Lista 2 (complementar) - MAT0236 Funções Diferenciáveis e Séries

Professor Thiago Grando

9 de abril de 2018

- 1. (Teorema do Valor Médio) Sejam A um conjunto aberto do \mathbb{R}^m e $f: A \to \mathbb{R}$ uma função diferenciável em A. Prove que se A contém o segmento de reta com extremos \mathbf{a} e $\mathbf{a} + \mathbf{h}$, então existe um ponto $\mathbf{c} = \mathbf{a} + t_0 \mathbf{h}$ desse segmento, com $t_0 \in (0,1)$, tal que $f(\mathbf{a} + \mathbf{h}) f(\mathbf{a}) = Df(\mathbf{c}).\mathbf{h}$.
- 2. Sejam A um conjunto aberto do \mathbb{R}^n , $f: A \to \mathbb{R}^n$ e $f(\mathbf{a}) = \mathbf{b}$. Suponha que g leva uma vizinhança de \mathbf{b} em \mathbb{R}^n , $g(\mathbf{b}) = \mathbf{a}$ e $g(f(\mathbf{x})) = \mathbf{x}$, para todo \mathbf{x} numa vizinhança de \mathbf{a} . Mostre que se f é diferenciável em \mathbf{a} e g é diferenciável em \mathbf{b} , então $Df(\mathbf{b}) = [Df(\mathbf{a})]^{-1}$.
- 3. Seja $f: \mathbb{R}^3 \to \mathbb{R}^2$ uma função tal que f(0,0,0) = (1,1) e

$$Df(0,0,0) = \left[\begin{array}{ccc} 1 & 0 & 3 \\ 1 & 1 & 2 \end{array} \right].$$

Considerando $g: \mathbb{R}^2 \to \mathbb{R}^2$ definida por

$$g(x,y) = (e^{x^2+y^2}, x+y),$$

calcule $D(g \circ f)(0,0,0)$.

4. Sejam $f: \mathbb{R}^2 \to \mathbb{R}^3$ e $q: \mathbb{R}^3 \to \mathbb{R}^2$ definidas por

$$f(x,y) = (e^{2x+y}, 3y - \cos(x), x^2 + y + 2),$$

$$g(x,y,z) = (3x + 2y + z^2, x^2 - z + 1).$$

Calcule $D(g \circ f)(0, 0) \in D(f \circ g)(0, 0, 0)$.

- 5. Sejam $f: \mathbb{R}^3 \to \mathbb{R}$ e $g: \mathbb{R}^2 \to \mathbb{R}$ funções diferenciáveis. Defina $F: \mathbb{R}^2 \to \mathbb{R}$ por F(x,y) = f(x,y,g(x,y)).
 - a) Encontre DF em termos das derivadas parciais de f e g.
 - b) Se F(x,y) = 0 para todo (x,y), encontre D_1g e D_2g em termos das derivadas parciais de f.
- 6. Sejam $f: \mathbb{R}^2 \to \mathbb{R}$ e $g: \mathbb{R}^2 \to \mathbb{R}^2$ funções definidas por

$$f(x,y) = \begin{cases} \frac{x^2y}{x^4 + y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0), \end{cases}$$

e $g(x,y)=(x,y+x^2)$. Mostre que as derivadas direcionais de f e g existem em qualquer direção, mas existe um vetor $\mathbf{u}\in\mathbb{R}^2$ no qual $\frac{\partial (f\circ g)}{\partial \mathbf{u}}(0,0)$ não existe.