (t′)A+ATF (t′)− F (t′)SF (t′) +Q

)
x′ = 0.

Since t′ ∈ [t0, t1] and x′ ∈ Rn are arbitrary, this shows that F does indeed satisfy the Riccati
differential equation. Thus the Riccati equation has a bounded solution by virtue of the
fact that Λ(t)Ξ(t)−1 is bounded, it being comprised from solutions to a linear differential
equation with Ξ(t)−1 being bounded. �

8.4 Remark: (Solutions to the Riccati differential equation) Note that during the course
of the proof we showed that the solution to the Riccati differential equation with final
condition F (t1) = 0n×n is given by F (t) = Λ(t)Ξ(t)−1, where Ξ and Λ solve the initial/final
value problem from part (iv) of the theorem. Thus, while the Riccati differential equation
is nonlinear, one can obtain its solution by solving a linear differential equation. •
8.5 Remark: (The rôle of controllability) It is useful to have a checkable sufficient condi-
tion to ensure that the equivalent conditions of Theorem 8.3 are met. Probably the most
commonly encountered sufficient condition is that Q be positive-semidefinite and that the
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system (A,B,Rm) be controllable, by which we mean that the Kalman controllability ma-
trix [

B AB A2B · · · An−1B
]

has full rank. This is discussed by Brockett [1970]. •
The following consequence of the theorem is the one that is most commonly emphasised

in the theory.

8.6 Corollary: (Solutions to linear quadratic optimal control problems as state feedback)
Let Σ = (A,B,Rm) be a linear control system, let Q ∈ L(Rn; Rn) and R ∈ L(Rm; Rm) be
symmetric with R > 0, and let t0, t1 ∈ R satisfy t0 < t1. Suppose that the Riccati differential
equation possesses a bounded solution F : [t0, t1]→ L(Rn; Rn) subject to the final condition
F (t1) = 0n×n. Then, for x0 ∈ Rn, the unique element (ξ∗, µ∗) ∈ P(A,B,Q,R, x0, t0, t1)
satisfies the initial value problem

ξ̇∗(t) =
(
A−BR−1BTF (t)

)
ξ∗(t), ξ∗(t0) = x0.

Note that the optimal trajectories are thus simply solutions to a linear differential
equation in the state since the optimal control µ∗ is given as a linear function of the
state: µ∗(t) = −R−1BTF (t)ξ∗(t). Thus we say that the linear quadratic optimal control
problem gives a “linear state feedback” as a solution. This is somewhat remarkable.

There is much one can say about the Riccati differential equation and its relationship
to linear quadratic optimal control. For example, it can be shown that if Q is positive-
semidefinite, then the solutions of the Riccati differential equation exist on intervals of
arbitrary length. However, we shall terminate our discussion with what we have since our
aim was merely establish a connection with the Maximum Principle.

8.4. The infinite horizon problem

In this section we extend the terminal time for the linear quadratic optimal control
problem to infinity. In doing so, we must make an additional assumption about our system
to ensure that the limiting process is well defined. However, upon doing so we improve the
character of the final result in that the resulting linear state feedback is time-independent.

The problem we study is thus the following.

8.7 Problem: (Infinite horizon linear quadratic optimal control problem) Let Σ =
(A,B,Rm) be a linear control system, and let Q ∈ L(Rn; Rn) and R ∈ L(Rm; Rm) be
symmetric with R > 0. Let U∞ be the set of controls µ ∈ L2([0,∞); Rm) for which
all controlled trajectories (ξ, µ) satisfy ξ ∈ L2([0,∞); Rn). For x0 ∈ Rn, a solution to
the infinite horizon linear quadratic optimal control problem from x0 is a pair
(ξ∗, µ∗) ∈ Ctraj([0,∞)) with µ∗ ∈ U∞ and with ξ∗(0) = x0 such that, for any other pair
(ξ, µ) ∈ Ctraj([0,∞)) with µ ∈ U∞ and with ξ(0) = x0,∫ ∞

0

(
1
2ξ∗(t)

TQξ∗(t) + 1
2µ∗(t)

TRµ∗(t)
)

dt ≤
∫ ∞

0

(
1
2ξ(t)

TQξ(t) + 1
2µ(t)TRµ(t)

)
dt.

We denote by P∞(A,B,Q,R, x0) the set of solutions to the infinite horizon linear quadratic
optimal control problem from x0. •
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We now wish to state the analogue to Theorem 8.3 for this infinite horizon problem. To
do so we need what will turn out to be the analogue of the Riccati differential equation.
This turns out to be, interestingly, an algebraic equation called the algebraic Riccati
equation :

ATF + FA− FSF +Q = 0,

where, as usual, S = BR−1BT . The main theorem is then the following. We omit the proof
since it would take us a little far afield from the Maximum Principle. The reader can refer
instead to [Dullerud and Paganini 1999].

8.8 Theorem: (Characterisation of solutions of the infinite horizon linear quadratic optimal
control problem) Let Σ = (A,B,Rm) be a linear control system and let Q ∈ L(Rn; Rn) and
R ∈ L(Rm; Rm) be symmetric with R > 0. Then the following statements are equivalent:

(i) for each x0 ∈ Rn, P∞(A,B,Q,R, x0) 6= ∅;
(ii) for each x0 ∈ Rn, P∞(A,B,Q,R, x0) is a singleton;

(iii) there exists a solution F to the algebraic Riccati equation such that the matrix

A−BR−1BTF

is Hurwitz;
(iv) the matrix [

A −S
Q −AT

]
has no eigenvalues on the imaginary axis.

8.9 Remark: (The rôle of controllability and stabilisability) It is clear that the linear system
(A,B,Rm) must be stabilisable in order for any one of the equivalent conditions of the
theorem to be satisfied. This condition, however, is not sufficient. A sufficient condition,
one that is often met in practice, is that Q be positive-semidefinite and that (A,B,Rm) be
controllable, by which it is meant that the Kalman controllability matrix[

B AB A2B · · · An−1B
]

has maximal rank. As for the discussion in the finite horizon case, we refer to [Brockett
1970] for details of this sort. •

The theorem has the following corollary which, as with the corresponding corollary to
Theorem 8.3, is often the point of most interest.

8.10 Corollary: (Solution to infinite horizon linear quadratic optimal control problems as
state feedback) Let Σ = (A,B,Rm) be a linear control system and let Q ∈ L(Rn; Rn) and
R ∈ L(Rm; Rm) be symmetric with R > 0. Suppose that the algebraic Riccati equation
possesses a solution F such that A−BR−1BTF is Hurwitz. Then, for x0 ∈ Rn, the unique
element (ξ∗, µ∗) ∈P∞(A,B,Q,R, x0) satisfies the initial value problem

ξ̇∗(t) =
(
A−BR−1BTF

)
ξ∗(t), ξ∗(0) = x0.
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The point is exactly that seen in the finite horizon case: the optimal trajectories are solu-
tions of a linear differential equation. Now we even have the additional feature that the dif-
ferential equation is time-independent. Note that the linear feedback µ∗(t) = −R−1BTFξ(t)
makes the system a stable linear system, even when A itself is not Hurwitz. Thus the op-
timal control problem leads to a stabilising linear state feedback. Moreover, this linear
feedback can be shown to have many remarkable properties. We do not touch on this, but
refer the reader to, for example, [Zhou 1996].

8.5. Linear quadratic optimal control as a case study of abnormality

In this section we show that the linear quadratic optimal control problem of steer-
ing between two specified points possesses no abnormal extremals. We do this for two
reasons: (1) the discussion reveals something interesting about situations where possibly
abnormal, but not abnormal, extremals arise; (2) the details of this are often not carried
out carefully in the literature.

We consider a linear control system Σ = (A,B,Rm), we let x0, x1 ∈ Rn, we let t0, t1 ∈ R
satisfy t0 < t1, and we let Q ∈ L(Rn; Rn) and R ∈ L(Rm; Rm) be symmetric and satisfy
R > 0. We let L be the usual Lagrangian defined by Q and R. The optimal control problem
we consider is that with solutions P(Σ, L, {x0}, {x1}, [t0, t1]) which steer from x0 at time
t0 to x1 at time t1 with minimum cost. To study the rôle of abnormality in this problem
the Kalman controllability matrix

C(A,B) =
[
B AB A2B · · · An−1B

]
.

plays a key part. As we discussed in Section 7.3, the system Σ is controllable (meaning one
state can be steered to another) if and only if C(A,B) has maximal rank.

The first result we prove shows that problems where C(A,B) does not have maximal
rank are, in some sense, degenerate.

8.11 Proposition: (All trajectories for uncontrollable systems are possibly abnormal ex-
tremals) Let Σ = (A,B,Rm) be a linear control system and let (ξ, µ) be a controlled trajec-
tory for Σ defined on I ⊂ R. Let t0 ∈ I and let λ0 ∈ Rn be orthogonal to the columnspace
of the matrix C(A,B). Then the adjoint response λ : I → Rn for Σ along (ξ, µ) which sat-
isfies λ(t0) = λ0 has the property that λ(t) is orthogonal to the columnspace of the matrix
C(A,B) for every t ∈ I.

In particular, if C(A,B) is not of maximal rank and if (ξ, µ) ∈ Carc(Σ, [t0, t1]), then
(ξ, µ) is a possibly abnormal extremal for P(Σ, L, {x0}, {x1}, [t0, t1]).

Proof: We recall from basic linear systems theory (see, for example, [Brockett 1970]) that if
we make an orthogonal change of basis to {v1, . . . , vk, vk+1, . . . , vn} so that the first k basis
vectors form a basis for the column space of the matrix C(A,B), then the system in the
partitioned basis has the form[

ξ̇1(t)
ξ̇2(t)

]
=

[
A11 A12

0(n−k)×k A22

] [
ξ1(t)
ξ2(t)

]
+

[
B1

0(n−k)×m

]
µ,
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for appropriate matrices A11, A12, A22, and B1. The corresponding equation for an adjoint
response for Σ along (ξ, µ) is then[

λ̇1(t)
λ̇2(t)

]
= −

[
AT11 0k×(n−k)

AT12 AT22

] [
λ1(t)
λ2(t)

]
.

The first assertion of the proposition follows from the observation that the subspace or-
thogonal to the columnspace of the matrix C(A,B) is spanned by {vk+1, . . . , vn}, and the
fact that this subspace is invariant under the adjoint equation.

The final assertion of the proposition follows since an adjoint response for Σ along (ξ, µ)
is an adjoint response for (Σ, λ0L) along (ξ, µ) with λ0 = 0. �

The result states, rather alarmingly, that all controlled trajectories satisfy the conclu-
sions of the Maximum Principle in the case when C(A,B) does not have full rank. Therefore,
taken at face value, the Maximum Principle possibly tells us nothing about solutions of the
problem. However, the next result indicates that it is possible to still get useful information
from the Maximum Principle.

8.12 Proposition: (Reduction of linear quadratic optimal control problems to the normal
case) Let Σ = (A,B,Rm) be a linear control system, let t0, t1 ∈ R satisfy t0 < t1, let
Q ∈ L(Rn; Rn) and R ∈ L(Rm; Rm) be symmetric with R > 0, let L be the quadratic
Lagrangian defined by Q and R, and let S0, S1 ⊂ Rn be smooth constraint sets. If (ξ∗, µ∗) ∈
P(Σ, L, S0, S1, [t0, t1]) then there exists an nonzero adjoint response λ∗ : [t0, t1] → Rn for
(Σ,−L) such that

HΣ,λ0∗L(ξ∗(t), λ∗(t), µ∗(t)) = Hmax
Σ,λ0∗L

(ξ∗(t), λ∗(t))

for almost every t ∈ [t0, t1].

Proof: We suppose that we make an orthogonal change of basis to {v1, . . . , vk, vk+1, . . . , vn}
where the first k basis vectors form a basis for the columnspace of the matrix C(A,B). The
corresponding adjoint equation for the extended system is thenλ̇0(t)

λ̇1(t)
λ̇2(t)

 =

 0 0 0
−Q11ξ1(t)−Q12ξ2(t) −AT11 0k×(n−k)

−Q21ξ1(t)−Q22ξ2(t) −AT12 −AT22


λ0(t)
λ1(t)
λ2(t)

 .
Note that if the initial equation for this system at some time τ ∈ [t0, t1] satisfies λ0(τ) = 0
and λ1(τ) = 0 then it follows that λ0(t) = 0 and λ1(t) = 0 for all t ∈ [t0, t1]. This is because
the subspace defined by p0 = 0 and p1 = 0 is invariant under the matrix for the adjoint
response. For this reason, if λ0 ∈ {0,−1} and if t 7→ λ(t) is an adjoint response for (Σ, λ0L),
then t 7→ λ(t)+ λ̃(t) is also an adjoint response for (Σ, λ0L) where λ̃ is any adjoint response
for Σ satisfying λ̃1(t0) = 0.

Now suppose that λ0
∗ and λ̃∗ satisfy the conclusions of the Maximum Principle for the

optimal controlled trajectory (ξ∗, µ∗). Let us write the decomposition of λ̃∗ in the basis
{v1, . . . , vn} as λ̃∗ = λ̃∗1 + λ̃∗2. Now define λ∗ = λ̃∗1 so that λ∗(t) lies in the columnspace of
C(A,B) for each t ∈ [t0, t1]. Our computations above ensure that λ∗ is an adjoint response
for (Σ, λ0

∗L) along (ξ∗, µ∗).
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Let us show that the Hamiltonian maximisation condition is satisfied for λ0
∗ and λ∗. If

we write the Hamiltonian using the decomposition of the coordinates corresponding to the
basis {v1, . . . , vn} we have

HΣ,λ0∗L((x1, x2), (p1, p2), u) = 〈p1, A11x1 +A12x2 +B1u〉
+ 〈p2, A22x2〉+ λ0

∗(
1
2x

TQx+ 1
2u

TRu).

The control which minimises this is

u = −R−1BT p = −R−1BT
1 p1.

Since this expression is independent of p2, the Hamiltonian maximisation condition holds
for λ0

∗ and λ̃∗ if and only if it holds for λ0
∗ and λ∗.

Now let us show that if (ξ∗, µ∗) is optimal, then λ0
∗ = −1. Suppose otherwise. Then

the adjoint response λ∗ defined above must satisfy the adjoint differential equation for the
extended system with λ0

∗ = 0:
λ̇(t) = −AT (λ(t)).

Moreover, the Hamiltonian must satisfy the Hamiltonian maximisation condition with λ0
∗ =

0. One readily sees that this is equivalent to the condition that

〈λ∗(t), Bu〉 = 0, u ∈ Rm, (8.3)

for almost every t ∈ [t0, t1]. Thus λ∗(t) must lie in the subspace orthogonal to image(B)
for almost every t ∈ [t0, t1]. But this implies, since λ∗ is absolutely continuous (indeed, it is
analytic), that λ∗(t) is orthogonal to image(B) for all t ∈ [t0, t1]. One may now differentiate
the relation (8.3) with respect to t:

〈λ̇(t), Bu〉 = −〈ATλ(t), Bu〉, u ∈ Rm.

Differentiating thusly n− 1 times gives

〈(AT )jλ(t), Bu〉 = 〈λ(t), AjBu〉 = u, j ∈ {0, 1, . . . , n− 1}, u ∈ Rm.

This shows that if λ0
∗ = 0 then the adjoint response λ∗ is orthogonal to the columnspace

of the matrix C(A,B) on all of [t0, t1]. Combining this with the fact that λ∗(t) lies in the
column space of the matrix C(A,B) for all t ∈ [t0, t1], we arrive at the conclusion that
λ∗(t) = 0 for all t ∈ [t0, t1]. But this is in contradiction with the Maximum Principle. �

Let us make a few observations and some fairly vague inferences based on these observa-
tions that we do not bother to prove. We leave for the motivated reader the task of making
the inferences less vague, and to understanding where they come from.
1. In Proposition 8.11 we show that for uncontrollable systems all controlled trajectories

are possibly abnormal extremals. This is entirely related to the fact that, for uncontrol-
lable systems, the fixed interval tangent cone has an empty interior (cf. the discussion in
Section 7.3). This points out the care that must be taken in interpreting the Maximum
Principle in these cases. We have also discussed this matter following Lemma 5.10 and
Theorem 5.16, and give an instance of this in terms of the character of the reachable
set in Exercise E5.2. The problem is that, when the fixed interval tangent cone has
no interior, it is possible to choose a support hyperplane for the cone that contains the
cone. If the reader thinks for a moment about the proof of Proposition 8.11, they will
see that this is exactly what is happening.
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2. There are two reasons why the fixed interval tangent cone might have an empty interior.

(a) One reason is that the state space for the system is “too big.” This is essentially
what is happening in Proposition 8.11 when C(A,B) does not have full rank. Since
the system is not controllable, this indicates that there are some restrictions of the
character of the controlled trajectories. It turns out that these restrictions manifest
themselves by the fixed interval tangent cones possessing support hyperplanes that
contain the cones.

(b) Even if the state space is not “too big,” the interior of the fixed interval tangent
cone may be empty if the system is not linearly controllable along the reference
trajectory. In such cases one must go to higher-order Maximum Principles to get
refined necessary conditions for optimality. This is very much related, then, to
the connection between optimal control theory and controllability alluded to in
Remark 7.7.

3. In cases when possibly abnormal extremals arise from the state space being “too big,”
it is often possible to infer from the Maximum Principle the information required to get
useful necessary conditions. This is seen, for example, in Proposition 8.12. Even though
Proposition 8.11 says that all trajectories are possibly abnormal extremals, in the proof
of Proposition 8.12 we show that one can still prove that all optimal trajectories are, in
fact, normal. Note, however, that this requires some work, and that in more complicated
situations this work might be hard.
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Exercises

E8.1 Let Σ = (A,B,Rm) be a linear control system and consider the quadratic op-
timal control problem defined using symmetric matrices Q and R, but with R
not being positive-semidefinite. Show that there exists x0 ∈ Rn such that
P(A,B,Q,R, x0, t0, t1) = ∅. (Remember Assumption 8.1.)

E8.2 Consider the linear quadratic optimal control problem with

1. n = 2 and m = 1,

2. A = [ 0 1
0 0 ] and B = [ 0

1 ], and

3. Q = [ 1 0
0 1 ] and R = [1].

Let t0, t1 ∈ R satisfy t0 < t1. Answer the following questions.

(a) Solve the associated Riccati differential equation on [t0, t1] subject to the final
condition F (t1) = 02×2.

(b) If t 7→ F (t) is the solution to the Riccati differential equation from part (a),
show that the limit F∞ = limt→−∞ F (t) exists and is independent of the final
condition t1.

(c) Verify that the matrix A−BR−1BTF∞ is Hurwitz.



Chapter 9

Linear time-optimal control

The problem of time-optimal control is one of great importance in control theory. It can be of
importance in applications, although it is very often the case that time-optimal trajectories
are not the ones you really want, even though you think they might be. The reason for
this is that time-optimal control can be quite “violent.” Often perfectly satisfactory time-
suboptimal control laws are what is best. However, from the point of view of structural
properties of control systems, time-optimal control is nice because it does not bring along
much baggage from its cost function. That is to say, the structure of time-optimal extremals
says a lot about the system itself, whereas other optimal problems often say just as much
about the particular Lagrangian as anything else. This is as it should be, of course. But the
point is that, from the point of view of fundamental control theory, time-optimal control
is useful to study. In this chapter we focus on linear systems, since in this case one can
actually say something interesting about the time-optimal extremals.

9.1. Some general comments about time-optimal control

For time-optimal control, the Lagrangian is obviously defined by L(x, u) = 1. For a
control system Σ = (X, f, U) and for S0, S1 ⊂ X, let Ptime(Σ, S0, S1) denote the set of
solutions for the time-optimal problem.

The following result is one reason why the time-optimal control problem is of such
interest.

9.1 Proposition: (Time-optimal trajectories lie on the boundary of the reachable set) Let
Σ = (X, f, U) be a control system and let S0, S1 ⊂ X. If (ξ∗, µ∗) ∈ Ptime(Σ, S0, S1) is
defined on [t0, t1], then ξ∗(t1) ∈ bd(R(ξ∗(t0), t0, t1)).

Proof: Note that

R̂(ξ̂∗(t0), t0, t) = {t} × R(ξ∗(t0), t0, t), t ∈ [t0, t1].

If ξ∗(t1) ∈ int(R(ξ∗(t0), t0, t1)) then (ξ∗(t1), t1) ∈ int(R̂(ξ̂∗(t0), t0)). Now, since every neigh-
bourhood of (ξ∗(t1), t1) ∈ X̂ contains a point in

{(ξ∗(t1), t) ∈ X̂ | t < t1},
this means that there are points in R(ξ∗(t0), t0) that are also in this set. But this contradicts
Lemma 6.2. �
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One of the consequences of the preceding result is that if the reachable sets do not have
boundaries, then the time-optimal control problem will generally not have a solution. It is
very often the case for systems with unbounded controls that the reachable sets do not, in
fact, have boundaries. For this reason, one typically needs to constrain the control to lie in
a compact set to ensure solutions to time-optimal control problems. This is not a theorem.

A useful property of extremals for time-optimal problems is the following.

9.2 Proposition: Let Σ = (X, f, U) be a control system and let S0, S1 ⊂ X. If (ξ∗, µ∗) ∈
Ptime(Σ, S0, S1) is defined on [t0, t1] and if λ∗ : [t0, t1] → Rn is the adjoint response guar-
anteed by Theorem 3.4, then λ∗ is nowhere zero.

Proof: We consider two cases. First, when λ0
∗ = 0 it immediately follows from Theorem 3.4

that λ∗(t0) 6= 0. Since the adjoint equation is linear it follows that λ∗(t) 6= 0 for all
t ∈ [t0, t1]. Second, when λ0

∗ = −1 then the Hamiltonian along the optimal trajectory is
specified by

t 7→ 〈λ∗(t), f(ξ∗(t), µ∗(t))〉 − 1.

If λ∗(t) = 0 for some t ∈ [t0, t1] then λ∗ is identically zero, since the component of adjoint
equation for λ∗ is linear. The Hamiltonian must, therefore, be identically −1 along the
trajectory, and this contradicts Theorem 3.4. �

9.2. The Maximum Principle for linear time-optimal control

In this section we consider a linear control system Σ = (A,B,U) where U is a convex
polytope in Rm. In practice one often takes

U = [a1, b1]× · · · × [am, bm]

for some a1, b1, . . . , am, bm ∈ Rm. This reflects the fact that in practice one typically has
actuator constraints on each control. Most often these constraints are also symmetric about
zero. However, the geometry of the situation is best revealed if one uses a general convex
polytope instead. For simplicity let us take t0 = 0, S0 = {x0}, and S1 = {x1}.

The adjoint equations for the system are

ξ̇(t) = A(ξ(t)) +B(µ(t)), λ̇(t) = −AT (λ(t)).

Note that the equation for the adjoint response decouples so that we simply have

λ(t) = exp(−AT t)λ(0). (9.1)

The Hamiltonian is
HΣ,λ0L(x, p, u) = 〈p,Ax+Bu〉+ λ0.

The maximisation of the Hamiltonian as a function of u is equivalent to the maximisation
of the function u 7→ 〈p,Bu〉. For fixed p this is a linear function of u ∈ U . The Maximum
Principle tells us that this function must be maximised almost everywhere along an optimal
trajectory. From Theorem B.25 we know that either

1. u 7→ 〈p,Bu〉 is constant or
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2. the maximum is achieved on the boundary of the convex polytope U .

In any case, the situation is completely determined by the fact that the adjoint response is
given by (9.1). We would like to use this fact to say as much as possible about the character
of the time-optimal extremals. The following result is an example of the sort of thing one
can say.

9.3 Proposition: (Property of time-optimal extremals) Let Σ = (A,B,U) be a linear control
system with U ⊂ Rm a convex polytope. Suppose that, if w ∈ Rm \ {0} is collinear with a
rib of U , then the matrix [

Bw ABw · · · An−1Bw
]

(9.2 )

has full rank, i.e., the vector Bw is contained in no proper A-invariant subspace of Rn. If
λ : [0, T ] → Rn satisfies (9.1) with λ(0) 6= 0, then there exists a unique µ : [0, T ] → U with
the following properties:

(i) 〈λ(t), Bµ(t)〉 = max{〈λ(t), Bu〉 | u ∈ U};
(ii) µ is continuous at 0 and T and continuous from the left for all t ∈ (0, T ).

Moreover, the control µ is piecewise constant.

Proof: From Theorem B.25 we know that the function

u 7→ 〈λ(t), Bu〉

is maximised either at a vertex of U or on a face of dimension j ≥ 1 of U (we consider
U itself to be a face of dimension n). We will first show that the latter circumstance can
arise only at a finite number of points in [0, T ]. Assume otherwise. Then, since there are
finitely many faces of all dimensions, there must exist some face F of dimension j ≥ 1 and
an infinite set S ⊂ [0, T ] such that, for each t ∈ S, the function u 7→ 〈λ(t), Bu〉 is constant
on F . Choose two distinct adjacent vertices v1 and v2 for U lying in F , supposing that the
vector w = v2 − v1 is collinear with the rib connecting v1 and v2. By our assumption that
u 7→ 〈λ(t), Bu〉 is constant on F , we have

〈λ(t), Bw〉 = 〈λ(t), Bv1〉 − 〈λ(t), Bv2〉 = 0, t ∈ S.

Since [0, T ] is compact and since S is infinite, there exists a convergent sequence {tj}j∈Z>0 ⊂
S. Thus 〈λ(tj), Bw〉 = 0 for j ∈ Z>0. Since the function t 7→ 〈λ(t), Bw〉 is analytic, we can
deduce that this function is identically zero, it being zero on the convergent subsequence
{tj}j∈Z>0 . Now differentiate the equality 〈λ(t), Bw〉 = 0 successively n− 1 times to get

〈(AT )jλ(t), Bw〉 = 〈λ(t), AjBw〉 = 0, j ∈ {0, 1, . . . , n− 1}, t ∈ [0, T ].

Since we assumed that λ(0) 6= 0, this contradicts (9.2). Thus we conclude that the function
u 7→ 〈λ(t), Bu〉 is constant on a face of positive dimension only for finitely many times
t ∈ [0, T ]. That is, for all but finitely many times t ∈ [0, T ] the control µ(t) takes values in
a unique vertex of U . Uniqueness of the control on [0, T ] follows by imposing condition (ii).

Now let us show that µ is piecewise constant. To do this we partition [0, T ] into a finite
number of disjoint intervals such that, for t lying in the interior of any of these intervals,
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µ(t) takes values in a unique vertex. Let I be one of these intervals, let v1, . . . , vN be the
vertices of U , and let Sj , j ∈ {1, . . . , N}, be the set of points in I for which µ takes values
in vj . We then have

Sj1 ∩ Sj2 = ∅, j1, j2 ∈ {1, . . . , N} distinct, I = ∪Nj=1Sj .

We claim that Sj is open for each j ∈ {1, . . . , N}. The only pertinent case is when Sj is
nonempty, so suppose this is the case. Let t′ ∈ Sj . Then

〈λ(t′), Bvl〉 < 〈λ(t′), Bvj〉, l 6= j.

By continuity of t 7→ 〈λ(t), Bw〉 for w ∈ Rm, there exists a neighbourhood I of t′ such that

〈λ(t), Bvl〉 < 〈λ(t), Bvj〉, l 6= j, t ∈ I.

This shows that Sj is open.
Finally, since I is a disjoint union of the open sets S1, . . . , SN and since I is connected,

we must have I = Sj for some fixed j ∈ {1, . . . , N}. This gives µ as piecewise constant as
claimed. �

9.4 Remarks: 1. One might ask whether the condition (9.2) can be expected to be satisfied.
First of all, note that this condition implies the controllability of Σ. If a system is not
controllable, one can restrict attention to the controllable subspace (i.e., the columnspace
of the Kalman controllability matrix), so one loses nothing by assuming controllability.
Moreover, if a system is controllable, then the set of vectors w ∈ Rm for which the
matrix in (9.2) does not have maximal rank is small. To be somewhat more precise,
the set of such vectors lies in the intersection of the set of zeros of a finite number of
polynomial equations. These things are discussed by Wonham [1985]. For us, the point
is that a generic convex polytope will satisfy the hypotheses of Proposition 9.3.

2. The second condition in the statement of the result is merely a technical condition that
ensures uniqueness. The fact of the matter is that at points of discontinuity, the exact
value of the control is of no consequence as far as the trajectory is concerned. •

9.3. An example

We take the system Σ = (M,f, U) where

1. M = R2,

2. f((x1, x2), u) = (x2,−x1 + u),

3. U = [−1, 1] ⊂ R.

The cost function we choose is that associated with time-optimisation; thus we take
L(x, u) = 1. We consider the problem Ptime(Σ, {(x1

0, x
2
0)}, {x1

1, x
2
1}). The Hamiltonian

for this system is
HΣ,λ0L(x, p, u) = p1x2 − p2x1 + p2u+ λ0.

This gives the equations governing extremals as

ẋ1 = x2, ẋ2 = −x1 + u, ṗ1 = p2, ṗ2 = −p1.
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We may solve the equations for the adjoint variables p1 and p2 directly:

p1(t) = A sin(t− φ), p2 = A cos(t− φ) (9.3)

for some A, φ ∈ R.
The control u(t) for an extremal satisfies

p2(t)u(t) = max{p2(t)ũ | ũ ∈ U},

meaning that when p2(t) < 0 we have u(t) = −1, and when p2(t) > 0 we have u(t) = +1.
Thus u(t) alternates between +1 and −1, depending on the sign of p2(t). However, given
the form of p2(t), this means that u(t) switches every π seconds.

This shows that extremals will be concatenations of solutions of the two differential
equations

1. ẋ1 = x2, ẋ2 = −x1 + 1 and

2. ẋ1 = x2, ẋ2 = −x1 − 1.

The solutions to the first equation are

x1(t) = B1 sin(t− ψ1) + 1, x2(t) = B1 cos(t− ψ1) (9.4)

for constants B1, ψ1 ∈ R. These are simply circles in the (x1, x2)-plane centred at (1, 0). In
like manner, the solutions for the other class of optimal arcs are determined by

x1(t) = B2 sin(t− ψ2)− 1, x2(t) = B2 cos(t− ψ2) (9.5)

for constants B2, ψ2 ∈ R. These are simply circles in the (x1, x2)-plane centred at (−1, 0).
Thus, to steer from (x1

0, x
2
0) to (x1

1, x
2
1) in a time-optimal manner, one would go from (x1

0, x
2
0)

to (x1
1, x

2
1) along a curve consisting of a concatenation of circles centred at (1, 0) and at

(−1, 0) (see Figure 9.1).
Next we look at the abnormal extremals. In this case constancy (in fact, equality with

zero) of the Hamiltonian as guaranteed by the Maximum Principle tells us we must have

HΣ,0(u, x, p) = p1x2 − p2x1 + p2u = 0.

A straightforward calculation, using (9.3), (9.4), and (9.5), and the fact that u(t) =
sign(p2(t)), gives

p1x2 − p2x1 + p2u = AB sin(ψ − φ).

Thus an extremal is possibly abnormal if and only if ψ−φ = nπ, n ∈ Z. Note that to verify
abnormality one must also verify that there are no extremals with λ0 = −1 that give the
same extremal trajectory.

For this problem, there exist time-optimal trajectories that are abnormal extremal
trajectories. For example, suppose that one wishes to go from (x1

0, x
2
0) = (0, 0) to

(x1
1, x

2
1) = (2, 0). In this case the time-optimal control is given by u(t) = 1 that is ap-

plied for π seconds. The corresponding trajectory in state space is

x1(t) = − cos t+ 1, x2(t) = sin t.
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(−1, 0) (1, 0)

(x1
0, x

2
0)

(x1
1, x

2
1)

Figure 9.1. Two concatenations of circles to form an extremal tra-
jectory. The solid line is the solution to optimal control prob-
lem, and the dashed line is another extremal trajectory.

That this is the time-optimal trajectory is intuitively clear: one pushes as hard as one can
in the direction one wants to go until one gets there.1 However, this extremal is abnormal.
Let’s see how this works. Since the controlled trajectory (ξ, u) just described is minimising,
it must satisfy the conditions of the Maximum Principle. In particular, the maximisation
condition on the Hamiltonian must obtain. This means that p2(t) must be positive for
0 ≤ t ≤ π, except possibly at the endpoints. If p2(t) changes sign in the interval [0, π],
then u must also change sign, but this cannot happen since u(t) = 1. This implies that
p2(t) = A sin t, and so this immediately gives p1(t) = −A cos t. We see then that we may
take φ = π

2 and ψ = π
2 . Given our characterisation of abnormal extremals, this shows that

the time-optimal control we have found is only realisable as an abnormal extremal.
Let’s see if we can provide a geometric interpretation of what is going on here. In Fig-

ure 9.2 we show a collection of concatenated extremals that emanate from the origin. From
this picture it is believable that the set of points reachable from (0, 0) in time π is precisely
the circle of radius 2 in the (x1, x2)-plane. Why are the points (±2, 0) distinguished? (We
have only looked at the point (2, 0), but the same arguments hold for (−2, 0).) Well, look
at how the extremal curves touch the boundary of the reachable set. Only at (±2, 0) do
the extremal curves approach the boundary so that they are tangent to the supporting
hyperplane at the boundary.

1It is also easy to make this rigorous. For if u(t) < 1 for t in some set A of positive measure, it is fairly
evident that x1(π) < 2. Thus any such trajectory will remain in the half-plane x1 < 2 for the first π seconds,
and so cannot be time-optimal for the problem of steering from (0, 0) to (2, 0).
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-1

1

2

Figure 9.2. The set of points reachable from (0, 0) in time π

Exercises

E9.1 Consider a linear control system Σ = (A,B,U) with U = Rm. For any x0, x1 ∈ Rn,
show that the time-optimal control problem of steering from x0 to x1 in minimum
time has no solution.
Hint: Define

P(A,B)(t) =
∫ t

0
eAτBBTeATτ dτ

and show that the control

µ(t) = −BTeAT(T−t)P(A,B)(T)
(
eATx0 − x1

)
steers the system from x0 to x1 in time T.
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Appendices



Appendix A

Some results from the theory of
ordinary differential equations with
measurable time-dependence

In this appendix we provide a quick and definitely not self-contained overview of the theory
of differential equations as needed in control theory. The theory here is a little more
involved than the standard theory in that the time dependence we must allow is rather
general; normally one considers continuous dependence on time, and we shall need to allow
more generality than this. Thus we begin with some measure theory.

A.1. Concepts from measure theory

In this section we shall give a brief discussion of the ideas from measure theory that we
shall use. For readers with no background in measure theory, this will be a woefully inade-
quate introduction; we refer to books like [Cohn 1980, Halmos 1974] for more background.
Fortunately, we only need the Lebesgue measure on R, so we can keep the discussion more
focussed.

A.1.1. Lebesgue measure. The first step in defining the Lebesgue measure on R is to
define the so-called outer measure. This can be applied to a general set, and generalises
the notion of length for intervals.

A.1 Definition: The Lebesgue outer measure of a subset S ⊂ R is the element λ∗(S) ∈
R≥0 defined by

λ∗(S) = inf
{ ∞∑
j=1

|bj − aj |
∣∣∣ S ⊂ ⋃

j∈Z>0

(aj , bj)
}
. •

It is possible to verify that the Lebesgue outer measure has the following properties:
1. λ∗(∅) = 0;
2. if S ⊂ T ⊂ R, then λ∗(S) ≤ λ∗(T );

3. λ∗
( ⋃
n∈N

Sn
)
≤
∞∑
n=1

µ∗(Sn) for every collection {Sn}n∈N of subsets of R;
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4. if I ⊂ R is an interval, then λ∗(I) is the length of I.
Unfortunately, the Lebesgue outer measure is not a measure (whatever that is) on the
subsets of R. To obtain a measure, we must restrict it to certain subsets of R.

A.2 Definition: (Lebesgue measure) Denote by L (R) the collection of subsets A of R for
which

λ∗(S) = λ∗(S ∩A) + λ∗(S ∩ (R \A)), S ⊂ R.
A set in L (R) is Lebesgue measurable . The map λ : L (R) → R≥0 defined by λ(A) =
λ∗(A) is the Lebesgue measure . A subset Z ∈ L (R) is a set of measure zero if
λ(Z) = 0. •
A.3 Remarks: 1. Most subsets one dreams up are measurable. Indeed, it may be shown

that any definition of a non-measurable set must rely of the Axiom of Choice. Thus
such sets will not be able to be given an “explicit” characterisation.

2. We will frequently be interested in subsets, not of all of R, but of an interval I ⊂ R.
One can define measurable subsets of I by L (I) = {A ∩ I | A ∈ L (R)}.

3. A property P holds almost everywhere (a.e.) on I, or for almost every t ∈ I
(a.e. t ∈ I) if there exists a subset N ⊂ I of zero measure such that P holds for all
t ∈ I \N . •

A.1.2. Integration. One of the principal ideas in measure theory is the notion of inte-
gration using measure. For the Lebesgue measure on R, this leads to a notion of integration
that strictly generalises Riemann integration, and which has some extremely important
properties not possessed by Riemann integration. We do not get into this here, but refer
to the references. Instead, we simply plough ahead with the definitions.

A.4 Definition: (Measurable function) Let I ⊂ R be an interval. A function f : I → R is
measurable if, for every a ∈ R, we have f−1([a,∞]) ∈ L (I). •

Since it is not easy to find sets that are not measurable, it is also not so easy to define
functions that are not measurable. Thus the class of measurable functions will include
nearly any sort of function one is likely to encounter in practice.

Now we indicate how to integrate a certain sort of function. To do so, if S is a set and
if A ⊂ S, then we define the characteristic function of A to be the function

χA(x) =

{
1, x ∈ A,
0, x 6∈ A.

We now make a definition.

A.5 Definition: (Simple function) Let I ⊂ R be an interval. A simple function is a
function f : I → R of the form

f =
k∑
j=1

cjχAj (A.1)

for Aj ∈ L (I) and cj ∈ R, j ∈ {1, . . . , k}, k ∈ N. The integral of a simple function of the
form (A.1) is defined by ∫

I
f dλ =

k∑
j=1

cjλ(Aj). •
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It turns out that it is possible to approximate a measurable function taking values in
R≥0 with an increasing sequence of simple functions. With this in mind, if f : I → R≥0 is
measurable, then we define∫

I
f dλ = sup

{∫
I
g dλ

∣∣∣ g is a positive simple function with g(t) ≤ f(t) for t ∈ I
}
.

If f : I → R, then we define

f+(x) = max{0, f(x)}, f−(x) = −min{0, f(x)}.
and then define ∫

I
f dλ =

∫
f+ dλ−

∫
f− dλ.

This is the Lebesgue integral of f .

A.1.3. Classes of integrable functions. Let us define some language surrounding the
Lebesgue integral of functions.

A.6 Definition: (Integrable, essentially bounded, absolutely continuous) Let I ⊂ R be an
interval and let f : I → R be measurable.

(i) If at least one of
∫
I f

+ dλ or
∫
I f
− dλ are finite, then the Lebesgue integral of f exists

(and may be infinite).
(ii) If both

∫
I f

+ dλ and
∫
I f
− dλ are infinite, then the Lebesgue integral of f does not

exist .
(iii) If

∫
I f

+ dλ < ∞ and
∫
I f
− dλ < ∞, then f is Lebesgue integrable , or simply

integrable .
(iv) If, for each compact subinterval J ⊂ I, the function f |J is integrable, then f is locally

integrable .
(v) If there exists M > 0 such that λ({t ∈ I | |f(t)| > M}) = 0, then f is essentially

bounded , and we write

ess supt∈I |f(t)| = inf{M ∈ R | λ({t ∈ I | |f(t)| > M}) = 0}.
(vi) If there exist a locally integrable function g : I → R and some t0 ∈ I such that

f(t) =
∫

[t0,t]
(g|[t0, t]) dλ,

then f is locally absolutely continuous. If I is compact, then locally absolutely
continuous will be used interchangeably with absolutely continuous. •

An absolutely continuous function has a derivative almost everywhere. Indeed, the
Fundamental Theorem of Calculus holds, and if

f(t) =
∫ t

t0
g(τ) dτ

for some locally integrable function g, then ḟ(t) = g(t) for almost every t. Moreover, if an
absolutely continuous function has an almost everywhere zero derivative, it can be shown
to be constant. We will make several uses of this fact.

Related to these matters, although not in a straightforward manner, is the following
notion.
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A.7 Definition: (Lebesgue point) Let I ⊂ R be an interval and let f : I → R be locally
integrable. A point t0 ∈ I is a Lebesgue point for f if

lim
ε→0

1
2ε

∫ t0+ε

t0−ε
|f(t)− f(t0)|dt = 0. •

It can be shown that the complement of the set of Lebesgue points has zero measure.
All of the above notions for R-valued functions–measurability, integrability, abso-

lute continuity–can be applied to Rn-valued functions by applying the above definitions
component-wise.

A.2. Ordinary differential equations with measurable time-dependence

In this section we give the standard results concerning the character of solutions to the
differential equations governing control systems. These will be used throughout the text,
sometimes without explicit reference.

A.8 Theorem: (Carathéodory’s existence and uniqueness theorem) Let X ⊂ Rn be open, let
I ⊂ R be an interval, and suppose that f : I × X → Rn has the property that t 7→ f(t, x)
is locally integrable for each x ∈ X and that x 7→ f(t, x) is of class C1 for each t ∈ I.
Let t0 ∈ I and let x0 ∈ X. Then there exists an interval J ⊂ I and a locally absolutely
continuous curve ξ : J → X such that

(i) int(J) 6= ∅,
(ii) t0 ∈ J ,

(iii) ξ(t0) = x0, and
(iv) ξ̇(t) = f(t, ξ(t)) for almost every t ∈ J .

Moreover, if J̃ and ξ̃ : J̃ → X also have the properties (i)–(iv), then ξ(t) = ξ̃(t) for each
t ∈ J ∩ J̃ .

For a control system subject to an admissible control, the bottom line is that controlled
trajectories exist and are unique on sufficiently small time intervals around the initial time.
Of course, just as is the case in the standard theory of differential equations, it is possible
that, for a given admissible control t 7→ µ(t), the largest time interval on which a controlled
trajectory can exist might be bounded above, below, or both above and below.

We will many times use the fact that solutions to differential equations depend con-
tinuously on initial condition and on the differential equation itself. The following result
encodes this.

A.9 Theorem: (Continuous dependence on initial conditions and parameters) Let X ⊂ Rn be
an open set, let t0, t1 ∈ R satisfy t0 < t1, and let δ > 0. Suppose that f, h : [t0, t1]×X→ Rn

satisfy
(i) t 7→ f(t, x) and t 7→ h(t, x) are integrable for each x ∈ X and

(ii) x 7→ f(t, x) and x 7→ h(t, x) are of class C1 for each t ∈ [t0, t1].
Let ξ : [t0, t1]→ X be a solution of the differential equation

ξ̇(t) = f(t, ξ(t)),
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and suppose that
{x ∈ Rn | ‖x− ξ(t)‖ ≤ δ, t ∈ [t0, t1]} ⊂ X.

Define

H(t) =
∫ t

t0
h(τ, ξ(τ)) dτ, Hmax = sup{H(t) | t ∈ [t0, t1]}.

Suppose that z0 ∈ X and α : [t0, t1]→ R≥0 are such that
(iii) α is integrable,

(iv) max{Hmax, ‖ξ(t0)− z0‖} ≤ δ
2e
−
∫ t1
t0
α(t) dt

, and
(v) ‖f(t, x1)+h(t, x1)−f(t, x2)−h(t, x2)‖ ≤ α(t)‖x1−x2‖ for x1, x2 ∈ X and t ∈ [t0, t1].

Then the solution of the initial value problem

ζ̇(t) = f(t, ζ(t)) + h(t, ζ(t)), ζ(t0) = z0,

exists on [t0, t1] and satisfies

‖ξ(t)− ζ(t)‖ ≤ (‖ξ(t0)− z0‖+Hmax
)
e
∫ t1
t0
α(s) ds

for all t ∈ [t0, t1].



Appendix B

Convex sets, affine subspaces, and
cones

An important part of the proof of the Maximum Principle is the use of cones and convex
cones to approximate the reachable set. In this appendix we give the basic definitions and
properties that we shall use.

B.1. Definitions

B.1 Definition: (Convex set, cone, convex cone, affine subspace)
(i) A subset C ⊂ Rn is convex if, for each x1, x2 ∈ C, we have

{sx1 + (1− s)x2 | s ∈ [0, 1]} ⊂ C.

(ii) A subset K ⊂ Rn is a cone if, for each x ∈ K, we have

{λx | λ ∈ R≥0} ⊂ K.

(iii) A subset K ⊂ Rn is a convex cone if it is both convex and a cone.
(iv) A subset A ⊂ Rn is an affine subspace if, for each x1, x2 ∈ A, we have

{sx1 + (1− s)x2 | s ∈ R} ⊂ A. •

Note that the set {sx1 + (1 − s)x2 | s ∈ [0, 1]} is the line segment in Rn between x1

and x2. Thus a set is convex when the line segment connecting any two points in the set
remains in the set. In a similar manner, {λx | λ ∈ R≥0} is the ray emanating from 0 ∈ Rn

through the point x. A set is thus a cone when the rays emanating from 0 through all points
remain in the set. One usually considers cones whose rays emanate from a general point in
Rn, but we will not employ this degree of generality. An affine subspace is a set where the
(bi-infinite) line through any two points in the set remains in the set. We illustrate some
of the intuition concerning these various sorts of sets in Figure B.1.

114
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Figure B.1. An illustration of a convex set (top left), a cone (top
right), a convex cone (bottom left), and an affine subspace (bot-
tom right)

B.2. Combinations and hulls

We shall be interested in generating convex sets, cones, and affine subspaces containing
given sets.

B.2 Definition: (Convex hull, coned hull, coned convex hull, affine hull) Let S ⊂ Rn be
nonempty.

(i) A convex combination from S is a linear combination in Rn of the form

k∑
j=1

λjvj , k ∈ Z>0, λ1, . . . , λk ∈ R≥0,
k∑
j=1

λj = 1, v1, . . . , vk ∈ S.

(ii) The convex hull of S, denoted by conv(S), is the smallest convex subset of Rn

containing S.
(iii) The coned hull of S, denoted by cone(S), is the smallest cone in Rn containing S.
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(iv) A coned convex combination from S is a linear combination in Rn of the form

k∑
j=1

λjvj , k ∈ Z>0, λ1, . . . , λk ∈ R≥0, v1, . . . , vk ∈ S.

(v) The coned convex hull of S, denoted by conv cone(S), is the smallest convex cone
in Rn containing S.

(vi) An affine combination from S is a linear combination in Rn of the form

k∑
j=1

λjvj , k ∈ Z>0, λ1, . . . , λk ∈ R,
k∑
j=1

λj = 1, v1, . . . , vk ∈ S.

(vii) The affine hull of S, denoted by aff(S), is the smallest affine subspace of Rn con-
taining S. •

B.3 Remark: (Sensibility of hull definitions) The definitions of conv(S), cone(S),
conv cone(S), and aff(S) make sense because intersections of convex sets are convex, in-
tersections of cones are cones, and intersections of affine subspaces are affine subspaces. •

The terms “coned hull” and “coned convex hull” are not standard. In the literature
these will often be called the “cone generated by S” and the “convex cone generated by S,”
respectively.

Convex combinations have the following useful property which also describes the convex
hull.

B.4 Proposition: (The convex hull is the set of convex combinations) Let S ⊂ Rn be
nonempty and denote by C(S) the set of convex combinations from S. Then C(S) =
conv(S).

Proof: First we show that C(S) is convex. Consider two elements of C(S) given by

x =
k∑
j=1

λjuj , y =
m∑
l=1

µlvl.

Then, for s ∈ [0, 1] we have

sx+ (1− s)y =
k∑
j=1

sλjuj +
m∑
l=1

(1− s)µjvj .

For r ∈ {1, . . . , k +m} define

wr =

{
ur, r ∈ {1, . . . , k},
vr−k, r ∈ {k + 1, . . . , k +m}

and

ρr =

{
sλr, r ∈ {1, . . . , k},
(1− s)µr−k, r ∈ {k + 1, . . . , k +m}.
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Clearly wr ∈ S and ρr ≥ 0 for r ∈ {1, . . . , k +m}. Also,

k+m∑
r=1

ρr =
k∑
j=1

sλj +
m∑
l=1

(1− s)µl = s+ (1− s) = 1.

Thus sx+ (1− s)y ∈ C(S), and so C(S) is convex.
This necessarily implies that conv(S) ⊂ C(S) since conv(S) is the smallest convex set

containing S. To show that C(S) ⊂ conv(S) we will show by induction on the number
of elements in the linear combination that all convex combinations are contained in the
convex hull. This is obvious for the convex combination of one vector. So suppose that
every convex combination of the form

k∑
j=1

λjuj , k ∈ {1, . . . ,m},

is in conv(S), and consider a convex combination from S of the form

y =
m+1∑
l=1

µlvl =
m∑
l=1

µlvl + µm+1vm+1.

If
∑m
l=1 µl = 0 then µl = 0 for each l ∈ {1, . . . ,m}. Thus y ∈ conv(S) by the induction

hypothesis. So we may suppose that
∑m
l=1 µl 6= 0 which means that µm+1 6= 1. Let us

define µ′l = µl(1− µm+1)−1 for l ∈ {1, . . . ,m}. Since

1− µm+1 =
m∑
l=1

µl

it follows that
m∑
l=1

µ′l = 1.

Therefore,
m∑
l=1

µ′lvl ∈ conv(S)

by the induction hypothesis. But we also have

y = (1− µm+1)
m∑
l=1

µ′lvl + µm+1vm+1

by direct computation. Therefore, y is a convex combination of two elements of conv(S).
Since conv(S) is convex, this means that y ∈ conv(S), giving the result. �

For cones one has a similar result.

B.5 Proposition: (The set of positive multiples is the coned hull) Let S ⊂ Rn be nonempty
and denote

K(S) = {λx | x ∈ S, λ ∈ R≥0}.
Then K(S) = cone(S).
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Proof: Note that K(S) is clearly a cone which contains S. Thus cone(S) ⊂ K(S). Now
suppose that y ∈ K(S). Thus y = λx for x ∈ S and λ ∈ R≥0. Since cone(S) is a cone
containing x, we must have y ∈ cone(S), giving K(S) ⊂ cone(S). �

Finally, one has an interpretation along these lines for convex cones.

B.6 Proposition: (The coned convex hull is the set of coned convex combinations) Let S ⊂
Rn be nonempty and denote by K ′(S) the set of coned convex combinations from S. Then
K ′(S) = conv cone(S).

Proof: We first show that if x, y ∈ K ′(S) then x + y ∈ K ′(S) and that if x ∈ K ′(S)
then λx ∈ K ′(S) for λ ∈ R≥0. The second of these assertions is obvious. For the first,
let z = 1

2x + 1
2y. Then z ∈ K ′(S) and so 2z = x + y ∈ K ′(S). Thus K ′(S) is closed

under addition and positive scalar multiplication. From this it immediately follows that
(1 − s)x + sy ∈ K ′(S) for any x, y ∈ K ′(S) and s ∈ [0, 1]. Thus K ′(S) is convex. It is
evident that K ′(S) is also a cone, and so we must have conv cone(S) ⊂ K ′(S).

Now let

y =
k∑
j=1

λjvj ∈ K ′(S).

By the fact that conv cone(S) is a cone containing S we must have kλjvj ∈ conv cone(S)
for j ∈ {1, . . . , k}. Since conv cone(S) is convex and contains kλjvj for j ∈ {1, . . . , k} we
must have

k∑
j=1

1
k

(kλjvj) = y ∈ conv cone(S),

giving the result. �

Finally, we prove the expected result for affine subspaces, namely that the affine hull is
the set of affine combinations. In order to do this we first give a useful characterisation of
affine subspaces.

B.7 Proposition: (Characterisation of an affine subspace) A nonempty subset A ⊂ Rn is an
affine subspace if and only if there exists x0 ∈ Rn and a subspace U ⊂ Rn such that

A = {x0 + u | u ∈ U}.
Proof: Let x0 ∈ A and define U = {x− x0 | x ∈ A}. The result will be proved if we prove
that U is a subspace. Let x− x0 ∈ U for some x ∈ A and a ∈ R. Then

a(x− x0) = ax+ (1− a)x0 − x0,

and so a(x − x0) ∈ U since ax + (1 − a)x0 ∈ A. For x1 − x0, x2 − x0 ∈ U with x1, x2 ∈ A
we have

(x1 − x0) + (x2 − x0) = (x1 + x2 − x0)− x0.

Thus we will have (x1−x0) + (x2−x0) ∈ U if we can show that x1 +x2−x0 ∈ A. However,
we have

x1 − x0, x2 − x0 ∈ U,
=⇒ 2(x1 − x0), 2(x2 − x0) ∈ U,
=⇒ 2(x1 − x0) + x0, 2(x2 − x0) + x0 ∈ A,
=⇒ 1

2(2(x1 − x0) + x0) + 1
2(2(x2 − x0) + x0) ∈ A,
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which gives the result after we notice that

1
2(2(x1 − x0) + x0) + 1

2(2(x2 − x0) + x0) = x1 + x2 − x0. �

Now we can characterise the affine hull as the set of affine combinations.

B.8 Proposition: (The affine hull is the set of affine combinations) Let S ⊂ Rn be nonempty
and denote by A(S) the set of affine combinations from S. Then A(S) = aff(S).

Proof: We first show that the set of affine combinations is an affine subspace. Choose x0 ∈ S
and define

U(S) = {v − x0 | v ∈ A(S)}.
We first claim that U(S) is the set of linear combinations of the form

k∑
j=1

λjvj , k ∈ Z>0, λ1, . . . , λk ∈ R,
k∑
j=1

λj = 0, v1, . . . , vk ∈ S. (B.1)

To see this, note that if

u =
k∑
j=1

λjuj − x0 ∈ U(S)

then we can write

u =
k+1∑
j=1

λjuj , λ1, . . . , λk+1 ∈ R,
k+1∑
j=1

λj = 0, u1, . . . , uk+1 ∈ S,

by taking λk+1 = −1 and uk+1 = x0. Similarly, consider a linear combination of the
form (B.1). We can without loss of generality suppose that x0 ∈ {v1, . . . , vk}, since if this
is not true we can simply add 0x0 to the sum. Thus we suppose, without loss of generality,
that vk = x0. We then have

u =
(k−1∑
j=1

λjvj + (λk + 1)x0

)
− x0.

Since the term in the parenthesis is clearly an element of A(S) it follows that u ∈ U(S).
With this characterisation of U(S) it is then easy to show that U(S) is a subspace of Rn.

Moreover, it is immediate from Proposition B.8 that A(S) is then an affine subspace. Since
aff(S) is the smallest affine subspace containing S it follows that aff(S) ⊂ A(S). To show
that A(S) ⊂ aff(S) we use induction on the number of elements in an affine combination
in A(S). For an affine combination with one term this is obvious. So suppose that every
affine combination of the form

k∑
j=1

λjvj , k ∈ {1, . . . ,m},

is in aff(S) and consider an affine combination of the form

x =
m+1∑
j=1

λjvj =
m∑
j=1

λjvj + λm+1vm+1.
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It must be the case that at least one of the numbers λ1, . . . , λm+1 is not equal to 1. So,
without loss of generality suppose that λm+1 6= 1 and then define λ′j = (1 − λ−1

m+1)λj ,
j ∈ {1, . . . ,m}. We then have

m∑
j=1

λ′j = 1,

so that
m∑
j=1

λ′jvj ∈ aff(S)

by the induction hypothesis. It then holds that

x = (1− λm+1)
m∑
j=1

λ′jvj + λm+1vm+1.

This is then in aff(S). �

B.3. Topology of convex sets and cones

Let us now say a few words about the topology of convex sets. Note that every convex
set is a subset of its affine hull. Moreover, as a subset of its affine hull, a convex set has an
interior.

B.9 Definition: (Relative interior and relative boundary) If C ⊂ Rn is a convex set, the set

rel int(C) = {x ∈ C | x ∈ intaff(C)(C)}
is the relative interior of C and the set rel bd(C) = cl(C) \ rel int(C) is the relative
boundary of C. •

The point is that, while a convex set may have an empty interior, its interior can still
be defined in a weaker, but still useful, sense. The notion of relative interior leads to the
following useful concept.

B.10 Definition: (Dimension of a convex set) Let C ⊂ Rn be convex and let U ⊂ Rn be the
subspace for which aff(C) = {x0 + u | u ∈ U} for some x0 ∈ Rn. The dimension of C,
denoted by dim(C), is the dimension of the subspace U . •

The following result will be used in our development.

B.11 Proposition: (Closures and relative interiors of convex sets and cones are convex sets
and cones) Let C ⊂ Rn be convex and let K ⊂ Rn be a convex cone. Then

(i) cl(C) is convex and cl(K) is a convex cone and
(ii) rel int(C) is convex and rel int(K) is a convex cone.

Moreover, aff(C) = aff(cl(C)) and aff(K) = aff(cl(K)).

Proof: (i) Let x, y ∈ cl(C) and let s ∈ [0, 1]. Suppose that {xj}j∈Z>0 and {yj}j∈Z>0 are
sequences in C converging to x and y, respectively. Note that sxj + (1− s)yj ∈ C for each
j ∈ Z>0. Moreover, if ε > 0 then

‖sx+ (1− s)y − sxj − (1− s)yj‖ ≤ s‖x− xj‖+ (1− s)‖y − yj‖ < ε,
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provided that j is sufficiently large that s‖x− xj‖ < ε
2 and (1− s)‖y − yj‖ < ε

2 . Thus the
sequence {sxj +(1−s)yj}j∈Z>0 converges to sx+(1−s)y and so sx+(1−s)y ∈ cl(C). This
shows that cl(C) is convex. Since C ⊂ cl(C) it follows that aff(C) ⊂ aff(cl(C)). Moreover,
since C ⊂ aff(C) and since aff(C) is closed we have

cl(C) ⊂ cl(aff(C)) = aff(C),

so giving aff(C) = aff(cl(C)) as desired.
An entirely similar argument shows that cl(K) is convex and that aff(K) = aff(cl(K)).
(ii) Let us first consider the convex set C. To simplify matters, since the relative interior

is the interior relative to the affine subspace containing C, and since the topology of an
affine subspace is “the same as” Euclidean space, we shall assume that dim(C) = n and
show that int(C) is convex.

We first prove a lemma.

1 Lemma: If C is a convex set, if x ∈ rel int(C), and if y ∈ cl(C) then

[x, y) , {sx+ (1− s)y | s ∈ [0, 1)}
is contained in rel int(C).

Proof: As in the proof of (ii), let us assume, without loss of generality, that dim(C) = n.
Since x ∈ int(C) there exists r > 0 such that B(x, r) ⊂ C. Since y ∈ cl(C), for every ε > 0
there exists yε ∈ C ∩ B(y, ε). Let z = αx + (1 − αy) ∈ [x, y) for α ∈ [0, 1), and define
δ = αr− (1−α)ε. If ε is sufficiently small we can ensure that δ ∈ R>0, and we assume that
ε is so chosen. For z′ ∈ B(z, δ) we have

‖z′ − z‖ < δ

=⇒ ‖z′ − (αx+ (1− α)yε + (1− α)(y − yε))‖ < δ

=⇒ ‖z′ − (αx+ (1− α)yε)‖ ≤ δ + (1− α)ε = αr

=⇒ z′ ∈ {αx′ + (1− α)yε | x′ ∈ B(x, r)}.
Since yε ∈ C and B(x, r) ⊂ C it follows that z′ ∈ C and so B(z, δ) ⊂ C. This gives our
claim that [x, y) ⊂ int(C). H

That int(C) is convex follows immediately since, if x, y ∈ int(C), Lemma 1 ensures that
the line segment connecting x and y is contained in int(C).

Now consider the convex cone K. We know now that rel int(K) is convex so we need
only show that it is a cone. This, however, is obvious. Indeed, if x ∈ rel int(K) suppose
that λx 6∈ rel int(K) for some λ ∈ R>0. Since λx ∈ K we must then have λx ∈ bd(K). By
Lemma 1 this means that (λ+ ε)x 6∈ K for all ε ∈ R>0. This contradicts the fact that K is
a cone. �

The following result will also come up in our constructions.

B.12 Proposition: (The closure of the relative interior) If C ⊂ Rn is a convex set then
cl(rel int(C)) = cl(C).

Proof: It is clear that cl(rel int(C)) ⊂ cl(C). Let x ∈ cl(C) and let y ∈ rel int(C). By
Lemma 1 in the proof of Proposition B.11 it follows that the half-open line segment [y, x)
is contained in rel int(C). Therefore, there exists a sequence {xj}j∈Z>0 in this line segment,
and so in rel int(C), converging to x. Thus x ∈ cl(rel int(C)). �
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B.4. Simplices and simplex cones

We now concern ourselves with special examples of convex sets and convex cones, and
show that these special objects can always be found as neighbourhoods in general convex
sets and cones.

We begin with the definitions.

B.13 Definition: (Affine independence, simplex, simplex cone) Let n ∈ Z>0.
(i) A set {x0, x1, . . . , xk} ⊂ Rn is affinely independent if the set {x1−x0, . . . , xk−x0}

is linearly independent.
(ii) A k-simplex is the convex hull of a set {x0, x1, . . . , xk} of affinely independent points.
(iii) A k-simplex cone is the coned convex hull of a set {x1, . . . , xk} which is linearly

independent. •
Let us give the standard examples of such objects.

B.14 Examples: (Standard n-simplex, standard n-simplex cone)
1. The standard n-simplex is the subset of Rn given by

∆n =
{
x ∈ Rn

∣∣∣ x1, . . . , xn ≥ 0,
n∑
j=1

xj ≤ 1
}
.

Thus ∆n is the convex hull of the n standard basis vectors along with the origin.
2. The standard n-simplex cone is the subset of Rn given by

Kn = {x ∈ Rn | x1, . . . , xn ≥ 0}.

Note that Kn is the coned convex hull of the n standard basis vectors.
In Figure B.2 we depict the standard n-simplex and the standard n-simplex cone when

Figure B.2. The standard 2-simplex (left) and the standard 2-
simplex cone (right)

n = 2. •
The following result about the dimension of simplices and simplex cones is intuitively

clear.



The Maximum Principle in control and in optimal control 123

B.15 Proposition: (Dimension of simplices and simplex cones) If C,K ⊂ Rn are a k-simplex
and a k-simplex cone, respectively, then dim(C) = dim(K) = k.

Proof: Let us first consider the k-simplex C defined by points {x0, x1, . . . , xk}. Clearly
aff({x0, x1, . . . , xk}) ⊂ aff(C) since {x0, x1, . . . , xk} ⊂ C. Let x ∈ aff(C) so that

x =
m∑
l=1

µlyl

for µ1, . . . , µm ∈ R summing to 1 and for y1, . . . , ym ∈ C. For each l ∈ {1, . . . ,m} we have

yl =
k∑
j=0

λljxj

for λl0, λl1, . . . , λlk ∈ R≥0 summing to 1. Therefore,

x =
m∑
l=1

k∑
j=0

µjλljxj =
k∑
j=0

( m∑
l=1

λljµl
)
xj ,

and so x ∈ aff({x0, x1, . . . , xk}) since

k∑
j=0

( m∑
l=1

λljµl
)

= 1.

Thus aff(C) = aff({x0, x1, . . . , xk}). That dim(C) = k follows since the subspace corre-
sponding to the affine subspace aff({x0, x1, . . . , xk}) is generated by {x1−x0, . . . , xk −x0},
and this subspace has dimension k.

The proof for the k-simplex cone K follows in an entirely similar manner, merely with
convex combinations being replaced by coned convex combinations. �

One of the things we will need to be able to do is find neighbourhoods of points in convex
sets and convex cones that are simplices and simplex cones, respectively. For convex sets
we have the following result.

B.16 Proposition: (Existence of simplicial neighbourhoods) Let C ⊂ Rn be convex and of
dimension k, let x0 ∈ rel int(C), and let U be a neighbourhood of x0 in Rn. Then there
exists a k-simplex C0 ⊂ C such that C0 ⊂ U and x0 ∈ rel int(C0).

Proof: Let r ∈ R>0 be such that B(x0, r) ⊂ U and such that B(x0, r) ∩ aff(C) ⊂ C. The
existence of such an r follows since x0 ∈ rel int(C). Let {v1, . . . , vk} be an orthogonal basis
for the subspace U(C) corresponding to aff(C) and suppose that v1, . . . , vk ∈ B(0, r). Then
yj , x0 + vj ∈ B(x0, r), j ∈ {1, . . . , k}.

We now use a linear algebra lemma.

1 Lemma: If V is a finite-dimensional R-inner product space and if {v1, . . . , vn} is a basis
for V, then there exists v0 ∈ V such that 〈v0, vj〉 < 0 for every j ∈ {1, . . . , n}.
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Proof: Let L : V → Rn be the unique linear map defined by asking that L(vj) be equal to
ej , the jth standard basis vector for Rn. Note that if we take e0 = (−1, . . . ,−1) ∈ Rn then,
with respect to the standard inner product, 〈e0, ej〉 = −1 < 0, j ∈ {1, . . . , n}. Let α ∈ (Rn)∗

correspond to e0 under the identification of Rn with (Rn)∗ induced by the standard inner
product and take β = L∗(α). Then

β(vj) = L∗(α) · vj = α · L(vj) = α · ej = −1

for j ∈ {1, . . . , n}. Then take v0 to correspond to β under the identification of V∗ with V
using the inner product on V. We then have 〈v0, vj〉 = −1, j ∈ {1, . . . , n}. H

We now apply the lemma to the subspace U(C) to assert the existence of v0 ∈ U(C)
such that 〈v0, vj〉 < 0 for j ∈ {1, . . . , k}. We may assume that ‖v0‖ < r. We claim that the
set {v0, v1, . . . , vk} is affinely independent. Indeed, suppose that

c1(v1 − v0) + · · ·+ ck(vk − v0) = 0.

Then cj(〈vj , vj〉 − 〈vj , v0〉) = 0 for j ∈ {1, . . . , k}. Since 〈vj , vj〉 − 〈vj , v0〉 > 0 it follows
that cj = 0 for j ∈ {1, . . . , k}, so giving affine independence of {v0, v1, . . . , vk}. Define
y0 = x0 + v0 ∈ B(x0, r) and take C0 = conv({y0, y1, . . . , yk}).

We claim that C0 ∈ B(x0, r) ⊂ U. Indeed, if x ∈ C0 then we can write x as a convex
combination:

x =
k∑
j=0

λjyj =⇒ x− x0 =
k∑
j=0

λj(yj − x0) =
k∑
j=0

vj .

Applying the triangle inequality a bunch of times gives

‖x− x0‖ ≤
k∑
j=0

λj‖vj‖ < r,

as desired.
Finally, we claim that x0 ∈ rel int(C0). This will follow if we can show that 0 ∈

rel int(conv({v0, v1, . . . , vk})). By the lemma above and since we chose the basis {v1, . . . , vj}
to be orthogonal,

v0 =
k∑
j=1

〈vj , v0〉
‖vj‖2 vj =⇒ ‖v1‖2 · · · ‖vk‖2v0 −

k∑
j=1

〈vj , v0〉vj = 0,

showing that 0 is a linear combination of the vectors {v0, v1, . . . , vk} with the coefficients
being strictly positive. By scaling the coefficients this linear combination can be made
convex with all coefficients positive. Therefore, 0 ∈ rel int(conv({v0, v1, . . . , vk})), as desired.

�

For cones we have a similarly styled result.

B.17 Proposition: (Existence of simplex cone neighbourhoods) Let K ⊂ Rn be a convex
cone of dimension k, let x0 ∈ rel int(K) \ {0}, and let U be a neighbourhood of x0 ∈ Rn.
Then there exists a k-simplex cone K0 ⊂ K such that K0 ⊂ cone(U) and x0 ∈ rel int(K0).
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Proof: Denote by Px0 the orthogonal complement to x0 and let

Ux0 = {v ∈ Px0 | x0 + v ∈ U}.

Note that Ux0 is a neighbourhood of 0 in Px0 . By Proposition B.16 let C0 ⊂ Px0 be a
(k − 1)-simplex contained in Ux0 and having 0 in its relative interior. Then define K0 to
be the coned convex hull of x0 +C0 , {x0 + v | v ∈ C0}, noting that K0 is then the coned
convex hull of the points xj , x0 +vj , j = {1, . . . , k}, where the points v1, . . . , vk are defined
so that their convex hull is C0.

We claim that K0 ⊂ cone(U). This follows since

x0 + C0 ⊂ {x0 + v | v ∈ Ux0} ⊂ U,

and so K0 = cone(x0 + C0) ⊂ cone(U).
We also claim that x0 ∈ rel int(K0). Since 0 ∈ rel int(C0) we can write

x0 = x0 + 0 = x0 +
k∑
j=1

λjvj

for appropriate λ1, . . . , λk ∈ R>0 summing to 1. Therefore

x0 =
k∑
j=1

λj(vj + x0),

and so x0 is a linear combination of the points x1, . . . , xk with strictly positive coefficients.
Thus x0 ∈ rel int(K0). �

If C is the simplex obtained by taking the convex hull of the points {x0, x1, . . . , xk},
then every point x ∈ C is uniquely written as

x =
k∑
j=0

λjvj

for λ0, . . . , λk ∈ R≥0 summing to 1. Note that the set of λ’s appearing in such a linear
combination have the property that the point

k∑
j=0

λjej

lies in the standard k-simplex if we take the convention that e0 = 0. Indeed the map

k∑
j=0

λjej 7→
k∑
j=0

λjvj

defines a homeomorphism of ∆k with C. This parameterisation of a simplex C by
(λ0, λ1, . . . , λk) defines barycentric coordinates for C.
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A similar construction can be made for a k-simplex cone K = conv cone({x1, . . . , xk}).
We fix some nonzero vector v0 ∈ rel int(K) \ {0} and let Pv0 be the orthogonal complement
to v0. We may suppose, without loss of generality (by scaling if necessary), that

x1, . . . , xk ∈ {v0 + x | x ∈ Pv0},
i.e., that the points x1, . . . , xk lie in a plane parallel to Pv0 passing through v0. We then
define a (k − 1)-simplex Cv0 ⊂ Pv0 by asking that

Cv0 = {x ∈ Pv0 | x+ v0 ∈ K}
(we leave it to the reader to check that Cv0 is indeed a (k − 1)-simplex). We then let
(λ1, . . . , λk) be barycentric coordinates for Cv0 . A point in x ∈ K is then uniquely specified
by (l(x), λ(x)) where l(x) = 〈x,v0〉

‖v0‖ and where λ(x) are the barycentric coordinates in Cv0

for the point l(x)x − v0. We call the coordinates (l, λ) for K barycentric coordinates.
For the reader for whom this definition of coordinates (l, λ) for K is not immediately clear,
we give an illustration of their meaning in Figure B.3. One can verify that

v0

Pv0

x

l(x)

λ(x)

Figure B.3. Barycentric coordinates for a simplex cone

x = l(x)(λ1(x)x1 + · · ·+ λk(x)xk).

B.5. Separation theorems for convex sets

One of the most important properties of convex sets in convex analysis, and indeed for
us in our proof of the Maximum Principle, is the notion of certain types of convex sets
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being separated by hyperplanes. We shall only examine those parts of the theory that we
will use; we refer to [Rockafellar 1970] for further discussion.

In order to make things clear, let us define all of our terminology precisely.

B.18 Definition: (Hyperplane, half-space, support hyperplane)
(i) A hyperplane in Rn is a subset of the form

{x ∈ Rn | 〈λ, x〉 = a}

for some λ ∈ Rn \ {0} and a ∈ R. Such a hyperplane is denoted by Pλ,a.
(ii) A half-space in Rn is a subset of the form

{x ∈ Rn | 〈λ, x〉 > a}

for some λ ∈ Rn \ {0} and a ∈ R. We shall denote

H−λ,a = {x ∈ Rn | 〈λ, x〉 < a}, H+
λ,a = {x ∈ Rn | 〈λ, x〉 > a}.

(iii) If A ⊂ Rn, a support hyperplane for A is a hyperplane Pλ,a such that A ⊂ H+
λ,a ∪

Pλ,a.
(iv) For subsets A,B ⊂ Rn, a separating hyperplane is a hyperplane Pλ,a for which

A ⊂ H+
λ,a ∪ Pλ,a, B ⊂ H−λ,a ∪ Pλ,a. •

The following result is a basis for many separation theorems for convex sets.

B.19 Theorem: (Convex sets possess supporting hyperplanes) If C ⊂ Rn is a convex set
not equal to Rn, then C possesses a supporting hyperplane.

Proof: Let x0 6∈ cl(C), let z ∈ C, and define r = ‖x0 − z‖. Define A = cl(C) ∩ B(x0, r)
noting that A is a nonempty compact set. Define f : A → R>0 by f(y) = ‖x0 − y‖. The
map f is continuous and so there exists y0 ∈ A ⊂ cl(C) such that f(y0) is the minimum
value of f . Let λ = y0 − x0 and a = 〈y0, y0 − x0〉. We will show that Pλ,a is a support
hyperplane for C.

First let us show that Pλ,a separates {x0} and cl(C). A direct computation shows that
〈λ, x0〉 = −‖x0−y0‖2 +a < a. To show that 〈λ, x〉 ≥ a for all x ∈ cl(C), suppose otherwise.
Thus let x ∈ C be such that 〈λ, x〉 < a. By Lemma 1 in the proof of Proposition B.11
the line segment from y to y0 is contained in cl(C). Define g : [0, 1] → R by g(s) =
‖(1 − s)y0 + sy − x0‖2. Thus g is the square of the distance from x0 to points on the line
segment from y to y0. Note that g(s) ≥ g(0) for all s ∈ (0, 1] since y0 is the closest point in
cl(C) to x0. A computation gives

g(s) = (1− s)2‖y0 − x0‖2 + 2s(1− s)〈y − x0, y0 − x0〉+ s2‖y − x0‖2

and another computation gives g′(0) = 2(〈λ, y〉 − a) which is strictly negative by our as-
sumption about y. This means that g strictly decreases near zero, which contradicts the
definition of y0. Thus we must have 〈λ, y〉 ≥ a for all y ∈ cl(C). �

During the course of the proof of the theorem we almost proved the following result.
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B.20 Corollary: (Separation of convex sets and points) If C ⊂ Rn is convex and if x0 6∈
int(C) then there exists a separating hyperplane for {x0} and C.

Proof: If x0 6∈ cl(C) then the result follows immediately from the proof of Theorem B.19.
If x0 ∈ bd(C) then let {xj}j∈Z>0 be a sequence in Rn \ cl(C) converging to x0. For each
j ∈ Z>0 let λj ∈ Rn \ {0} and aj ∈ R have the property that

〈λj , xj〉 ≤ aj , j ∈ Z>0,

〈λj , y〉 > aj , y ∈ C, j ∈ Z>0.

Let us without loss of generality take aj = 〈λj , xj〉; this corresponds to choosing the hy-
perplane separating C from xj to pass through xj . Let αj = λj

‖λj‖ , j ∈ Z>0. The sequence
{αj}j∈Z>0 is a sequence in the (n − 1)-sphere which is compact. Thus we can choose a
convergent subsequence which we also denote, by an abuse of notation, by {αj}j∈Z>0 . Let
α ∈ Rn denote the limit of this sequence. Defining cj = 〈αj , xj〉 we then have

〈αj , xj〉 = cj , j ∈ Z>0,

〈αj , y〉 > cj , y ∈ C, j ∈ Z>0.

Let c = limj→∞ cj . For y ∈ C this gives

〈α, x0〉 = lim
j→∞
〈αj , xj〉 = c,

〈α, y〉 = lim
j→∞
〈αj , y〉 ≥ c,

as desired. �

The following consequence of Theorem B.19 is also of independent interest.

B.21 Corollary: (Disjoint convex sets are separated) If C1, C2 ⊂ Rn are disjoint convex
sets, then there exists a hyperplane separating C1 and C2.

Proof: Define
C1 − C2 = {x1 − x2 | x1 ∈ C1, x2 ∈ C2}.

One checks directly that C1 − C2 is convex. Since C1 and C2 are disjoint it follows that
0 6∈ C1 −C2. By Theorem B.19 there exists a hyperplane P , passing through 0, separating
C1 − C2 from 0. We claim that this implies that the same hyperplane P , appropriately
translated, separates C1 and C2. To see this note that P gives rise to λ ∈ Rn \ {0} such
that

〈λ, x1 − x2〉 ≥ 0, x1 ∈ C1, x2 ∈ C2.

Let
a1 = inf{〈λ, x1〉 | x1 ∈ C1}, a2 = sup{〈λ, x2〉 | x2 ∈ C2}

so that a1 − a2 ≥ 0. For any a ∈ [a2, a1] we have

〈λ, x1〉 ≥ a, x1 ∈ C1,

〈λ, x2〉 ≤ a, x2 ∈ C2,

giving the separation of C1 and C2, as desired. �
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We shall require the following quite general result concerning separation of convex sets
by hyperplanes.

B.22 Theorem: (A general separation theorem) If C1, C2 ⊂ Rn are convex sets, then they
possess a separating hyperplane if and only if either of the following two conditions holds:

(i) there exists a hyperplane P such that C1, C2 ⊂ P ;
(ii) rel int(C1) ∩ rel int(C2) = ∅.

Proof: Suppose that C1 and C2 possess a separating hyperplane P . Therefore, there exists
λ ∈ Rn \ {0} and a ∈ R such that

〈λ, x1〉 ≥ a, x1 ∈ C1,

〈λ, x2〉 ≤ a, x2 ∈ C2.

If 〈λ, x〉 = a for all x ∈ C1 ∪ C2 then (i) holds. Now suppose that 〈λ, x1〉 > a for some
x1 ∈ C1 (a similar argument will obviously apply if this holds for some x2 ∈ C2) and let
x0 ∈ rel int(C1). Since P is a support hyperplane for C1 and since C1 6⊂ P , it follows that
the relative interior, and so x0, lies in the appropriate half-space defined by P . Since P
separates C1 and C2 this precludes x0 from being in C2. Thus (ii) holds.

Now suppose that (i) holds. It is then clear that P is a separating hyperplane for C1

and C2.
Finally, suppose that (ii) holds. From Proposition B.11 and Corollary B.21 it holds that

rel int(C1) and rel int(C2) possess a separating hyperplane. Thus there exists λ ∈ Rn \ {0}
and a ∈ R such that

〈λ, x1〉 ≤ a, x1 ∈ rel int(C1),
〈λ, x2〉 ≥ a, x2 ∈ rel int(C2).

Therefore, by Proposition B.12 we also have

〈λ, x1〉 ≤ a, x1 ∈ cl(C1),
〈λ, x2〉 ≥ a, x2 ∈ cl(C2),

which implies this part of the theorem. �

B.6. Linear functions on convex polytopes

In our study of linear time-optimal control we will ask that controls take their values in
a convex polytope (to be defined shortly). It turns out that we will also seek to maximise
a linear function on a convex polytope. This is a well studied problem, going under the
general name of linear programming . In this section we shall define all the terminology
needed in this problem, and give the main result in linear programming that we shall make
use of.

First let us talk about convex polytopes. Notationally it will be convenient, for x, y ∈ Rn,
to write x ≤ y if xi ≤ yi, i ∈ {1, . . . , n}.
B.23 Definition: (Convex polyhedron, convex polytope) A nonempty subset C ⊂ Rn is
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(i) a convex polyhedron if there exists A ∈ L(Rn; Rk) and b ∈ Rk such that

C = {x ∈ Rn | Ax ≤ b}

and is
(ii) a convex polytope if it is a compact convex polyhedron. •

Thus a convex polyhedron is the intersection of the solutions to a finite number of
linear inequalities, i.e., an intersection of a finite number of half-spaces. Let us denote the
half-spaces by H1, . . . ,Hk and the boundary hyperplanes by P1, . . . , Pk. Thus

C = cl(H1) ∩ · · · ∩ cl(Hk).

We can (and do) assume without loss of generality that the normals of the boundary
hyperplanes of the defining half-spaces are not collinear. This amounts to saying that no two
rows of the matrix A are collinear. We can also assume, by restricting to the affine hull of C
if necessary, that int(C) 6= ∅. This simplifies the discussion. The intersection Fj of a convex
polyhedron C with the hyperplane Pj , j ∈ {1, . . . , k}, is a face of dimension n−1. Thus
there are as many faces of dimension n−1 as there are rows in the matrix A. Let F1, . . . , Fk
denote the faces of dimension n−1. For fixed j1, j2 ∈ {1, . . . , k} the set F(j1,j2) = C∩Pj1∩Pj2
is a face of dimension n − 2. Thus we can write the set of faces of dimension n − 2
as F(j11,j12), . . . , F(jl1,jl2) for suitable pairs (j11, j12), . . . , (jl1, jl2) ∈ {1, . . . , k}2. One can
proceed in this way, defining faces of dimensions n− 1, n− 2, . . . , 1, 0. A face of dimension
0 is called a vertex and a face of dimension 1 is sometimes called a rib.

Next let us introduce the fundamental problem of linear programming.

B.24 Problem: (Linear programming) The linear programming problem is: For a convex
polyhedron

C = {x ∈ Rn | Ax ≤ b}
and for c ∈ Rn, minimise the function x 7→ 〈c, x〉 over C. A solution to the linear
programming problem is thus a point x0 ∈ C such that 〈c, x0〉 ≤ 〈c, x〉 for every x ∈ C. •

The following result describes the solutions to the linear programming problem.

B.25 Theorem: (Solutions to linear programming problem) Let c ∈ Rn, let

C = {x ∈ Rn | Ax ≤ b}

be a convex polyhedron, and consider the linear programming problem for the function x 7→
〈c, x〉. Then the following statements hold:

(i) the linear programming problem has a solution if and only if x 7→ 〈c, x〉 is bounded
below on C;

(ii) if C is a convex polytope then the linear programming problem has a solution;
(iii) if x 7→ 〈c, x〉 is not constant on C then any solution of the linear programming problem

lies in rel bd(C).

Proof: (i) Certainly if the linear programming problem has a solution, then x 7→ 〈c, x〉 is
bounded below on C. So suppose that x 7→ 〈c, x〉 is bounded below on C. Specifically,
suppose that 〈c, x〉 ≥ −M for some M ∈ R>0. If c = 0 then the linear programming
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problem obviously has a solution, indeed many of them. So we suppose that c 6= 0. Let
x0 ∈ C and define

A = {x ∈ Rn | 〈c, x〉 ∈ [−M, 〈c, x0〉]}.
Note that A is nonempty, closed (since x 7→ 〈c, x〉 is continuous), and bounded (since linear
functions are proper). Thus A ∩ C is nonempty and compact. The function x 7→ 〈c, x〉,
restricted to A∩C, therefore achieves its minimum on A∩C at some point, say x̄. It holds
that 〈c, x̄〉 ≤ 〈c, x〉 for every x ∈ C since, it clearly holds for x ∈ A ∩ C, and if x 6∈ A ∩ C
then 〈c, x〉 ≥ 〈c, x0〉. Thus the point x̄ solves the linear programming problem.

(ii) This follows immediately since x 7→ 〈c, x〉 is bounded on C if C is a convex polytope.
(iii) That x 7→ 〈c, x〉 is not constant on C is equivalent to x 7→ 〈c, x〉 not being constant

on aff(C). This is in turn equivalent to the subspace U(C) of Rn associated to aff(C) not
being contained in ker(c). Let x ∈ rel int(C). Let uc ∈ U(C) be the unit vector such that

〈uc, c〉 = inf{〈u, c〉 | u ∈ U(C), ‖u‖ = 1}.

That such a uc exists since u 7→ 〈u, c〉 is a continuous function on the compact set U(C) ∩
Sn−1. Moreover, since 〈−u, c〉 = −〈u, c〉, it follows that 〈uc, c〉 < 0. Since x ∈ rel int(C)
there exists r ∈ R>0 such that x+ ruc ∈ C. Then

〈c, x+ ruc〉 = 〈c, x〉+ r〈c, uc〉 > 〈c, x〉,

showing that c 7→ 〈c, x〉 cannot achieve its minimum at x ∈ rel int(C). Thus it must achieve
its minimum on rel bd(C). �
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Exercises

EB.1 Show that Dn = {x ∈ Rn+1 | ‖x‖ ≤ 1} is convex.
Hint: Use the triangle inequality.

EB.2 If the following statements are true, prove them true. If they are false, give a
counterexample to demonstrate this.

(a) The intersection of two convex sets is convex.
(b) The intersection of two cones is a cone.
(c) The union of two convex sets is a convex set.
(d) The union of two cones is a cone.
(e) The intersection of two affine subspaces is an affine subspace.
(f) The union of two affine subspaces is an affine subspace.

EB.3 Show that the image of a convex set (resp. cone) under a linear map is a convex set
(resp. cone).



Appendix C

Two topological lemmata

In this appendix we present two topological results which will be useful in our approxima-
tions of the reachable set using cones generated by needle variations and in our establishing
of the transversality conditions. The results, or at least our proofs of them, rely on the
Brouwer Fixed Point Theorem which we first present and prove. Our presentation follows
that of Milnor [1978], and so relies first on a rather interesting proof of the so-called Hairy
Ball Theorem.

C.1. The Hairy Ball Theorem

First some notation. For n ∈ Z>0 we denote

Sn = {x ∈ Rn+1 | ‖x‖ = 1}, Dn = {x ∈ Rn | ‖x‖ ≤ 1}.

With this notation we have the following preliminary result which is of independent inter-
est.

C.1 Theorem: (Hairy Ball Theorem) Let n ∈ Z>0 be even. If f : Sn → Rn+1 is continuous
and has the property that 〈f(x), x〉 = 0 for each x ∈ Sn, then there exists x0 ∈ Sn such that
f(x0) = 0.

Proof: We first prove the result supposing that f is not only continuous but of class C1.
We use a series of lemmata to prove the theorem in this case.

1 Lemma: Let A ⊂ Rn be compact, let U be a neighbourhood of A, and let g : U → Rk be
of class C1. Then there exists M ∈ R>0 such that

‖g(y)− g(x)‖ ≤M‖y − x‖, x, y ∈ A.

Proof: Let B ⊂ U be an open ball and let x, y ∈ B. Define γ : [0, 1] → B by γ(t) =
(1− t)x+ ty, i.e., γ is the line connecting x and y. Then define α = g ◦γ. Then

g(y)− g(x) = α(1)− α(0) =
∫ 1

0
α̇(t) dt =

∫ 1

0
Dg(γ(t)) · γ̇(t) dt

=
∫ 1

0
Dg((1− t)x+ ty) · (y − x) dt.
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Using the fact that Dg is continuous this gives

‖g(y)− g(x)‖ ≤MB‖y − x‖, x, y ∈ B,

where
MB = sup{‖Dg(x)‖ | x ∈ B}.

Now, since A is compact, we can cover it with a finite number of balls B1, . . . , BN , each
contained in U. Let us denote

C = (A×A)− ∪Nj=1Bj ×Bj
and note that C is compact. Moreover, the function d : Rn×Rn → R≥0 defined by d(x, y) =
‖x− y‖ is strictly positive when restricted to C. Therefore, there exists m ∈ R>0 such that
d(x, y) ≥ m for all (x, y) ∈ C. Let

M0 = sup{‖g(y)− g(x)‖ | x, y ∈ A},

noting that this number is finite since g is continuous and A is compact. Now define

M = max{M0
m ,MB1 , . . . ,MBN }.

Now let x, y ∈ A. If x, y ∈ Bj for some j ∈ {1, . . . , N} then

‖g(y)− g(x)‖ ≤MBj‖y − x‖ ≤M‖y − x‖.

If x and y are not together contained in any of the balls B1, . . . , BN then (x, y) ∈ C. Thus

‖g(y)− g(x)‖ ≤M0 = M0
m m ≤M‖y − x‖.

Thus we have
‖g(y)− g(x)‖ ≤M‖y − x‖, x, y ∈ A,

i.e., g is uniformly Lipschitz in A. H

2 Lemma: Let A ⊂ Rn+1 be compact, let U be a neighbourhood of A, let g : U → Rn+1 be
of class C1, and for s ∈ R define hs : A → Rn+1 by hs(x) = x + sg(x). Then there exists
ε ∈ R>0 such that

(i) for each s ∈ [−ε, ε], hs is injective and
(ii) the function s 7→ vol(hs(A)) is a polynomial.

Proof: By Lemma 1 let M ∈ R>0 be such that

‖g(y)− g(x)‖ ≤M‖y − x‖, x, y ∈ A,

and let ε ∈ (0,M−1). Then for |s| < ε we claim that hs is injective. Indeed, if hs(x) = hs(y)
then

x− y = s(g(y)− g(x)) =⇒ ‖y − x‖ = |s|‖g(y)− g(x)‖ ≤ |s|M‖x− y‖.

Since |s|M < 1 this implies that x = y. This gives the first assertion in the lemma.
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For the second assertion we observe that det Dhs(x) is a polynomial function of s, it
being the determinant of a matrix whose entries are linear in s. Thus we can write

det Dhs(x) = 1 + a1(x)s+ · · ·+ an+1(x)sn+1

for continuous functions a1, . . . , an+1. Therefore

vol(hs(A)) =
∫
hs(A)

dx1 · · · dxn+1 =
∫
A

det Dhs(x) dx1 · · · dxn+1,

which is clearly a polynomial function in s. H

3 Lemma: Let f : Sn → Rn+1 have the following properties:
(i) 〈f(x), x〉 = 0 for each x ∈ Sn;

(ii) ‖f(x)‖ = 1 for each x ∈ Sn.
Let U be a neighbourhood of Sn with f̄ : U→ Rn+1 a continuously differentiable extension
of f , and for s ∈ R define hs : U→ Rn+1 by hs(x) = x+ sf̄(x). Then, for |s| sufficiently
small, f̄ maps Sn onto the sphere

Sn(
√

1 + s1) =
{
x ∈ Rn+1

∣∣ ‖x‖ =
√

1 + s2
}

of radius
√

1 + s2.

Proof: First note that hs(Sn) ⊂ Sn(
√

1 + s2) for any s ∈ R by direct computation. As we
saw in the proof of Lemma 2, for s sufficiently small Dhs(x) is nonsingular for each x ∈ Sn.
By the Inverse Function Theorem this means that, for s sufficiently small, hs is a local
diffeomorphism about every point in Sn. Thus hs|Sn maps every sufficiently small open set
to an open set, provided that s is sufficiently small. This in turn means that hs|Sn is an
open mapping for s sufficiently small. In particular, hs(Sn) is an open subset of Sn(

√
1 + s2)

for s sufficiently small. However, hs(Sn) is also compact, the image of compact sets under
continuous maps being compact. The only subset of Sn(

√
1 + s2) that is open and closed

is Sn(
√

1 + s2) since Sn(
√

1 + s2) is connected. H

Now suppose that f : Sn → Rn+1 is such that

1. f is of class C1,

2. 〈f(x), x〉 = 0 for x ∈ Sn, and

3. f(x) 6= 0 for every x ∈ Sn.

We may assume without loss of generality (by dividing f by the function x 7→ ‖f(x)‖) that
‖f(x)‖ = 1 for each x ∈ Sn. For a, b ∈ R>0 satisfying a < 1 < b define

A = {x ∈ Rn+1 | a ≤ ‖x‖ ≤ b},

and note that A is compact. For the function f as in the theorem statement (but now of
class C1) extend f to A by f(rx) = rf(x), x ∈ Sn. Then, with hs(x) = x + sf(x) for
s ∈ R, hs(rx) = rhs(x) for x ∈ Sn. Therefore, hs maps the sphere of radius r ∈ [a, b] into
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the sphere of radius r
√

1 + s2. By Lemma 3, for s sufficiently small hs maps the sphere of
radius r onto the sphere of radius r

√
1 + s2 for each r ∈ [a, b]. Therefore,

vol(hs(A)) = (
√

1 + s2)n+1vol(A)

for s sufficiently small. For n even this is not a polynomial in s, and this contradicts
Lemma 2. This proves the theorem for f of class C1.

Finally, we prove the theorem for f continuous. Thus we let f : Sn → Rn+1 have the
following properties:

1. f is continuous;

2. 〈f(x), x〉 = 0 for each x ∈ Sn;

3. ‖f(x)‖ 6= 0 for x ∈ Sn.

Let
m = inf{‖f(x)‖ | x ∈ Sn}

and let p : Sn → Rn+1 be a polynomial function such that

sup{‖p(x)− f(x)‖ | x ∈ Sn} < m
2 ,

this being possible by the Weierstrass Approximation Theorem. Now define a continuously
differentiable function g : Sn → Rn+1 by

g(x) = p(x)− 〈p(x), x〉x,
and note that 〈g(x), x〉 = 0 by direct computation. We have

〈p(x)− f(x), x〉 = 〈p(x), x〉
=⇒ |〈p(x), x〉| = |〈p(x)− f(x), x〉| ≤ ‖p(x)− f(x)‖ < m

2

for each x ∈ Sn. This gives

‖g(x)− p(x)‖ = |〈p(x), x〉| < m
2 ,

and so

|‖g(x)‖ − ‖f(x)‖| ≤ ‖g(x)− f(x)‖ ≤ ‖g(x)− p(x)‖+ ‖p(x)− f(x)‖ < m

for all x ∈ Sn. This implies that ‖g(x)‖ > 0 for all x ∈ Sn, which is in contradiction to
what we proved in the first part of the proof since g is continuously differentiable. �

The intuition of the Hairy Ball Theorem is this. Note that the function f in the theorem
statement, by virtue of the fact that 〈f(x), x〉 = 0 for all x ∈ Sn, can be thought of as
assigning a tangent vector to Sn at each point, i.e., as defining a vector field. The result
then says that, when n is even, any such vector field must vanish somewhere. Try to picture
this to yourself when n = 2. Note that the result requires that n be even, since otherwise
the function

f(x1, . . . , xn+1) = (x2,−x1, x4,−x3, . . . , xn,−xn+1)

defines a unit vector field that is everywhere tangent to Sn.
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C.2. The Brouwer Fixed Point Theorem

Now we state and prove the Brouwer Fixed Point Theorem.

C.2 Theorem: (Brouwer Fixed Point Theorem) If f : Dn → Dn is continuous then there
exists x0 ∈ Dn such that f(x0) = x0.

Proof: First let us suppose that n is even. Suppose that f(x) 6= x for every x ∈ Dn. Then
define g : Dn → Rn by

g(x) = x− f(x)
1− 〈x, x〉

1− 〈f(x), x〉 .

Note that g(x) = x for 〈x, x〉 = 1, and so g points “outward” on Sn−1 = bd(Dn). Since

|〈f(x), x〉| < |f(x)| ≤ 1

it follows that g is continuous. We also claim that g is nowhere zero. If {f(x), x} is
linearly independent then g(x) is clearly nonzero. If {f(x), x} is linearly dependent then
〈x, x〉f(x) = 〈f(x), x〉x and so

g(x) =
x− f(x)

1− 〈f(x), x〉 6= 0.

Now consider Sn ⊂ Rn+1 and denote by

Sn− = {x ∈ Sn | xn+1 ≤ 0}, Sn+ = {x ∈ Sn | xn+1 ≥ 0}
the southern and northern hemispheres, respectively. We also denote by E = Sn− ∩ Sn+ the
equator. Now define a map φ− from Dn to Sn− by

φ−(x) =
(2x1, . . . , 2xn, 1− 〈x, x〉)

1 + 〈x, x〉 .

(One may verify that this map is stereographic projection from the north pole, thinking of
Dn as being the disk whose boundary is E.) Now define a vector field h on Sn− by

h(z) = Dφ−(φ−1
− (z)) · g(φ−1

− (z)).

This is a nowhere zero vector field on Sn−. Moreover, a direct computation shows that for
z ∈ E we have h(z) = (0, . . . , 0, 1). Define a map φ+ from Dn to Sn+ by

φ+(x) =
(2x1, . . . , 2xn,−1 + 〈x, x〉)

1 + 〈x, x〉 .

Then define a vector field h on Sn+ by

h(z) = −Dφ+(φ−1
+ (z)) · g(φ−1

+ (z)).

This vector field does not vanish on Sn+ and a computation gives h(z) = (0, . . . , 0, 1) for
z ∈ E, so h is consistently defined. Moreover, h is continuous and nowhere zero. This
contradicts the Hairy Ball Theorem since we are assuming that n is even.

If n is odd, suppose again that f(x) 6= x for every x ∈ Dn. Then define F : Dn+1 → Dn+1

by
F (z1, . . . , zn+1) = (f(z1, . . . , zn), 0),

and note that F is continuous and has the property that F (z) 6= z for every z ∈ Dn+1. But
we have just showed that this is a contradiction since n+ 1 is even. �
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C.3. The desired results

Finally, we prove two consequences of the Brouwer Fixed Point Theorem that we shall
use in the Sections 5.4 and 6.4 in our approximation of reachable sets with cones of needle
variations and in establishing the transversality conditions.

C.3 Lemma: (A property of certain maps from compact convex sets) Let K ⊂ Rn be com-
pact and convex with int(K) 6= ∅, and let f : K → Rn be continuous. If x0 ∈ int(K) has
the property that

‖f(x)− x‖ < ‖x− x0‖
for each x ∈ bd(K), then x0 ∈ image(f).

Proof: Without loss of generality suppose that x0 = 0. Define a map φ : K → Dn as follows.
For x ∈ K let λx ∈ R>0 have the property that λxx ∈ bd(K). Since K is compact such
a λx always exists and since K is convex with 0 ∈ int(K) it follows that λx is uniquely
defined (cf. Lemma 1 in the proof of Proposition B.11). We then define φ(x) = x

λx‖x‖ . We
leave it to the reader to verify that φ is a homeomorphism.

Now suppose that f(x) 6= 0 for every x ∈ K. Define g : Dn → Rn by g(z) = f ◦φ−1(z).
For x ∈ bd(K) we have

‖f(x)− x‖ < ‖x‖,
=⇒ 0 ≤ ‖f(x)‖ < 2〈f(x), x〉,
=⇒ 〈f(x), x〉 > 0.

This means that f(x) has a strictly positive component in the direction of x for each
x ∈ bd(K). This then implies that g(z) has a strictly positive component in the direction
of z for each z ∈ bd(Dn). We then define h : Dn → Rn by

h(z) = z − g(z)
1− 〈z, z〉

1− 〈g(z), z〉 ,

and we verify, just as in our proof of the Brouwer Fixed Point Theorem, that h(z) points
strictly outwards on bd(Dn). However, as we saw in the proof of the Brouwer Fixed Point
Theorem, this leads to a contradiction of the Hairy Ball Theorem. Therefore, we must have
f(x) = 0 for some x ∈ K. �

In Figure C.1 we depict the idea behind the lemma. The gist of the matter is that
if the boundary does not deform too much under the continuous map f–specifically, it is
deformed sufficiently little that the region containing the image of the boundary does not
contain x0–then the image covers x0.

The next result deals with the intersection of transverse planes under the image of a
continuous map.

C.4 Lemma: (Intersections of continuous images of transverse planes) Let n, k ∈ Z>0 with
k < n. Define

Cn = {(x1, . . . , xn) | max{|x1|, . . . , |xn|} ≤ 1},
P1 = {(x1, . . . , xn) ∈ Cn | xk+1 = · · · = xn = 0},
P2 = {(x1, . . . , xn) ∈ Cn | x1 = · · · = xk = 0}.
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x0

Figure C.1. The idea behind Lemma C.3. The solid circle repre-
sents the boundary of C and the shaded region is where the
boundary gets mapped to.

Suppose that fa : Pa → Rn, a ∈ {1, 2} are continuous maps such that

‖fa(xa)− xa‖ < 1
4 , xa ∈ Pa, a ∈ {1, 2}.

Then f1(P1) ∩ f2(P2) 6= ∅.
Proof: Denote a point in Cn by (x1, x2) ∈ Rk × Rn−k and define a map g : Cn → Rn by
g(x1, x2) = f1(x1)− f2(−x2). Then, for every (x1, x2) ∈ Cn, we have

‖g(x1, x2)− (x1, x2)‖ = ‖(f1(x1)− x1)− (f(−x2)− (−x2))‖
≤ ‖f1(x1)− x1‖+ ‖f(−x2)− (−x2)‖ < 1

2 .

This implies that for every (x1, x2) ∈ bd(Cn) we have

‖g(x1, x2)− (x1, x2)‖ < ‖(x1, x2)− (0, 0)‖,

and so by Lemma C.3 we have (0, 0) ∈ image(g). Thus there exists (x1, x2) ∈ Cn such that
f(x1) = f(−x2), and the lemma thus follows. �

In Figure C.2 we depict the idea behind Lemma C.4. The idea is that, provided the
planes P1 and P2 do not get deformed too much by f1 and f2, respectively, then they will
intersect after the maps are applied provided they intersect before in a sufficiently “robust”
manner.
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Figure C.2. The idea behind Lemma C.4. The vertical line rep-
resents P1, the horizontal line represents P2, and the shaded
regions represent where these sets get mapped to.
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