ESPAÇOS MÉTRICOS

14 de Fevereiro de 2017

Prova 2

Nome:			
Nome:			

- 1. Mostre que a composta de funções contínuas é uma função contínua.
- **2.** Considere $C = \{\frac{1}{n} : n \in \mathbb{N}\} \cup \{0\}$ munido da métrica usual induzida por \mathbb{R} e (M,d) um espaço métrico. Mostre que um sequência $(x_n)_{n \in \mathbb{N}}$ em M é convergente para um ponto $a \in M$ se, e somente se, a função $f: C \to M$, definida por $f\left(\frac{1}{n}\right) = x_n$ e f(0) = a, é contínua.
- **3**. Sejam (M, d_M) e (N, d_N) espaços métricos. Dada uma função $f: M \to N$, mostre que são equivalentes:
 - (a) *f* é contínua;
 - (b) $f^{-1}[F]$ é fechado, para todo subconjunto fechado $F \subseteq N$;
 - (c) $f[\overline{A}] \subseteq \overline{f[A]}$, para todo $A \subseteq M$.
- **4**. Sejam (M, d_M) e (N, d_N) espaços métricos. Seja $f: M \to N$ uma isometria, isto é, f é uma função sobrejetora tal que $d_N(f(x), f(y)) = d_M(x, y)$, para quaisquer $x, y \in M$. Mostre que:
 - (a) f é injetora;
 - (b) f^{-1} também é uma isometria;
 - (c) f é contínua.
- **5**. Sejam (M, d_M) e (N, d_N) espaços métricos, $A \subseteq M$ e $f: M \to N$. Prove ou dê um contra-exemplo.
 - (a) Se $f: M \to N$ é contínua em todo ponto de A, então $f|_A: A \to N$ é uma função contínua.
 - (b) Se $f|_A: A \to N$ é uma função contínua, então $f: M \to N$ é contínua em todo ponto de A.
- **6.** Sejam (M, d_M) e (N, d_N) espaços métricos, $a \in M$ e $f: M \to N$. Mostre que f é contínua em a se, e somente se, $(x_n)_{n \in \mathbb{N}}$ convergir para a implique em $(f(x_n))_{n \in \mathbb{N}}$ convergir para f(a).
- 7. Sejam (M, d_M) um espaço métrico, $\phi: M \to M$ contínuua e uma sequência $(x_n)_{n \in \mathbb{N}}$ definida por $x_0 \in M$ qualquer e $x_{n+1} = \phi(x_n)$. Mostre que, se $(x_n)_{n \in \mathbb{N}}$ converge para $a \in M$, então a é um ponto fixo de ϕ .
- **8**. Sejam (M,d) um espaço métrico e $X \subseteq M$. Mostre que $\overline{X} = M \setminus \operatorname{int}(M \setminus X)$ e $\operatorname{int}(X) = M \setminus (\overline{M \setminus X})$.
- **9**. Dê exemplo de um espaço com duas métricas não-discretas e não equivalentes. Dê outro exemplo de um espaço com duas métricas não-discretas e equivalentes.
- **10**. Mostre que, se $I \subseteq \mathbb{R}$ é um intervalo limitado, (M, d_M) é um espaço métrico e $f: I \to M$ é uma função uniformemente contínua, então f é limitada.
- 11. Mostre que funções contínuas preservam conexidade e compacidade.

Boa prova!