MAP0216 - Introdução à Análise Real / MAT0206 - Análise Real

Semestre: 2012-2 - Prof. Rodrigo Bissacot - IME USP

Listas de exercícios e informações sobre o curso em: https://sites.google.com/site/matbissacot/Home/teaching/anlise-2012

Lista 2:

- Axiomas de Peano.
- Indução e Princípio da boa ordenação.
- Propriedades da soma e multiplicação de números naturais.
- Algoritmo da divisão.

- DATA DA ENTREGA: 21.08.2011 - Terça

(Em função da lista estar sendo entregue atrasada, a ideia é que cada sexta seja entregue a próxima lista).

Observação importante: Caso seja preciso usar resultados intermediários que não foram trabalhados no curso você precisa provar tais afirmações a menos que seja dito que podem ser usados resultados externos ao curso como será feito abaixo no caso do Teorema Fundamental da Aritmética. A mesma regra valerá nas provas e é usando este critério que o monitor corrigirá a lista.

Os axiomas de Peano:

 P_1 . A função sucessor $s: \mathbb{N} \to \mathbb{N}$ é injetiva.

 P_2 . $\mathbb{N} - s(\mathbb{N})$ é um conjunto unitário cujo elemento chamaremos de 1.

 P_3 . (Princípio da Indução) Seja $X \subseteq \mathbb{N}$ tal que:

- (i) $1 \in X$
- (ii) Se $n \in X$, então $s(n) \in X$.

Então $X = \mathbb{N}$.

Adição de naturais

Dado um $m \in \mathbb{N}$ arbitrário definimos a soma m+n para todo $n \in \mathbb{N}$ por:

- (i) m + 1 = s(m)
- (ii) m + s(n) = s(m+n), ou seja, m + (n+1) = (m+n) + 1.

Já provamos em aula que a soma está bem definida para quaisquer m e n naturais.

Propriedades da soma:

1. (Associatividade) Para quaisquer n, m e p naturais temos que: (provado em sala de aula)

$$(m+n) + p = m + (n+p).$$

2. (Comutatividade) Para quaisquer m e n naturais temos que:

$$m+n=n+m$$

Prova: Primeiro provaremos que para qualquer natural m temos que m+1=1+m. A prova é por indução em m.

Base de indução: Se m=1 então pela definição de soma temos que m+1=1+1=s(1)=1+1=1+m.

Passo indutivo: Suponha que m+1=1+m, precisamos provar que s(m)+1=1+s(m), ou seja, (m+1)+1=1+(m+1). Assim:

$$s(m) + 1 = (m+1) + 1 \stackrel{hipotese}{=} (1+m) + 1 \stackrel{associat}{=} 1 + (m+1) = 1 + s(m).$$

Provamos assim que para todo m natural m+1=1+m.

Agora provaremos que dado um m natural (arbitrário), temos que m+n=n+m para qualquer n natural.

A prova será por indução em n.

Primeiramente note que a base de indução já está garantida pois já provamos que m+1=1+m.

Passo indutivo: Suponhamos que m + n = n + m, então:

$$m + s(n) = m + (n+1) \stackrel{associa}{=} (m+n) + 1 \stackrel{hipotese}{=} (n+m) + 1 \stackrel{associa}{=} n + (m+1) \stackrel{base}{=} n + (1+m) \stackrel{associa}{=} (n+1) + m = s(n) + m.$$

Pelo princípio da indução provamos que m + n = n + m para qualquer n natural. Como o m é arbitrário, acabamos de provar que para quaisquer

m e n naturais temos que m+n=n+m. \square

Exercício 1.

Prove as seguintes afirmações:

(a) (Lei do cancelamento) Sejam m, n e p números naturais, então:

$$m+n=m+p \Rightarrow n=p$$
.

(b) (Tricotomia)

Dados m e n naturais vale uma e, somente uma, das três afirmações:

- (i) m=n
- (ii) Existe $p \in \mathbb{N}$ tal que m = n + p.
- (iii) Existe $q \in \mathbb{N}$ tal que n = m + q.

Comentário: Disso segue que $\mathbb N$ é um conjunto bem ordenado (totalmente ordenado) com a relação de ordem dada por: a está relacionado com b quando $a \geq b$.

Definição 1. Dizemos que n é menor que m, denotando por n < m quando vale (b), ou seja, quando existe $p \in \mathbb{N}$ tal que m = n + p. Neste caso também dizemos que m é maior que n, onde escrevemos m > n.

Definição 2. Dado um conjunto X, chamamos de ordem parcial uma $relação \leq em \ X \times X$ que satisfaz:

- (i) $x \leq x$ para todo $x \in X$. (reflexiva)
- (ii) Se $x \leq y$ e $y \leq x$ então x = y. (anti-simétrica)
- (iii) Se $x \leq y$ e $y \leq z$ então $x \leq z$. (transitiva)

Um par (X, \preceq) onde \preceq é uma ordem parcial é dito um conjunto parcialmente ordenado.

Quando para quaisquer x e y temos que $x \leq y$ ou $y \leq x$ e, valem (i), (ii) e (iii), então a relação é chamada a ordem ou ordem total. Neste caso (X, \leq) é dito um conjunto ordenado ou totalmente ordenado.

Definição 3. Seja (X, \preceq) um conjunto parcialmente ordenado.

 $Dado\ A\subset X,\ dizemos\ que\ x\in X\ \'e\ uma\ {\tt cota}\ {\tt inferior}\ para\ A\ quando\ x\preceq a\ para\ todo\ a\in A.$

Definição 4. Seja (X, \preceq) um conjunto parcialmente ordenado.

 $Dado\ A\subset X,\ dizemos\ que\ b\in A\ \'e\ o\ {\tt menor}\$ elemento $de\ A\ ou\ {\tt elemento}\$ mínimo $quando\ b\preceq a\ para\ todo\ a\in A.$

Observações:

- 1. Todo mínimo é cota inferior mas nem toda cota inferior é mínimo do conjunto, o mínimo, por definição, deve pertencer ao conjunto.
 - 2. Definindo em N a relação \leq menor ou igual por: $m \leq n$ quando m < n ou m = n.

Temos que (\mathbb{N}, \leq) é um conjunto ordenado.

Proposição: (Princípio da boa ordenação).

Todo conjunto subconjunto não-vazio $X\subseteq\mathbb{N}$ possui um menor elemento. (provado em aula)

Exercício 2. (Transitividade da relação "menor que" (<)) Sejam $m, n \in p$ naturais. Mostre que:

$$(m < n \text{ e } n < p) \Rightarrow m < p$$

Exercício 3. Sejam m, n e p naturais. Mostre que:

$$m + p < n + p \Leftrightarrow m < n$$
.

Exercício 4. Sejam m, n e p naturais. Mostre que:

$$(m < n \text{ e } n \leq p) \Rightarrow m < p.$$

Comentário: Na maioria das vezes quando valerem simultaneamente m < n e $n \le p$ escreveremos $m < n \le p$.

Multiplicação em \mathbb{N}

Dados m e n arbitrários em \mathbb{N} definimos o produto m.n para todo $n \in \mathbb{N}$ por:

- (i) m.1 = m
- (ii) m.s(n) = m.n + m, ou seja, m.(n + 1) = m.n + m.

Exercício 5.

Prove as seguintes propriedades da multiplicação em \mathbb{N} .

- (a) Mostre que a multiplicação está bem definida para quaisquer m e n naturais através de (i) e (ii).
 - (b) (Associatividade)

Mostre que para quaisquer n, m e p naturais temos (m.n).p = m.(n.p).

(c) (Comutatividade)

Mostre que para quaisquer m e n naturais vale m.n = n.m.

(d) (Cancelamento)

Mostre que para quaisquer n, m e p naturais temos que:

- $(d_1)(m.p = n.p) \Rightarrow m = n.$
- (d_2) (Distributividade) m.(n+p) = m.n + m.p.
- (d_3) (Monotonicidade) $m < n \Rightarrow m.p < n.p$.

Comentário: Note que pela definição da multiplicação (item i) e comutatividade temos a existência do elemento neutro para a multiplicação, ou seja,

$$m.1 = 1.m = m$$

para qualquer m natural.

Incluindo o zero nos naturais

Uma outra alternativa ao considerarmos os axiomas de Peano e as definições de adição e multiplicação em N é começarmos do elemento que chamaremos de zero e não do 1. A construção é análoga ao que fizemos até aqui com as devidas modificações na definição da adição e multiplicação que já são esperadas. A menos que se diga o contrário, estamos sempre pensando que os naturais começam a partir do 1, mas as definições a seguir nos autorizam sempre que necessário utilizarmos os Naturais a partir do zero.

Axiomas de Peano (Naturais a partir do zero)

- 1. A função sucessor $s: \mathbb{N} \to \mathbb{N}$ é injetiva.
- **2.** $\mathbb{N} s(\mathbb{N})$ é um conjunto unitário cujo elemento chamaremos de 0.
- **3.** (Princípio da Indução) Seja $X \subset \mathbb{N}$ tal que:
- (i) $0 \in X$
- (ii) Se $n \in X$, então $s(n) \in X$.

Então $X = \mathbb{N}$.

Soma de naturais

Dado um $m \in \mathbb{N}$ arbitrário definimos a soma m+n para todo $n \in \mathbb{N}$ por:

- (i) m + 0 = m
- (ii) m + s(n) = s(m+n), ou seja, m + (n+1) = (m+n) + 1.

Agora 1 é a notação usada para s(0).

Multiplicação em \mathbb{N}

Dado um $m \in \mathbb{N}$ arbitrário definimos o produto m.n para todo $n \in \mathbb{N}$ por:

- (i) m.0 = 0
- (ii) m.s(n) = m.n + m, ou seja, m.(n+1) = m.n + m.

As propriedades já provadas seguem valendo e algumas sofrem pequenas modificações, note que aqui também já saímos com um elemento neutro para a soma que é o zero.

Exercício 6.

Discuta se valem ou não as propriedades do cancelamento e da monotonicidade da multiplicação quando consideramos os naturais incluindo o zero.

Indução a partir de um natural qualquer

Exercício 7. Prove o seguinte resultado que é muito útil para quando queremos provar que alguma propriedade é válida a partir de algum natural não necessariamente 0 ou 1. Aqui $\mathbb N$ contém o zero.

Seja $X \subseteq \mathbb{N}$ tal que

- (i) $a \in X$
- (ii) $n \in X \Rightarrow n+1 \in X$.

Mostre que $\{a, a+1, a+2, \ldots\} = \{a+m; m \in \mathbb{N}\} \subseteq X$.

Dica: Indução em m.

Comentário: O exercício acima nos dá uma nova maneira de provar que determinadas propriedades valem de um número natural a em diante. Para verificar que uma determinada propriedade P é satisfeita para todo natural $n \geq a$ basta provarmos que:

- (i) P(a) é verdadeira. (base de indução)
- (ii) Se P(n) é verdadeira para algum $n \geq a$ então P(n+1) é verdadeira. (Passo indutivo)

Observe que apenas trocamos a afirmação $n \in X$ por P(n) é verdadeira, o que dá no mesmo se $X = \{n \in \mathbb{N}; P(n) \text{ é verdadeira}\}.$

Potência: Dado $a \in \mathbb{N}$ seja $f : \mathbb{N} \to \mathbb{N}$ definida por

$$1.f(1) = a$$

 $2.f(n+1) = a.f(n).$

Não é difícil mostrar que f está bem definida para todo n natural. (f foi definida recursivamente)

Notação: $f(n) = a^n$.

Exercício 8.

Sejam a e b naturais, prove que para quaisquer m e n naturais temos que:

- (a) $a^m . a^n = a^{m+n}$
- (b) $(a^m)^n = a^{m.n}$
- (c) $(a.b)^n = a^n.b^n$

Exercício 9. Mostre que para todo $n \ge 4$ natural temos que:

- (a) $2^n < n!$. (Antes de fazer a prova defina recursivamente a função n!).
- (b) $2n^3 > 3n^2 + 3n + 1$.

Teorema 1. (Princípio da Indução 2º forma - Indução completa)

 $Seja \ X \subseteq \mathbb{N} \ tal \ que$

(i), $1 \in X$

(ii)' Se para todo k tal que $1 \le k < n$ temos que $k \in X$ então $n \in X$. $Então \ X = \mathbb{N}$.

Comentário: Da mesma forma que provamos que provamos no exercício 6 este segundo princípio de indução também pode ser enunciado e provado a partir de um $a \in \mathbb{N}$ no lugar do número 1. Este princípio é útil quando precisamos de informação de outros termos anteriores ao n+1 além do n para poder concluir o passo indutivo.

Exercício 10. (Divisão Euclideana)

Dados $n \in \mathbb{N} \cup \{0\}$ e $d \in \mathbb{N}$ mostre que existem naturais q e r tais que:

$$n = d.q + r \quad \text{com } 0 \le r < n$$

Mostre também que fixados n e d, q e r são únicos.

Dica: Use indução completa em n.