MAP0216 - Introdução à Análise Real / MAT0206 - Análise Real

Semestre: 2012-2 - Prof. Rodrigo Bissacot - IME USP

Listas de exercícios e informações sobre o curso em: https://sites.google.com/site/matbissacot/Home/teaching/anlise-2012

Lista 6:

- Sequências Parte I.
- Topologia da Reta Parte I
- DATA DA ENTREGA: 16.10.2012 Terça

Exercício 1. Seja K um corpo ordenado e sejam a e b elementos de K. Mostre que se $a \neq b$ então:

Se
$$0 < \epsilon \le \frac{|a-b|}{2}$$
 então $B_{\epsilon}(a) \cap B_{\epsilon}(b) = \emptyset$.

Notação:
$$B_{\epsilon}(a) = (a - \epsilon, a + \epsilon)$$
 e $B_{\epsilon}(b) = (b - \epsilon, b + \epsilon)$.

Observação: Note que este exercício nos diz é que sempre conseguimos duas bolas disjuntas, cada uma contendo um dos pontos, quando estes são distintos. A seguir veremos que as bolas abertas são conjuntos abertos, ou seja, dados dois pontos distintos conseguimos dois abertos disjuntos contendo cada um deles. Quando um *espaço topológico* satisfaz esta condição dizemos que este é *Hausdorff*.

Definição 1. Dizemos que $(x_n)_{n\in\mathbb{N}}$, sequência de números reais, é convergente quando existir um número $a\in\mathbb{R}$ quando:

$$\forall \ \epsilon > 0 \ existe \ n_0 = n_0(\epsilon) \ tal \ que \ para \ qualquer \ n > n_0 \ vale \ |x_n - a| < \epsilon.$$

Neste caso dizemos que o número a é o limite da sequência $(x_n)_{n\in\mathbb{N}}$. Lembre que já provamos em aula que o limite é único justamente usando o exercício 1. Neste caso escrevemos $\lim_{n\to+\infty}x_n=a$. **Exercício 2.** Seja $(x_n)_{n\in\mathbb{N}}$ uma sequência de números reais.

Mostre que as seguintes afirmações são equivalentes:

- (a) $\forall \epsilon > 0$ existe $n_0 = n_0(\epsilon)$ tal que para todo $n > n_0$ vale $|x_n a| < \epsilon$.
- (b) $\forall \epsilon > 0$ existe $n_0 = n_0(\epsilon)$ tal que para todo $n > n_0$ vale $|x_n a| \le \epsilon$.
- (c) $\forall \epsilon > 0$ existe $n_0 = n_0(\epsilon)$ tal que para todo $n \geq n_0$ vale $|x_n a| \leq \epsilon$.
- (d) $\forall \epsilon > 0$ existe $n_0 = n_0(\epsilon)$ tal que para todo $n \geq n_0$ vale $|x_n a| < \epsilon$.

Comentário: O exercício anterior mostra que qualquer um dos itens acima poderia ser tomado como definição de limite de uma sequência.

Exercício 3. Seja $(x_n)_{n\in\mathbb{N}}$ uma sequência de números reais.

Mostre que as seguintes afirmações são equivalentes:

- (i) $\forall \epsilon > 0$ existe $n_0 = n_0(\epsilon)$ tal que para todo $n > n_0$ vale $|x_n a| < \epsilon$.
- (ii) Fixado $\alpha > 0$, $\forall \epsilon > 0$ existe $n_0 = n_0(\epsilon)$ tal que para todo $n > n_0$ vale $|x_n a| < \alpha.\epsilon$.

Comentário: O exercício anterior tenta combater o desconforto de alguns que ficam incomodados quando terminam de provar uma convergência e no final o argumento chega numa cota do tipo 2ϵ ou 3ϵ . Como são equivalentes, isso mostra que esta constante não influencia pois o ϵ é arbitrário.

Exercício 4. Sejam $(x_n)_{n\in\mathbb{N}}$ e $(y_n)_{n\in\mathbb{N}}$ sequências de números reais. Mostre que se $\lim_{n\to+\infty} x_n = 0$ e $(y_n)_{n\in\mathbb{N}}$ é uma sequência limitada então $\lim_{n\to+\infty} x_n.y_n = 0$.

Exercício 5. Mostre se $(x_n)_{n\in\mathbb{N}}$ é a sequência de números reais definida por $x_n=\frac{n!}{n^n}$, então $\lim_{n\to+\infty}x_n=0$.

Sequências monótonas

Exercício 6. Mostre que se $(x_n)_{n\in\mathbb{N}}$ é a sequência de números reais nãodescrente $(x_n \leq x_{n+1}, \forall n \in \mathbb{N})$ e limitada superiormente, então $(x_n)_{n\in\mathbb{N}}$ é convergente e $\lim_{n\to+\infty} x_n = a = \sup\{x_n; n\in\mathbb{N}\}.$ **Exercício 7.** Mostre que se $(x_n)_{n\in\mathbb{N}}$ é a sequência de números reais não-crescente $(x_n \geq x_{n+1}, \forall n \in \mathbb{N})$ e limitada inferiormente, então $(x_n)_{n\in\mathbb{N}}$ é convergente e $\lim_{n\to+\infty} x_n = a = \inf\{x_n; n\in\mathbb{N}\}.$

Lema 1. Toda sequência convergente de números reais é limitada.

Proposição 1. Toda sequência de números reais limitada possui uma subsequência convergente.

Proposição 2. Toda sequência de Cauchy em \mathbb{R} é limitada.

Teorema 1. Uma sequência de números reais é de Cauchy se, e somente se, é convergente.

Exercício 8. (Teorema do Sanduíche)

Sejam $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$ e $(z_n)_{n\in\mathbb{N}}$ sequências de números reais tais que:

- (i) $x_n \leq y_n \leq z_n \ \forall \ n \in \mathbb{N}$.
- (ii) $\lim x_n = x \in \lim z_n = z$
- (a) Mostre que $x \leq z$.
- (b) Mostre que se x = z então $\lim x_n = \lim y_n = \lim z_n = x$.

Exercício 9. Seja $a \in \mathbb{R}$ e $(x_n)_{n \in \mathbb{N}}$ uma sequência convergente de números reais tal que $\lim x_n = a > 0$. Mostre que existe $n_0 \in \mathbb{N}$ tal que $x_n > 0$ para todo $n \ge n_0$. Enuncie e prove o resultado análogo quando a < 0.

Exercício 10. Sejam a > b números reais e $(x_n)_{n \in \mathbb{N}}$ uma sequência convergente de números reais tal que $\lim x_n = a$. Mostre que existe $n_0 \in \mathbb{N}$ tal que $x_n > b$ para todo $n \ge n_0$. Enuncie e prove o resultado análogo quando a < b.

Definição 2. Um espaço métrico é um par (M,d) onde M é um conjunto $e \ d : M \times M \to \mathbb{R}$ é uma função que satisfaz as seguintes condições para quaisquer $x, y \ e \ z \ em \ M$:

- $(i) \ d(x,y) \ge 0$
- $(ii) \ d(x,y) = 0 \Leftrightarrow x = y$
- $(iii) \ d(x,y) = d(y,x)$
- $(iv) \ d(x,z) \le d(x,y) + d(y,z)$

d é chamada de métrica.

Exemplo 1. $M = \mathbb{R}$ onde d(x, y) = |x - y|. Verifique que d é de fato uma métrica.

Definição 3. Seja (M,d) um espaço métrico. Dizemos que $(x_n)_{n\in\mathbb{N}}$, sequência de elementos de M, \acute{e} de Cauchy quando para todo $\epsilon>0$ existir n_0 tal que quaisquer que sejam m,n com $m\geq n_0$ e $n\geq n_0$ tivermos $d(x_n,x_m)<\epsilon$.

Definição 4. Seja (M,d) um espaço métrico. Dizemos que $(x_n)_{n\in\mathbb{N}}$, sequência de elementos de M, é convergente quando existir um elemento $a\in M$ tal que para todo $\epsilon>0$ existe n_0 tal que quaisquer que seja $n\geq n_0$ tivermos $d(x_n,a)<\epsilon$.

Definição 5. Diremos que $A \subseteq \mathbb{R}$ é **aberto** quando para cada $x \in A$ existir $\epsilon > 0$ (que pode depender de x) tal que $B_{\epsilon}(x) = (x - \epsilon, x + \epsilon) \subset A$.

Observação 1. Note que segue imediatamente da definição que o espaço \mathbb{R} e \emptyset são sempre abertos, o último por vacuidade.

Definição 6. Dados $x \in \mathbb{R}$ e $\epsilon > 0$ a bola aberta de raio ϵ e centro x é definida como sendo o conjunto $B_{\epsilon}(x) = (x - \epsilon, x + \epsilon)$. Num espaço métrico (M, d) arbitrário a definição é a mesma, ou seja, dado $x \in M$ definimos a bola aberta de raio ϵ e centro x por $B_{\epsilon}(x) = \{y \in M; d(x, y) < \epsilon\}$.

Lema 2. Dados $x \in \mathbb{R}$ e $\epsilon > 0$ a bola aberta de raio ϵ e centro x, ou seja, o conjunto $(x - \epsilon, x + \epsilon)$ é um conjunto aberto. Vale o mesmo para bolas em espaços métricos arbitrários.

Proposição 3.

- (i) Se $(A_{\lambda})_{\lambda \in I}$ é uma família de abertos de \mathbb{R} então $\bigcup_{\lambda \in I} A_{\lambda}$ é aberto. (pode ser uma quantidade não enumerável)
- (ii) Sejam $A_1, A_2, ..., A_n$ conjuntos abertos de \mathbb{R} , então $\bigcap_{i=1}^n A_i$ é um conjunto aberto.

Definição 7. Diremos que $A \subseteq \mathbb{R}$ é **fechado** quando seu complementar $A^c = \mathbb{R} - A$ for aberto.

Note que \mathbb{R} e \emptyset são fechados. E ainda, para quaisquer $x \in \mathbb{R}$ e $\epsilon > 0$, o intervalo fechado $[x - \epsilon, x + \epsilon]$ é um conjunto fechado de \mathbb{R} . Qualquer subconjunto finito de \mathbb{R} é fechado.

Comentário: É possível mostrar que os únicos subconjuntos de \mathbb{R} que são simultaneamente abertos e fechados são \mathbb{R} e \emptyset .

Exercício 11.

- (i) Se $(A_{\lambda})_{\lambda \in I}$ é uma família de fechados de $\mathbb R$ então $\bigcap_{\lambda \in I} A_{\lambda}$ é fechado. (pode ser uma quantidade não enumerável)
- (ii) Sejam $A_1,A_2,...,A_n$ conjuntos fechados de $\mathbb{R},$ então $\bigcup_{i=1}^n A_i$ é um conjunto fechado.