ESPAÇOS MÉTRICOS

12 de Janeiro de 2017

Lista 0 - Teoria dos conjuntos e análise real

- 1. Mostre que são equivalentes:
 - (a) $A \subseteq B$
 - (b) $A \cap B = A$
 - (c) $A \cup B = B$
- **2**. Sejam X e Y conjuntos quaisquer e uma função $f: X \to Y$. Mostre que:
 - (a) $B \supseteq f(f^{-1}(B)), \forall B \subseteq Y$
 - (b) $A \subseteq f^{-1}(f(A)), \forall A \subseteq X$
 - (c) $f \in \text{injetora} \iff f^{-1}(f(A)) = A, \forall A \subseteq X$
 - (d) $f(A_1) \setminus f(A_2) \subseteq f(A_1 \setminus A_2), \forall A_1, A_2 \subseteq X$
 - (e) $f \in \text{injetora} \iff f(A_1) \setminus f(A_2) = f(A_1 \setminus A_2), \forall A_1, A_2 \subseteq X$
- **3**. Sejam A e B conjuntos enumeráveis. Mostre que $A \cup B$ é um conjunto enumerável. Observação: lembre-se que conjuntos finitos também são enumeráveis.
- **4**. Mostre que o conjunto $\Sigma_2 = \{0,1\}^{\mathbb{N}}$ é um conjunto não-enumerável.
- **5**. Mostre que \sqrt{p} é irracional para todo número natural p primo.
- **6**. Mostre que o conjunto $K_{\sqrt{2}} = \{a + b\sqrt{2}; a \in \mathbb{Q}, b \in \mathbb{Q}\}$ é um subcorpo de \mathbb{R} .
- 7. Sejam K e L corpos. Uma função $f: K \to L$ chama-se um homomorfismo de corpos quando satisfaz (i) f(x+y) = f(x) + f(y) e (ii) f(x,y) = f(x) + f(y), para quaisquer x, y em K. Mostre que:
 - (a) Para qualquer homomorfismo de corpos temos que $f(0_K) = 0_L$.
 - (b) Prove que, se $f: K \to L$ é um homomorfismo de corpos, então ou $f(x) = 0_L$ para todo $x \in K$, ou então $f(1_K) = 1_L$ e f é injetora.
- **8**. Mostre que o conjunto $\mathbb{Z}_{\sqrt{2}} = \{a + b\sqrt{2}; a \in \mathbb{Z}, b \in \mathbb{Z}\}\$ é denso em \mathbb{R} .
- **9**. Sejam $A \in B$ subconjuntos não vazios de \mathbb{R} , $A + B = \{x + y; x \in A, y \in B\}$ e $-A = \{-x; x \in A\}$.
 - (a) Mostre que, se A e B são limitados superiormente então A+B também o é. Mostre que neste caso temos sup(A+B) = supA + supB.
 - (b) Mostre que, se A é limitado inferiormente, então -A é limitado superiormente e que sup(-A) = -inf(A).
 - (c) Mostre que se A e B são limitados inferiormente então A+B também o é. Mostre que neste caso temos inf(A+B)=infA+infB.
- 10. Mostre que, se $(x_n)_{n\in\mathbb{N}}$ é uma sequência de números reais não decrescente e limitada superiormente, então $\lim_{n\to\infty}x_n=\sup\{x_n;n\in\mathbb{N}\}.$
- 11. Mostre que:
 - (a) A união qualquer de subconjuntos abertos da reta é um conjunto aberto da reta;
 - (b) Um subconjunto A da reta é aberto se, e somente se, $\mathbb{R} \setminus A$ é fechado.
 - (c) A interseção qualquer de subconjuntos fechados da reta é um conjunto fechado da reta;
 - (d) A união finita de subconjuntos fechados da reta é um conjunto fechado da reta;
 - (e) A interseção finita de subconjuntos abertos da reta é um conjunto aberto da reta.
- **12**. Mostre que, se $K \subseteq \mathbb{R}$ é compacto e $F \subseteq K$ é fechado, então F é compacto.
- 13. Mostre que a composta de funções reais contínuas é também contínua.