ESPAÇOS MÉTRICOS

12 de Fevereiro de 2017

Lista 4

- 1. Sejam (M, d_M) e (N, d_N) espaços métricos. Se $A, B \subseteq M$ são tais que d(A, B) = 0 e $f: M \to N$ é uniformemente contínua, então d(f[A], f[B]) = 0.
- **2**. Seja (M,d) um espaço métrico e sejam (x_n) e (y_n) sequências tais que $d(x_n,y_n)<\frac{1}{n}$ para todo $n\in\mathbb{N}$. Mostre que:
 - (a) (x_n) é de Cauchy se, e somente se, (y_n) é de Cauchy.
 - (*b*) Dado $x \in M$, $\lim x_n = x$ se, e somente se, $\lim y_n = x$.
- 3. Prove que se f : M → N é uniformemente contínua, então f transforma sequências de Cauchy em sequências de Cauchy. Mostre que a hipótese de que f é uniformemente contínua não pode ser enfraquecida para "f é contínua".
- **4**. Seja (x_n) uma sequência de Cauchy. Mostre que se x é ponto de acumulação de $\{x_n : n \in \mathbb{N}\}$, então x_n converge para x.
- 5. Mostre que qualquer conjunto não-vazio com a métrica discreta é completo.
- **6**. Mostre que os espaços \mathbb{Q} e $\mathbb{R} \setminus \mathbb{Q}$ não são completos com as métricas usuais.
- 7. Mostre que se X e Y são subespaços completos de um espaço métrico M, então $X \cap Y$ é completo.
- **8**. Seja $S = \{\frac{1}{n} : n \in \mathbb{N}\}$ e considere sobre S a métrica d induzida pela usual de \mathbb{R} .
 - (a) Mostre que (S,d) não é completo.
 - (b) Encontre uma métrica d' sobre S que seja equivalente a d mas tal que (S, d') seja completo.
- 9. Encontre dois espaços métricos não-homeomorfos cujos completamentos são homeomorfos.
- 10. Mostre que um espaço métrico discreto M é compacto se, e somente se, M é finito.
- 11. Sejam M um espaço métrico e $A, B \subseteq M$ compactos. Mostre que $A \cup B$ é compacto.
- 12. Seja \mathcal{K} uma família de compactos em um espaço métrico (X,d). Mostre que $\cap \mathcal{K}$ é compacto.
- 13. Dê um exemplo de um conjunto limitado que não seja compacto.
- **14**. Sejam K um espaço compacto e $f: K \to \mathbb{R}$ contínua. Se f(x) > 0 para todo $x \in K$, mostre que existe c > 0 tal que $f(x) \ge c$ para todo $x \in K$. Mostre que a hipótese de que K é compacto é necessária.
- **15**. Dizemos que $f: M \to N$ é uma **função fechada** se, para todo $F \subseteq M$ fechado, temos que f[F] é fechado em N. Analogamente, dizemos que $f: M \to N$ é uma **função aberta** se f[A] é aberto para todo $A \subseteq M$ aberto.
 - (a) Mostre que se M é compacto e $f: M \to N$ é contínua, então f é fechada. Mostre que a hipótese de que M é compacto é necessária.
 - (b) Mostre que se $f: M \to N$ é fechada e bijetora, então f é aberta.
 - (c) Conclua que se M é compacto e $f: M \to N$ é contínua e bijetora, então f é um homeomorfismo.
- 16. Seja (K, d_K) um espaço métrico compacto. Considere o conjunto $\mathscr{C}(K)$ de todas as funções contínuas de K em \mathbb{R} , considerando \mathbb{R} munido da métrica usual. Mostre que a função $d: \mathscr{C}(K) \times \mathscr{C}(K) \to \mathbb{R}$ dada por $d(f,g) = \sup\{|f(x) g(x)| : x \in K\}$, para $f,g \in \mathscr{C}(K)$, é uma métrica sobre $\mathscr{C}(K)$. Mostre que $(\mathscr{C}(K),d)$ não é limitado.
- 17. Mostre que se $f: X \to Y$ é um homeomorfismo, então X é localmente compacto se, e somente se, Y é localmente compacto.