NOTAS DE AULA DO

PICME

Programa de Iniciação Científica e Mestrado em Combinatória

http://www.ime.usp.br/~tcco/picme

Anotado por: Fabrício Caluza Machado e Henrique Stagni 2º semestre de 2015

Conteúdo

1	Aplicações de Topologia à Combinatória	1
	1.1 Dois problemas	2
	1.2 The Ham Sandwich Theorem	3
	1.3 Conjectura de Kneser	6
2	Centro de Massa e Aplicações em Geometria	6
	2.1 Sistemas de Massas	7
3	Conjectura de Kneser	9
	3.1 Demonstração de Lovász para Conjectura de Kneser	9
	3.2 Prova de Bárány ('78) para Conjectura de Kneser	11
	3.3 Teorema de Schrijver	13
4	Ultrafiltros e o Teorema de Hindman	13
	4.1 Teoria de Ramsey	13
	4.2 Ultrafiltros	15
	4.3 Ultrafiltros e topologia	16
	4.4 Teorema de Hindman	17
5	O teorema de Fermat sobre a soma de dois quadrados	18
6	Provas da infinidade de primos	20
7	Teorema de Hoffman e Singleton	21
1	Aplicações de Topologia à Combinatória	
	A. I. (0 I. A. () V. I. I V. I	

A seguir, veremos dois problemas geométricos e de combinatória que podem ser resolvidos com o auxilio de um teorema de topologia.

posição geral

partição arco-íris

Em ambos os problemas, usaremos o conceito de *posição geral*. Um conjunto de pontos $A \subset \mathbb{R}^d$ está em posição geral se não contém d+1 pontos em um mesmo hiperplano (em particular, se |A|>d, então A não contém três pontos colineares, nem quatro coplanares, etc).

1.1 Dois problemas

(1) Partições arco-íris.

Seja $A \subset \mathbb{R}^d$ um conjunto de nd pontos em posição geral. Suponha que esses pontos estão coloridos com n cores distintas e que cada cor aparece n vezes. Em outras palavras, suponha que particionamos A em conjuntos A_1, \ldots, A_d , dois a dois disjuntos, com $|A_i| = n$ para todo i.

Teorema 1.1 (Akiyama & Alon '89). Nas condições acima, A admite uma partição arco-íris, isto é, uma partição $\{V_1, \ldots, V_n\}$ tal que

i) $|V_i| = d$, para todo j;

ii) conv $(V_i) \cap \text{conv}(V_i) = \emptyset;$

 $iii) |A_i \cap V_i| = 1.$

Figura 1: Um exemplo com d = 2 e n = 4.

(2) Colares.

Considere um colar aberto com *d* tipos de pedras, sendo que há um número par de pedras de cada tipo. Dois ladrões querem dividir o colar em duas partes justas (com mesmo número de pedras de cada tipo em cada parte) minimizando o número de cortes no colar.

Figura 2: Dois exemplos. À direita, vemos que se as pedras de mesmo tipo estiverem agrupadas, *d* cortes são necessários.

Teorema 1.2 (T. Goldberg & West '85). Se um colar aberto tem d tipos de pedra, então d cortes são suficientes para dividir o colar em duas partes justas.

2

Deixamos como exercício para o leitor encontrar uma prova puramente combinatória para essa proposição no caso d = 2.

É possível generalizar a proposição para l ladrões, alterando o número de cortes e o requerimento de que existem um número par de pedras de cada tipo para um múltiplo de l.

Vejamos agora um teorema de topologia usado na resolução destes dois problemas.

1.2 The Ham Sandwich Theorem

A versão informal, que dá nome ao teorema, é a seguinte. Suponha que você tem um sanduíche de presunto, formado por duas fatias de pão e uma fatia de presunto. Independente de como esteja montado o sanduíche, é possível dividi-lo em duas partes iguais (a mesma quantidade de cada fatia de pão e de presunto em cada parte) com apenas um corte.

Mais formalmente, sejam $\mu_1,...,\mu_d$ d medidas finitas sobre \mathbb{R}^d (isto é, $\mu_i(\mathbb{R}^d) < \infty$ para todo i), com todo aberto de \mathbb{R}^d μ_i -mensurável.

Como exemplo de medida finita, considere um compacto $A \subset \mathbb{R}^d$ e faça $\mu_A(X) = \lambda^{(d)}(X \cap A)$ para todo X boleriano, onde $\lambda^{(d)}$ é a medida de Lebesgue usual.

Teorema 1.3 (Ham Sandwich Theorem). Sejam $\mu_1, ..., \mu_d$ medidas finitas sobre \mathbb{R}^d , com todo aberto de \mathbb{R}^d μ_i -mensurável, tais que para qualquer hiperplano $H \subset \mathbb{R}^d$ temos $\mu_i(H) = 0$, $\forall i$. Então existe um hiperplano h tal que $\mu_i(h^+) = \frac{1}{2}\mu_i(\mathbb{R}^d)$, $\forall i$, onde h^+ é um dos semi-espaço fechados definidos por h.

Demonstração. Seja $\mathbf{u} = (u_0,...,u_d) \in S^d = \{(x_0,...,x_d) \in \mathbb{R}^{d+1} \mid x_0^2 + ... + x_d^2 = 1\}.$ Também podemos escrever \mathbf{u} como $\mathbf{u} = (u_0,w), w \in \mathbb{R}^d, w = (u_1,...,u_d).$

Se $|u_0| \neq 1$, defina $h^+(\mathbf{u}) = \{x \in \mathbb{R}^d \mid \langle x, w \rangle \leq u_0\}$. Ademais, pomos $h^+(1, 0, ..., 0) = \mathbb{R}^d$ e $h^+(-1, 0, ..., 0) = \emptyset$.

Para entender a função h^+ , consideremos inicialmente $u_0=0$. Temos $w=v\in S^{d-1}$ e neste caso, $h^+(0,v)$ é um semi-espaço que passa pela origem (veja a figura 3).

Se $u_0 \neq 0$, $\mathbf{u} = (u_0, w)$, com $w = \alpha v$, $v \in S^{d-1}$ e $|\alpha| < 1$. Temos $u_0^2 + \|w\|^2 = 1 \Rightarrow u_0^2 + \alpha^2 = 1$ e $\langle x, w \rangle \leq u_0 \Leftrightarrow \langle x, v \rangle \leq \frac{u_0}{\sqrt{1-u_0^2}}$. Assim, vemos que $h^+(\mathbf{u})$ é um semiespaço deslocado na direção de v, se $u_0 > 0$ e na direção oposta, caso contrário (veja a figura 4). Note que $h^+(\mathbf{u}) \to \mathbb{R}^d$, quando $u_0 \to 1$ e $h^+(\mathbf{u}) \to \emptyset$, quando $u_0 \to -1$, o que justifica a definição de h^+ nestes casos. Aproveitamos para observar que $h^+(\mathbf{u})$ e $h^+(-\mathbf{u})$ são semi-espaço opostos.

Seja $f: S^d \to \mathbb{R}^d$, com $f = (f_1, ..., f_d)$ e $f_i = \mu_i(h^+(\mathbf{u})), \forall i$.

Afirmação 1.4. f é contínua.

Demonstração. Provaremos que para todo i, $\mu_i(h^+(\mathbf{u}))$ é contínua em \mathbf{u} . Suponha que $\mathbf{u}_n \to \mathbf{u}$, vamos provar que $\mu_i(h^+(\mathbf{u}_n)) \to \mu_i(h^+(\mathbf{u}))$. Para isso, escrevemos $\mu_i(h^+(\mathbf{u}_n)) = \int \mathbb{1}_{h^+(\mathbf{u}_n)} d\mu_i$ e $\mu_i(h^+(\mathbf{u})) = \int \mathbb{1}_{h^+(\mathbf{u})} d\mu_i$. Como $|\mathbb{1}_{h^+(\mathbf{u}_n)}| \leq 1 \ \forall n$ e $\forall x \in \mathbb{R}^d \setminus h^+(\mathbf{u}), \ \mathbb{1}_{h^+(\mathbf{u}_n)}(x) \to_n \mathbb{1}_{h^+(\mathbf{u})}(x)$, temos que $\mathbb{1}_{h^+(\mathbf{u}_n)} \to \mathbb{1}_{h^+(\mathbf{u})}$ quase certamente e pelo teorema da convergência dominada, $\int \mathbb{1}_{h^+(\mathbf{u}_n)} d\mu_i \to \int \mathbb{1}_{h^+(\mathbf{u})} d\mu_i$. Logo, $\mu_i(h^+(\mathbf{u}_n)) \to \mu_i(h^+(\mathbf{u})) \ \forall i \in f$ é contínua.

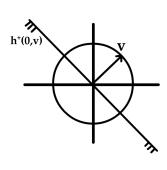


Figura 3:

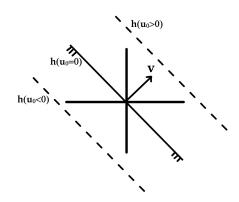


Figura 4:

Pelo teorema de Borsuk-Ulam¹, existe $\mathbf{u} \in S^d$ tal que $f(\mathbf{u}) = f(-\mathbf{u})$. Assim, $f_i(\mathbf{u}) = f_i(-\mathbf{u}) \ \forall i \Leftrightarrow \mu_i(h^+(\mathbf{u})) = \mu_i(h^+(-\mathbf{u})) \ \forall i$.

Como $h^+(-\mathbf{u})$ é o semi-espaço oposto de $h^+(\mathbf{u})$ e sua intersecção é um hiperplano, por hipótese com medida nula em μ_i , para todo i, segue que $\mu_i(h^+(\mathbf{u})) = \frac{1}{2}\mu_i(\mathbb{R}^d)$.

Para a resolução dos problemas apresentados no início dessa seção, precisamos de uma versão discreta do Teorema 1.3. Para enunciá-la, denotaremos os semi-espaço abertos definidos por um hiperplano h por h^{++} e h^{--} . Mais especificamente, se h = (a,b), com $a \in \mathbb{R}^d$ e $b \in \mathbb{R}$, definimos

$$h^{++} = \{x \in \mathbb{R}^d | \langle a, x \rangle > b\} \quad e \quad h^{--} = \{x \in \mathbb{R}^d | \langle a, x \rangle < b\}.$$

Teorema 1.5 (Ham Sandwich discreto). Sejam $A_1, ..., A_d \subset \mathbb{R}^d$ conjuntos finitos de pontos em \mathbb{R}^d com:

- 1. $A_i \cap A_j = \emptyset$ para todo $i \neq j$;
- 2. $\bigcup_{i=1}^{d} A_i$ em posição geral.

Então existe um hiperplano h em \mathbb{R}^d tal que cada A_i é justamente biparticionado por h, isto é, cada um dos semi-espaço abertos $h^+ + e h^-$ contém exatamente $\lfloor \frac{|A_i|}{2} \rfloor$ pontos (observe que $|h \cap A_i| = 0$ se A_i for par $e |h \cap A_i| = 1$ se A_i for ímpar.)

Demonstração. Suponha inicialmente $|A_i|$ ímpar para todo i. Para cada A_i , considere $A_i^{\epsilon} = \{x \in \mathbb{R}^d \mid d(x, A_i) \leq \epsilon\}$, com ϵ pequeno o suficiente para A_i^{ϵ} ser uma união de bolas disjuntas de raio ϵ .

Definida a medida μ_i , fazendo $\mu_i(X) = \lambda^{(d)}(X \cap A_i^{\epsilon})$. Usando o teorema 1.3, obtemos um hiperplano h que divide igualmente esses conjuntos.

Fixado A_i , $\mu_i(h^+(A_i^{\epsilon})) = \frac{1}{2}\mu_i(A_i^{\epsilon})$. Segue que $h \cap A_i^{\epsilon} \neq \emptyset$ (caso contrário, teríamos $\left\lfloor \frac{|A_i|}{2} \right\rfloor + 1$ bolas de um dos lados de h) e h intersecta alguma bola de A_i^{ϵ} . Variando i, usando a hipótese de que os pontos estão em posição geral e fazendo $\epsilon \to 0$, obtemos que h deve intersectar exatamente d pontos, um de cada A_i e particioná-los justamente.

 h^{++}, h^{--}

justamente biparticionado

¹O teorema de Borsuk-Ulam foi tema de uma apresentação do PICME no semestre passado, seção 6.3 das notas de aula disponíveis em: http://www.ime.usp.br/~tcco/picme/wp-content/uploads/2015/08/PICME_2015_1.pdf.

Se $|A_i|$ é par, fixe $a \in A_i$ e considere $A_i \setminus \{a\}$. Pode-se mostrar que uma pequena pertubação de h produz o resultado desejado.

♦ ♦ ♦ Aula 2(01 de Setembro) — Yoshiharu Kohayakawa ♦ ♦ ♦

Observação 1.6. Apesar da prova do Teorema 1.5 não ser construtiva, não é difícil construir algoritimicamente um tal hiperplano h. Suponha que $|A_i|$ seja ímpar para todo i. Então existem apenas $\prod_i |A_i|$ hiperplanos candidatos a satisfazerem as condições do Teorema, a saber, aqueles que intersectam com cada A_i em exatamente um ponto. No caso em que alguns A_i têm cardinalidade par, basta adicionar pontos artificais de forma a cair no caso anterior e perturbar o hiperplano obtido de forma a biparticionar justamente as coleções originais (sem pontos extras).

Prova do Teorema **1.1**. Por indução em n. Para n=0 não há nada a ser provado. Para n>0, aplique o Teorema **1.5** e observe que ambas as coleções de pontos contidas em h^{++} e h^{--} satisfazem as condições do teorema e, portanto, possuem partições arco-íris por hipótese de indução. Se n for par, a união dessas duas partições já é uma partição arco-íris de A. Se n for ímpar, basta também considerar a parte formada pelos pontos contidos em h.

Prova (Alon) do Teorema **1.2**. No caso em que d=2, podemos associar as pedras a pontos em um círculo e aplicar o Teorema **1.5** para obter a bipartição desejada.

No caso geral, usaremos a *curva dos momentos* de dimensão *d*, dada pela equação paramétrica

$$\gamma(t) = (t, t^2, \dots, t^d) \in \mathbb{R}^d, \quad t \ge 0.$$

As seguintes propriedades da curva γ serão suficientes para provarmos o teorema.

1. Se $t_0, \ldots, t_d \geq 0$ são todos distintos, então $\gamma(t_0), \ldots, \gamma(t_d)$ não estão em um mesmo hiperplano.

Demonstração. Suponha o contrário e seja $a=(a_1,\ldots,a_d)\neq 0\in\mathbb{R}^d$ e $b\in\mathbb{R}$ tais que

$$\langle a, \gamma(t_i) \rangle = b,$$
 $(i = 0, \ldots, d)$

ou seja,

Defina o polinômio $P(x) = -b + a_1x + \cdots + a_dx^d$. Vemos que P(x) tem d+1 raízes distintas, da onde segue que P(x) = 0, o que contradiz a hipótese de que $a \neq 0$.

2. Todo hiperplano em \mathbb{R}^d encontra a curva γ em no máximo d pontos.

Demonstração. Segue da propriedade anterior.

curva dos momentos Assim, se um colar tem n pedras, basta associá-las (na ordem em que aparecem no colar) a pontos $\gamma(1), \ldots, \gamma(n)$ e aplicar o Teorema 1.5.

A seguir, vamos mostrar uma variante do Teorema 1.5 em que descartamos a hipótese dos pontos estarem em posição geral. Nesse caso, o exemplo da figura 5 mostra que infelizmente não podemos garantir a existência de um hiperplano que biparticione *justamente* cada A_i .

Figura 5: Não existe hiperplano que biparticiona justamente as duas coleções de pontos acima

Seja $A \subset \mathbb{R}^d$ um conjunto finito de pontos. Dizemos que um hiperplano h biparticiona fracamente A se $|h^{++} \cap A|, |h^{--} \cap A| \leq |A|/2$.

Teorema 1.7. Sejam $A_1, \ldots, A_d \subset \mathbb{R}^d$, com cada A_i finito. Então existe um hiperplano h que biparticiona fracamente cada um dos A_i .

Demonstração. Considere $A_i^{(\eta)}$ uma η-perturbação de A_i . Podemos supor que $\cup_i A_i^{(\eta)}$ está em posição geral. Aplique o Teorema 1.5 para obter um hiperplano $h^{(\eta)}$ dado por $(a^{(\eta)}, b^{(\eta)})$. Faça $\eta \to 0$. Como $||a^{(\eta)}|| = 1$ e $|b^{(\eta)}|$ é limitado, podemos supor que $a^{(\eta)} \to a$ e $b^{(\eta)} \to b$. O hiperplano h = (a, b) satisfaz as condições desejadas.

1.3 Conjectura de Kneser

O seguinte resultado foi conjecturado por Kneser ('55) e demonstrado por Lovász ('78). A demonstração de Lovász faz uso do Teorema de Borsuk-Ulam e será apresentada na seção 3.

Teorema 1.8 (Conjectura de Kneser/Teorema de Lovász). *Seja n* > 2k-1 *e suponha que existam conjuntos* $C_1, \ldots, C_{n-2k+1} \in 2^{\binom{[n]}{k}}$ *tais que*

$$\binom{[n]}{k} = \mathcal{C}_1 \cup \ldots \cup \mathcal{C}_{n-2k+1}.$$

Então existe i e conjuntos $A, B \in C_i$ tais que $A \cap B = \emptyset$.

Observação 1.9. O resultado acima é falsa para o caso em que $\binom{[n]}{k}$ é particionado em n-2k+2 partes. Uma 3-coloração do grafo de Petersen é um contraexemplo para o caso em que n=5 e k=2.

2 Centro de Massa e Aplicações em Geometria

♦ ♦ ♦ Aula 3(15 de Setembro) — Rodrigo Eidji Uemura Iwanaga

 $\Diamond \Diamond \Diamond$

biparticiona fracamente

2.1 Sistemas de Massas

Consideraremos sistemas de pontos no plano nos quais valores de *massa* são associados a cada ponto.

Notação 2.1. Um ponto $(x,y) \in \mathbb{R}^2$ no plano associado a uma massa $m \in \mathbb{R}$ será denotado por (x,y)[m].

O centro de massa de um sistema de pontos $\{(x_i,y_i)[m_i]\}_{i=1}^n$ é o ponto $(x_c,y_c)[m]$, onde

$$m = \sum_{i=1}^{n} m_i,$$
 $x_c = \frac{\sum_{i=1}^{n} x_i}{m},$ $y_c = \frac{\sum_{i=1}^{n} y_i}{m}.$

Proposição 2.2. O centro de massa G[m+n] de dois pontos A[m] e B[n] é tal que A, B e G são colineares e, além disso,

$$\overline{AG} \cdot m = \overline{GB} \cdot n.$$

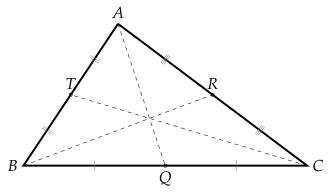
Proposição 2.3. Sejam $(x_c, y_c)[m]$ o centro de massa de um sistema $S = \{(x_i, y_i)[m_i]\}_{i=1}^n$ $e(x'_c, y'_c)[m']$ o centro de massa de um sistema $S' = \{(x'_i, y'_i)[m'_i]\}$. Então o centro de massa de $S \cup S'$ é o centro de massa de $\{(x_c, y_c)[m], (x'_c, y'_c)[m']\}$.

A seguir consideraremos triângulos ABC quaisquer e denotaremos por a,b,c os comprimentos dos lados opostos aos vértices A,B,C respectivamente.

Uma seviana é qualquer segmento de reta que une um vértice a um ponto do lado oposto. Em particular, a *mediana* é uma seviana que une que um vértice ao ponto médio do lado oposto. O *baricentro* de um triânglo é o ponto de encontro de suas três medianas.

Lema 2.4. O baricentro de um triângulo ABC é dado pelo centro de massa de A[p], B[p] e C[p], onde p é um valor arbitrário de massa.

Demonstração. Seja G[3p] o centro de massa de A[p], B[p] e C[p] e seja Q, R e T os pontos que definem as três medianas, como abaixo.

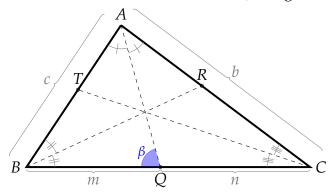


Pela Proposição 2.2, o ponto Q[2p] é o centro de massa de B[p] e C[p]. Pela Proposição 2.3, G[3p] é, também, o centro de massa de A[p] e Q[2p], da onde segue que G está sobre a mediana AQ. De maneira simétrica, é possível concluir que M também está sobre as demais medianas e, portanto, que G é o baricentro de ABC. \square

O *incentro* de um triângulo é o ponto de encontro das sevianas que bissectam cada ângulo.

Lema 2.5. O incentro de um triângulo ABC é dado pelo centro de massa dos pontos A[a], B[b] e C[c].

Demonstração. Seja I[a+b+c] o centro de massa de A[a], B[b] e C[c] e sejam Q, R e S pontos que definem cada uma das bissetrizes de ABC (ver figura abaixo).

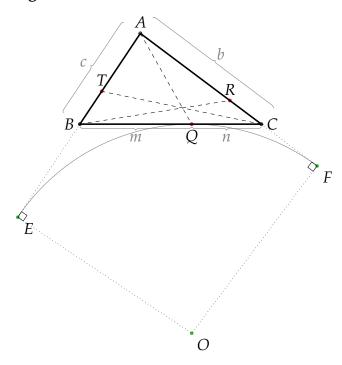


Se aplicarmos a *Lei dos Senos* aos triângulos *ABQ* e *AQC*, obtemos, respectivamente, que

$$\frac{m}{\sin \alpha} = \frac{c}{\sin \beta}$$
 e $\frac{n}{\sin \alpha} = \frac{b}{\sin(\pi - \beta)} = \frac{b}{\sin \beta}$.

Daí concluímos que mb = nc. Pela Proposição 2.2, o ponto Q[b+c] é o centro de massa de B[b] e C[c]. Logo I é também o centro de massa A[a] e Q[b+c] e, portanto, está contido na bissetriz AQ. Por simetria, concluímos que I também está sobre as demais bissetrizes e, é, portanto, o incentro de ABC.

(Definição ponto Nagel)



Lema 2.6. O ponto de Nagel do triângulo ABC acima é dado pelo centro de massa dos pontos A[p-a], B[p-b] e C[p-c], onde p é o semiperímetro de ABC.

Demonstração. Seja N o centro de massa definido como acima e \overline{AQ} , \overline{BR} e \overline{CT} as sevianas que definem o ponto de Nagel.

Como $\overline{BE} = \overline{BD} = m$ e $\overline{CD} = \overline{CF} = n$, devemos ter

$$c + m = \overline{AE} = \overline{AF} = b + n$$
.

Substituindo m = a - n, obtemos

$$c - a - n = b + n$$

isto é,

$$n = \frac{a-b+c}{2} = p-b.$$

De forma simular, temos m=p-c. Logo, Q[a] é o centro de massa de B[p-b] e C[p-c]. Então N também pode ser escrito como o centro de massa de Q[a] e A[p-a], da onde segue que N está contido em \overline{AQ} . De forma análoga, é possível mostrar que N também está contido em \overline{CT} e \overline{BR} .

Teorema 2.7. Sejam G, I, N o baricentro, o incentro e o ponto de Nagel (respectivamente) de um triângulo ABC. Então G, I, N são colineares e

$$\frac{\overline{NG}}{\overline{GI}} = \frac{2}{1}.$$

Demonstração. Pelo Lema 2.5, sabemos que I[2p] é o centro de massa do sistema $\{A[a], B[b], C[c]\}$ e pelo Lema 2.6 que N[p] é o centro de massa do sistema $\{A[p-a], B[p-b], C[p-c]\}$. Logo, o centro de massa de I[2p] e N[p] é o centro de massa do sistema

$${A[a+p-a], B[b+p-b], C[c+p-c]} = {A[p], B[p], C[p]},$$

que é o ponto G[3p], pelo Lema 2.4. Concluímos então que G,I,N são colineares e que

$$\overline{GN} \cdot p = \overline{IG} \cdot 2p,$$

o que implica a relação desejada.

Teorema 2.8 (Ceva).

3 Conjectura de Kneser

3.1 Demonstração de Lovász para Conjectura de Kneser

Veremos uma demonstração do Teorema 1.8 que faz uso do seguinte resultado de topologia que será demonstrado posteriormente.

Teorema 3.1. Se a esfera $S^d \in \mathbb{R}^d$ é coberta por conjuntos C_1, \ldots, C_{d+1} abertos ou fechados, isto é, se

$$S^d = C_1 \cup \cdots \cup C_{d+1},$$

então existe índice i e $x \in S^d$ tais que $x, -x \in C_i$.

Uma k-coloração própria de um grafo G é uma função $c:V(G)\to\{1,2,\ldots,k\}$ tal que $c(u)\neq c(v)$ sempre que $\{u,v\}\in E(G)$. O número cromático $\chi(G)$ de G é o menor inteiro k para o qual existe uma tal k-coloração.

Sejam k, n inteiros, 0 < k < n. Denotamos por $\binom{[n]}{k}$ o conjunto de todos os subconjuntos de $[n] := \{1, \ldots, n\}$ que possuem exatamente k elementos.

O grafo de Kneser $KG_{n,k}$ é o grafo G = (V, E). Com

$$V = {[n] \choose k}$$
 $E = \{\{F_1, F_2\} : F_1, F_2 \in V \text{ e } F_1 \cap F_2 = \emptyset\}$

O Teorema 1.8 pode ser reescrito da seguinte forma.

Teorema 3.2 (Conjectura Kneser/Teorema de Lovász). *Para todo k* > 0 *e n* \geq 2*k* - 1, *o número cromático* $\chi(KG_{n,k})$ *do grafo de Kneser é n* - 2*k* + 2.

Para mostrar que $\chi(KG_{n,k}) \le n-2k+2$, isto é, que é possível colorir $KG_{n,k}$ com apenas n-2k+2 cores, basta usar a seguinte coloração² que contém i e que ainda não foram coloridos com cores

$$c(v) = \min\{\min v, n - 2k + 2\}.$$

De fato, se

$$\chi(v_1) = \chi(v_2) = i < n - 2k + 2$$

então $\emptyset \neq V_1 \cap V_2 \ni i$, o que implica $\{v_1, v_2\} \notin E(KG_{n,k})$. Se

$$\chi(v_1) = \chi(v_2) = n - 2k + 2,$$

então $v_1, v_2 \in \{n-2k+2, ..., n\}$, que possui 2k-1 elementos. Como $|v_1|+|v_2|=2k$, pelo Princípio da Casa dos Pombos, v_1 e v_2 devem conter pelo menos um elemento em comum e, portanto, $\{v_1, v_2\} \notin E(KG_{n,k})$.

Demonstração do Teorema **1.8** (*Lovász '78*). Considere $KG_{n,k}$ e seja d := n - 2k + 1. Seja $X \subset S^d$ um conjunto com n pontos tais que nenhum hiperplano passando pela origem contenha mais do que d pontos de X.

Exercício 3.3. Mostre que, com probabilidade 1, um conjunto de n pontos escolhidos uniformemente ao acaso em S^d é uma escolha válida para X.

Vamos assumir que existe uma coloração c de $KG_{n,k}$ com apenas d=n-2k+1 cores. Defina conjuntos A_i , $1 \le i \le d$, da seguinte maneira.

$$A_i = \{x \in S^d : \text{existe } y \in V(KG_{n,k}) \text{ satisfazendo } y \subset H(x) \text{ e } c(y) = i\}.$$

 $^{^2}$ equivale associar à cor i todos os vértices que contêm i e que ainda não foram coloridos com cores menores que i.

Exercício 3.4. Mostre que A_i é aberto.

Defina, ainda, o conjunto fechado $A_{d+1} = S^d \setminus \bigcup_{i=1}^d A_i$. Pelo Teorema 3.1 aplicado a A_1, \ldots, A_{d+1} , existe $i \in [d+1]$ tal que $x, -x \in A_i$. Dividimos o restante da demonstração em dois casos:

Caso 1: $i \le d$ Neste caso existem duas k-uplas y, y', associadas à *mesma cor i* e contidas, respectivamente, em H(x) e H(-x). Então $y \cap y' \ne \emptyset$ e, portanto, $\{y, y'\} \in E(KG_{n,k})$, o que contradiz a hipótese de c ser uma coloração válida.

Caso 2: i = d + 1 Neste caso, H(x) não pode conter um conjunto $y \in V(KG_{n,k})$ de k pontos de X, caso contrário teríamos $x \in A_{c(i)}$. Pelo mesmo motivo, $H(-x) \cap X < k$. Concluímos então que $|S(x)| \ge n - 2k + 2 = d + 1$, o que contradiz a hipótese inicial sobre X.

Logo, toda coloração de $KG_{n,k}$ deve usar pelo menos n-2k+2 cores.

3.2 Prova de Bárány ('78) para Conjectura de Kneser

A demonstração do Teorema 1.8 (Conjectura de Kneser) da aula passada depende do Teorema 3.1 sobre topologia. Veremos nesta aula uma outra demonstração para o Teorema 1.8 que depende apenas do seguinte resultado de topologia, que é equivalente ao Teorema de Bursuk-Ulam.

Teorema 3.5 (Lyusternik-Schnirelmann). *Se a esfera* $S^d \in \mathbb{R}^d$ *é coberta por conjuntos* C_1, \ldots, C_{d+1} abertos, *isto é*, *se*

$$S^d = C_1 \cup \cdots \cup C_{d+1},$$

então existe i e $x \in S^d$ tais que $x, -x \in C_i$.

Consideraremos hiperplanos em \mathbb{R}^d que passam pela origem. Mais especificamente, um hiperplano $h \in \mathbb{R}^d$ e os semiespaços abertos correspondetes h^+ e h^- são determinados por um um vetor $a \in \mathbb{R}^d$ da seguinte maneira:

$$h = \{x \in \mathbb{R}^d : \langle a, x \rangle = 0\},$$

$$h^+ = \{x \in \mathbb{R}^d : \langle a, x \rangle > 0\},$$

$$h^- = \{x \in \mathbb{R}^d : \langle a, x \rangle < 0\}.$$

Lema 3.6 (Lema de Jade ('56)). Para quaisquer inteiros $d \ge 0$ e $k \ge 1$, existe $X \subset S^d \subset \mathbb{R}^{d+1}$, com |X| = 2k + d, tal que para todo hiperplano h (passando pela origem) os semiespaços abertos h^+ e h^- são tais que:

$$|h^+ \cap X| \ge k$$
 e $|h^- \cap X| \ge k$.

Demonstração. Vamos construir $V=\{v_1,\ldots,v_{2k+d}\}\subset\mathbb{R}^{d+1}$ tal que para todo hiper-

plano h, $|h^+ \cap V|$, $|h^- \cap V| \ge k$. Assim, podemos tomar X como abaixo.

$$X = \left\{ \frac{v_1}{\|v_1\|}, \dots, \frac{v_{2k+d}}{\|v_{k+d}\|} \right\}$$

Consideramos a curva dos momentos

$$\overline{\gamma}(t) = (1, t, t^2, \dots, t^d) \in \mathbb{R}^{d+1} \quad (t \in \mathbb{R}).$$

Seja $W = \{w_1, \dots, w_{2k+d}\}$ um conjunto de pontos sobre $\overline{\gamma}$ "em ordem". Por exemplo, podemos tomar $w_i = \overline{\gamma}(i) \ (1 \le i \le 2k+d)$.

Pomos $v_i = (-1)^i w_i$. Mostraremos a seguir que $|h^+ \cap V|, |h^- \cap V| \ge k$, ou, equivalentemente, que:

- 1. $|\{w_i \in h^+ : i \text{ \'e par}\}| + |\{w_i \in h^- : i \text{ \'e impar}\}| \ge k$ e
- 2. $|\{w_i \in h^- : i \in par\}| + |\{w_i \in h^+ : i \in impar\}| \ge k$.

Seja $W_{on} = W \cap h$ o conjunto dos $w_i \in W$ que pertencem ao hiperplano h. Note que $W_{on} \leq d$. De fato, suponha que h seja dado pelos pontos ortogonais a $a = (a_1, \ldots, a_{d+1}) \in \mathbb{R}^d$. Então todo $t \in \mathbb{R}$ tal que $\overline{\gamma}(t) \in h$ satisfaz a equação

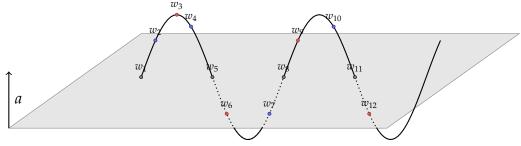
$$a_1 + a_2t + a_3t^2 + \dots + a_{d+1}t^d = \langle a, \overline{\gamma}(t) \rangle = 0,$$

que admite no máximo d raízes reais.

Podemos supor, sem perda de generalidade, que $W_{on} = d$, movendo o hiperplano h até que exatamente d pontos de W pertençam a h, e de forma a não mudar nenhum ponto de lado.

Considere o conjunto $W_{off}=W\setminus W_{on}.$ Colorimos cada ponto w_i em W_{off} de

- azul, se i for par e pertencer a h^+ , ou se i for impar e pertencer a h^- .
- vermelho, se i for par e pertencer a h^- , ou se i for impar e pertencer a h^+ .



Note que ao longo de $\overline{\gamma}$ os pontos em W_{off} estão coloridos alternadamente de azul e vermelho. Como $|W_{off}|=2k$, concluímos que exatamente k pontos em W_{off} serão coloridos de azul e exatamente k, de vermelho.

Observação 3.7. Não poderíamos trocar a hipótese de que |X| = 2k + d por |X| = 2k + d - 1 no enunciado do Lema 3.6. Nesse caso, ao tomarmos um hiperplano h passando por quaisquer d pontos de X, restariam apenas 2k - 1 pontos nos espaços abertos h^+ e h^- (e portanto algum deles teria k - 1 pontos).

Demonstração de Bárány para a Conjectura de 1.8. Seja d = n - 2k e $X \subset S^d \subset \mathbb{R}^{d+1}$ um conjunto de n pontos em S^d como no Lema de Gale. Identificamos [n] com X.

Suponha por contradição que

$$N = {[n] \choose k} = C_1 \cup \cdots \cup C_{n-2k+1}$$

é tal que não existe $A, B \in C_i$ com $A \cap B \neq \emptyset$, isto é, que todos os C_i sejam intersectantes.

Para todo $i \in \{0, \dots, n-2k+1\}$, pomos

$$A_i = \left\{ x \in S^d : H(x) \text{ cont\'em um } S \in {X \choose k} \text{ com } S \in \mathcal{C}_i \right\}$$

onde $H(x) = \{y \in \mathbb{R}^d : \langle x, y \rangle > 0\}$. Esses A_i são abertos (*exercício*). Ademais, segue da escolha de X e do Lema de Gale que tais A_i cobrem S^d .

Logo, pelo Teorema 3.5, existe i tal que $x, -x \in A_i$. Isso implica a existência de conjuntos $S, S' \in {X \choose k}$ coloridos, ambos, com a cor i mas contidos, respectivamente, em H(x) e H(-x) e, portanto, disjuntos.

3.3 Teorema de Schrijver

Seja C_n o circuito de comprimento n, cujos vértices (na ordem em que aparecem no circuito) são os inteiros $1, \ldots, n$. Um conjunto de vértices $S \subset [n]$ de C_n é estável em C_n se não induz uma aresta.

Seja

$$\binom{[n]}{k}_{stab} = \left\{ S \in \binom{[n]}{k} : S \text{ \'e estável em } C_n \right\}.$$

O seguinte resultado afirma que o Conjectura de Kneser vale mesmo quando particionamos $\binom{[n]}{k}_{stab} \subset \binom{[n]}{k}$.

Teorema 3.8 (Schrijver). *Seja* n > 2k-1 *e suponha que existam conjuntos* $C_1, \ldots, C_{n-2k+1} \in 2^{\binom{[n]}{k}}$ *tais que*

$$\binom{[n]}{k}_{stab} = \mathcal{C}_1 \dot{\cup} \dots \dot{\cup} \mathcal{C}_{n-2k+1}.$$

Então existe $i \in [n-2k+1]$ e conjuntos $A, B \in C_i$ tais que $A \cap B = \emptyset$.

4 Ultrafiltros e o Teorema de Hindman

4.1 Teoria de Ramsey

Seja
$$\mathbb{N} = \{1, 2, \dots, \}.$$

Teorema 4.1 (Teorema de Ramsey, versão infinita). Sejam $k,r\geq 1$ e $C_1,\ldots,C_r\subseteq \binom{\mathbb{N}}{k}$

conjuntos tais que

$$\binom{\mathbb{N}}{k} = C_1 \cup \cdots \cup C_r.$$

Então existe índice i e conjunto $A \subset \mathbb{N}$, com $|A| = \infty$ tais que

$$\binom{A}{k} \subseteq C_i$$
.

Demonstração. Se k=1, a afirmação é verdadeira, uma vez que se podemos identificar $\binom{\mathbb{N}}{1}$ por \mathbb{N} . Logo, se C_1, \ldots, C_r são tais que $\mathbb{N} = C_1 \cup \cdots \cup C_r$, então algum C_i deve ter tamanho infinito.

Suponha $k,r\geq 2$ e que a afirmação é verdadeira para valores menores de k. Seja

$$\binom{\mathbb{N}}{k} = C_1 \cup \cdots \cup C_r.$$

Construiremos uma sequência infinita $x_1 < x_2 < \dots$ tal que para todo conjunto $K = \{x_{i_1}, \dots, x_{i_{k-1}}\}$ $(i_1 < \dots < i_{k-1})$, existe índice $1 \le j_K \le r$ tal que

$$\forall i_k > i_{k-1}$$
temos: $K \cup \{x_{i_k}\} \subset C_{j_K}$.

Suponha que já definimos $x_1 < x_2 < \cdots < x_t$ e conjunto $Y_t \subset \mathbb{N}$ infinito, com $Y_t > x_t$, tais que: para todo $K \subset \{x_1, \dots, x_t\}$, |K| = k - 1, existe j_K tal que todo $y \in Y_t$ satisfaz

$$K \cup \{y\} \in C_{j_k}$$
.

Vamos definir agora x_{t+1} e Y_{t+1} . Pomos $x_{t+1} = \min Y_t$ e $Y' = Y_t \setminus \{x_{t+1}\}$. Seja $\Pi = [r]^{\binom{x_1, \dots, x_t}{k-2}}$ o conjunto de funções que associam índices em [r] a subconjuntos de $\{x_1, \dots, x_t\}$ de tamanho k-2. Considere a seguinte partição de Y':

$$Y' = \bigcup_{\pi \in \Pi} D_{\pi},$$

onde

$$D_{\pi} = \{ y \in Y' : \forall J \in {x_1, \ldots, x_t \choose k-2}, J \cup \{x_{t+1}, y\} \in C_{\pi(J)} \}.$$

Como Y' é infinito, deve existir $\pi \in \Pi$ tal que D_{π} é infinito. Tomamos $Y_{t+1} = D_{\pi}$.

Observe agora que $\{x_1, \ldots, x_{t+1}\}$ e Y_{t+1} satisfazem a mesma condição que antes tínhamos para $\{x_1, \ldots, x_t\}$ e Y_{t+1} , de forma que podemos aplicar esse processo indefinidamente. A sequência $x_1 < x_2 < \ldots$ construída assim é como queríamos.

Podemos agora particionar $\binom{\{x_1,x_2,\dots\}}{k-1}$ de acordo com o índice j_K associado, isto é, temos que

$$\binom{\{x_1,x_2,\dots\}}{k-1}=C'_1\cup\dots\cup C'_r,$$

onde, para todo $j \in [r]$,

$$C'_{j} = \{K \in {\{x_{1}, x_{2}, \dots\} \choose k-1} : j_{K} = j\}.$$

Aplicando o caso k-1 do teorema de Ramsey para $\{x_1, x_2, \dots\}$, temos que existe um conjunto infinito $A \subseteq \{x_1, x_2, \dots\}$ e um índice j tal que todo $K \in \binom{A}{k-1}$ está contido em C'_j . Segue da definição de C'_j que todo $L \in \binom{A}{k} \in C_j$, como desejado. \square

4.2 Ultrafiltros

Nesta seção, X será um conjunto, geralmente infinito, como o conjunto do naturais $\mathbb{N} = \{1, 2, \dots\}$. Se A é um subconjunto de X, denotaremos $X \setminus A$ por A^c .

Uma coleção $\mathcal{F} \subseteq 2^X$ é um *filtro* sobre X se

- 1. $\emptyset \notin \mathcal{F}, X \in \mathcal{F}$;
- 2. \mathcal{F} é fechado por superconjuntos, isto é, se $A \subseteq B$ e $A \in \mathcal{F}$, então $B \in \mathcal{F}$;
- 3. \mathcal{F} é fechado por intersecções, isto é, se $A, B \in \mathcal{F}$, então $A \cap B \in \mathcal{F}$.

Dizemos que um filtro \mathcal{F} é um *ultrafiltro* se a seguinte condição extra for satisfeita:

4 Para todo $A \subseteq X$, A ou A^c pertence a \mathcal{F} .

Observação 4.2. Ultrafiltros \mathcal{U} podem ser pensados como uma classificação dos subconjuntos de X emm duas categorias: conjuntos *grandes* (membros de \mathcal{U}) e conjuntos *pequenos* (fora de \mathcal{U}).

Ultrafiltros podem também ser definidos como uma medida aditivia tomando apenas os valores 0 ou 1. Isto é, se \mathcal{U} é um ultrafiltro, então podemos definir a medida

$$m_{\mathcal{U}}: 2^{X} \to \{0, 1\}$$

$$A \mapsto \begin{cases} 0, \text{ se } A \in \mathcal{U}; \\ 1, \text{ se } A \notin \mathcal{U}. \end{cases}$$

A medida $m_{\mathcal{U}}$ é aditiva, isto é, se $A, B \subset X$ e $A \cap B = \emptyset$, então

$$m_{\mathcal{U}}(A \cup B) = m_{\mathcal{U}}(A) + m_{\mathcal{U}}(B).$$

Para verificar essa igualdade, notamos que a condição 4.2 da definição de ultrafiltros pode ser trocada pela seguinte:

4' Se
$$C \in \mathcal{F}$$
 e $C = A \cup B$, então $A \in \mathcal{F}$ ou $B \in \mathcal{F}$.

De fato, se $A \notin \mathcal{F}$ e $B \notin \mathcal{F}$, então a condição 4.2 implica que $A^c \in \mathcal{F}$ e $B^c \in \mathcal{F}$, da onde segue que $C^c = A^c \cap B^c \in \mathcal{F}$, e, novamente pela condição 4.2, que $C \notin \mathcal{F}$.

As seguintes famílias são exemplos de filtros.

- $\mathcal{F} = \{X\}$ (filtro trivial).
- $\emptyset \neq Y \subset X$, $\mathcal{F}_Y = \{A \subseteq X : Y \subseteq A\}$.
- $\mathcal{F}_{cofin} = \{A \subseteq X : A^c \text{ \'e finito}\}$ (filtro de Frechet).

Dado $x \in X$, a família

$$\mathcal{F}_x = \mathcal{F}_{\{x\}} = \{ A \subseteq X : x \in A \}$$

é um exemplo de ultrafiltros dessa forma, são chamados de *ultrafiltros* principais.

Dizemos que um filtro \mathcal{F} é maximal se

$$\mathcal{F} \subseteq \mathcal{F}'$$
 e \mathcal{F}' é filtro $\Rightarrow \mathcal{F} = \mathcal{F}'$.

Fato 4.3. Seja $\mathcal{F}\subseteq 2^X$ um filtro. Então \mathcal{F} é um ultrafiltro se, e somente se, \mathcal{F} é um filtro maximal.

Demonstração. Se \mathcal{F} é ultrafiltro e $A \notin \mathcal{F}$, então $A^c \in \mathcal{F}$ e, portanto, $\mathcal{F} \cup A$ não pode ser ul ultrafiltro.

Para provar a recíproca, suponha que \mathcal{F} tal que $A, A^c \notin \mathcal{F}$ para algum $A \subseteq \mathcal{F}$. Então condidere o filtro \mathcal{F}' gerado por $\mathcal{F} \cup \{A\}$, isto é, formado por conjuntos em \mathcal{F} e por A e fechado por interseção finita e por superconjuntos.

Observação 4.4. Se $|X| < \infty$, então os ultrafiltros sobre X são todos da forma \mathcal{F}_x .

Observação 4.5. Suponha X infinito e \mathcal{U} um ultrafiltro sobre X não-principal, isto é, $\mathcal{U} \neq \mathcal{F}_x$, para todo $x \in X$. Então $U \supseteq \mathcal{F}_{cofin}$.

Teorema 4.6. Seja X um conjunto, com $|X| = \infty$. Então existem ultrafiltros não principais sobre X

Demonstração. Seja $\mathbb{F} = \{\text{filtros } \mathcal{F} \subseteq 2^X : \mathcal{F} \supseteq \mathcal{F}_{cofin}\}$. Note que \mathbb{F} é parcialmente ordenado por inclusão. Usamos o Lema de Zorn para provar que \mathbb{F} contém um elemento maximal \mathcal{F}^* . Tal \mathcal{F}^* é um ultrafiltro (Fato 4.3).

Fixe uma cadeia arbitrária $(\mathcal{F}_{\lambda})_{\lambda \in \Lambda}$ em \mathbb{F} , isto é, um conjunto totalmente ordenado (por inclusão). Para que possamos aplicar o Lema de Zorn, precisamos mostrar que existe um $F_0 \in \mathbb{F}$ tal que para todo λ , $\mathcal{F}_{\lambda} \subseteq F_0$. Basta tomar $\mathcal{F}_0 = \bigcup_{\lambda \in \Lambda} \mathcal{F}_{\lambda}$ e notar que \mathcal{F}_0 é um filtro e contém \mathcal{F}_{cofin} .

Logo, pelo Lema de Zorn, \mathbb{F} tem um elemento maximal \mathcal{F}^* . Tal F^* é um ultrafiltro (Fato 4.3) não-principal (pois contém \mathcal{F}_{cofin}).

4.3 Ultrafiltros e topologia

Seja $a_1, a_2, \dots \in [0, 1]$. Dizemos que $\lim a_n = L$ se para todo $\varepsilon > 0$, existe inteiro n_0 tal que para todo $n > n_0$, $a_n \in (L - \varepsilon, L + \varepsilon)$.

Seja $A_{\varepsilon} = \{n : n \geq n_0\}$. Então $A_{\varepsilon} \in \mathcal{F}_{cofin}$, onde \mathcal{F}_{cofin} é o filtro dos elementos cofinitos sobre \mathbb{N} . Filtros podem ser usados para generalizar o conceito de limites de sequências. No que se segue, sequências em um conjunto Y serão representadas como funções $f: \mathbb{N} \to Y$ (isto é $a_n = f(n)$).

Fato 4.7. Seja Y um conjunto e $f: \mathbb{N} \to Y$. Suponha que \mathcal{F} seja um filtro/ultrafiltro sobre \mathbb{N} . Defina

$$f * (\mathcal{F}) = \{ A \subseteq \Upsilon : f^{-1}(A) \in \mathcal{F} \}.$$

Então $f^*(\mathcal{F})$ é um filtro/ultrafiltro sobre Y.

Seja \mathcal{F} um filtro sobre um espaço topológico Y. Dizemos que \mathcal{F} converge a um ponto $y \in Y$ se todo aberto \mathcal{U} em Y com $y \in \mathcal{U}$ é um membro de \mathcal{F} .

Seja Y um espaço topológico, $f: \mathbb{N} \to Y$ e \mathcal{F} um filtro sobre \mathbb{N} . Então $y \in Y$ é um \mathcal{F} -limite de f se $f_*(\mathcal{F})$ converge para y.

Pendente: Resto da aula

♦ ♦ ♦ Aula 8(03 de Novembro) — Yoshiharu Kohayakawa

 $\Diamond \Diamond \Diamond$

4.4 Teorema de Hindman

Definição 4.8 (semigrupo). Um semigrupo é um par (E, \cdot) em que E é um conjunto e $\cdot : E \times E \to E$ é uma operação associativa, isto é, tal que para quaisquer $a, b \in E$, temos:

$$a \cdot (b \cdot c) = (a \cdot b) \cdot c.$$

Lema 4.9 (Elemento idempotente em semigrupos). *Seja E um semigrupo Hausdorff-compacto tal que para todo g* \in *E, a função*

$$\Psi_g: E \to E$$
$$f \mapsto fg$$

é contínua. Então existe E contém um elemento g indepotente, isto é, tal que $g^2 = g$.

Demonstração. Defina

$$A = \{\emptyset \neq A \subseteq E : A \text{ \'e compacto e fechado por } \cdot \}.$$

Como $E \in \mathcal{A}$, temos $\mathcal{A} \neq \emptyset$. Seja $\mathcal{C} \subset \mathcal{A}$ uma cadeia (pela operação de inclusão). Seja $L = \bigcap \mathcal{C}$. Note que L é não vazio, compacto (pois todos os membros de \mathcal{C} também o são), e fechado pelo produto. Logo $L \in \mathcal{A}$, isto é, \mathcal{C} tem um limitante inferior. Podemos portanto aplicar o Lema de Zorn para concluir que existe um membro minimal $A \in \mathcal{A}$.

Fixe $g \in A$. Então $\emptyset = Ag \subseteq A$. Ademais, Ag é subsemigrupo de A, uma vez que

$$(fg)(f'g) = \underbrace{fgf'}_{\in A} g \in Ag,$$

e Ag é compacto pois $Ag=\Psi_g(A)$ e Ψ_g é contínua. Assim, a minimalidade de A implica Ag=A. Seja

$$B = \{ f \in A : fg = g \}.$$

Então $B \neq \emptyset$, uma vez que $g \in A = Ag$. Note que B também é semigrupo pois se $f, f' \in B$, então

$$(ff')g = f(f'g) = fg = g.$$

Ademais, $B = \Psi_g(\{g\})$, também temos que B é fechado e, portanto, compacto. Pela minimalidade de A, segue que A = B. Mas como $g \in A$, temos $g \in B$, isto é, g é idempotente.

Para a prova do Teorema de Hindman, consideraremos o conjunto $\beta \mathbb{N}$ de ultrafil-

tros sobre \mathbb{N} e denotaremos ultrafiltros como medidas 0-1 aditivas.

Dados $\mu, \nu \in \beta \mathbb{N}$, a operação de adição $+: \beta \mathbb{N} \times \beta \mathbb{N} \to \beta \mathbb{N}$ de adição (cuja existência foi provada em ??) é dada por

$$(\mu + \nu)(A) = \mu(\{n : \nu(A - n) = 1\}).$$

Note também

Teorema 4.10 (Hindman). *Seja k* \geq 1 *e suponha que existem conjuntos disjuntos C*₁,..., *C*_k \subset $\mathbb{N} = \{1, 2, ...\}$ *tais que*

$$\mathbb{N} = C_1 \cup \cdots \cup C_k$$
.

Então existe i e $X \subseteq C_i$, $|X| = \infty$, tal que $FS(X) \subseteq C_i$, onde

$$FS(X) = \left\{ \sum_{x \in S} x : S \subseteq X, S \text{ finito } \right\}.$$

Demonstração. Primeiro, observamos que $(\beta \mathbb{N}, +)$ é um semigrupo e que a função

$$\Psi_{\eta}: \beta \mathbb{N} \to \beta \mathbb{N}$$
$$\mu \to \mu + \nu$$

é contínua para todo ν .

Então pelo Lema 4.9, existe $\mu \in \beta \mathbb{N}$ tal que $\mu + \mu = \mu$. Ademais, μ é não-principal, caso contrário teríamos $\mu = \hat{n}$, $\mu + \mu = 2\hat{n} \neq \mu$.

Sejam $A \subset \mathbb{N}$ tal que $\mu(A) = 1$ e $A^* = \{n : \mu(A - n) = 1\}$. Então

$$\mu(A^*) = (\mu + \mu)(A) = \mu(A) = 1.$$

Fixe $a \in A \cap A^*$ e tome $B = (A - a) \cap (A \setminus \{a\})$. Temos $\mu(B) = 1$ e $B \subseteq A$.

Logo, a partir de um conjunto A, com $\mu(A) = 1$, obtivémos $a \in A$ e $B \subset A \setminus \{a\}$, com $\mu(B) = 1$, tais que

$$a + B \subset A$$
.

Suponha agora que $\mathbb{N} = C_1 \cup \cdots \cup C_k$. Então existe um único i tal que $\mu(C_i) = 1$. Seja $A_1 = C_i$ e para todo $k \ge 1$, construímos $a_k \in A_k$ e $A_{k+1} \subset A_k \setminus \{a_k\}$ como acima, isto é, tais que

$$a_k + A_{k+1} \subseteq A_k \subseteq C_i$$
.

Agora basta notar que se tomarmos $X = \{a_1, a_2, \dots\}$, temos $FS(X) \subseteq C_i$.

5 O teorema de Fermat sobre a soma de dois quadrados

 $\diamond \diamond \diamond$ Aula 9(03 de Novembro) — Bruno Pasqualotto Cavalar $\diamond \diamond \diamond$

Dizemos que um inteiro $n \ge 0$ é *representável* se pode ser escrito como soma de dois quadrados, isto é, se existem inteiros x, y tais que $n = x^2 + y^2$.

Teorema 5.1 (Teorema de Fermat sobre a soma de quadrados). *Um primo p* > 2 *é* representável se e somente se $p \equiv 1 \pmod{4}$.

 $\Diamond \Diamond \Diamond$

Pendente: parte inicial (do dia 03/11)

♦ ♦ ♦ Aula 10(10 de Novembro) — Bruno Pasqualotto Cavalar

Corolário 5.2. *Um inteiro* $n \ge 0$ *é representável se, e somente se, todo primo da forma* 4m + 3 *aparece com expoente par na decomposição de n.*

Demonstração. Usaremos os seguintes fatos:

- i) 1 e 2 são representáveis.
- ii) Se n é representável, então z^2n é representável para qualquer inteiro n. De fato, se $n=a^2+b^2$, então $z^2n=(za)^2+(zb)^2$.
- iii) Se x e y são representáveis, então xy é representável. De fato, suponha que $x=a^2+b^2$ e $y=c^2+d^2$. Então

$$xy = a^{2}c^{2} + a^{2}d^{2} + b^{2}c^{2} + b^{2}d^{2}$$

$$= a^{2}c^{2} - 2abcd + b^{2}d^{2} + a^{2}d^{2} + 2abcd + b^{2}c^{2}$$

$$= (ad - bc)^{2} + (ac + bd)^{2}.$$

Seja n um inteiro tal que todo primo da forma 4m + 3 aparece com expoente par na decomposição de n. Então, como os demais fatores primos são representáveis pelo Teorema 5.1, segue dos fatos acima que n é representável.

Por outro lado, seja p um primo da forma p=4m+3, tal que p|n e $n=x^2+y^2$. Afirmamos que p|x e p|y. De fato, temos $x^2+y^2\equiv 0 (modp)$. Mas se $x\not\equiv 0 (modp)$, podemos multiplicar ambos os lados da equação anterior por x^{-2} para obter que $(x^{-1}y)^2\equiv -1 (modp)$, que não tem soluções quando p=4m+3. Então, $p\mid x$ e, analogamente, $p\mid y$, o que implica $p^2|n$. Logo, $\frac{n}{p^2}=\left(\frac{x}{p}\right)^2+\left(\frac{y}{p}\right)^2$ também é representável. Segue, por indução, que p aparece com expoente par em $\frac{n}{p^2}$ e, portanto, também em n.

Seja A um conjunto. Uma função $f:A\to A$ é uma involução se $f=f^{-1}.$

Fato 5.3. Seja A finito e $f:A\to A$ uma involução. Então

$$|A| \equiv |\{x : f(x) = x\}| (mod 2),$$

isto é, |A| tem a mesma paridade que o número de pontos fixos de f.

Demonstração. Para $x,y \in A$, dizemos que $x \sim y \Leftrightarrow x = f(y)$. Particione A de acordo com as classes definidas por \sim^3 Como f é uma involução, cada classe é composta por um ou por dois elementos. As classes de tamanho 1 são, exatamente, os pontos fixos de f.

Prova do Teorema 5.1. Suponha que $p \equiv 1 \pmod{4}$ seja um primo. Definimos os seguin-

³TODO:não é bem uma classe de equivalência

tes três conjuntos de triplas de inteiros:

$$S = \{(x, y, z) \in \mathbb{Z}^3 : 4xy + z^2 = p, x > 0, y > 0\},$$

$$T = \{(x, y, z) \in S : z > 0\} \text{ e}$$

$$U = \{(x, y, z) \in S : x - y + z > 0\}.$$

Conside a função

$$f: S \to S$$
$$(x, y, z) \mapsto (y, x, -z).$$

Primeiro note que f é uma involução e está bem definida pois $4xy+z^2=4(yx)+(-z)^2$. Ademais, f não tem pontos fixos, caso contrário teríamos z=0 o que implicaria $p\equiv 0 \pmod 4$. Note também que

- i) Se $(x,y,z) \in T$, então $f(x,y,z) \in S \setminus T$. Analogamente, se $(x,y,z) \in S \setminus T$, então $f(x,y,z) \in T$ (lembrando que $z \neq 0$).
- ii) Se $(x,y,z) \in U$, então $f(x,y,z) \in S \setminus U$, pois se x-y+z=z-(y-x)>0, então (y-x)-z<0. Analogamente, se $(x,y,z) \in S \setminus U$, então $f(x,y,z) \in U$ (note que $x-y+z \neq 0$, caso contrário teríamos $p=(y-x)^2+4xy=(y+x)^2$).

Concluímos, então, que $f(U \setminus T) = f(T \setminus U)$. Segue que $|U \setminus T| = |T \setminus U|$, e portanto, que |U| = |T|.

Considere agora a função

$$g: U \to U$$
$$(x, y, z) \mapsto (x - y + z, y, 2y - z)$$

Observe que *g* está bem definida pois $4(x - y + z)y + (2y - z)^2 = 4xy + z^2$ e (x - y + z) - y + (2y - z) = x > 0.

Além disso, (x,y,z) é um ponto fixo de g se, e somente se, y=z. Mas neste caso, devemos ter $y(4x+y)=4xy+y^2=p$, o que implica que y=1 e 4x+1=p. Logo $(\frac{p-1}{4},1,1)$ é o *único* ponto fixo de g. Concluímos que |U| é impar (e, portanto, |T| é impar).

Finalmente, considere a função

$$h: T \to T$$
$$(x, y, z) \mapsto (y, x, z)$$

Note que h está bem definido e é uma involução. Mas como |T| é ímpar, h tem pelo menos um ponto fixo. Existem portanto $x, z \in \mathbb{Z}$ tais que $4x^2 + z^2 = p$, da onde segue que p é representável.

6 Provas da infinidade de primos

pendente

7 Teorema de Hoffman e Singleton

A *cintura* g(G) de um grafo G é o tamanho do menor ciclo do grafo. Também definimos o *grau mínimo* $\delta(G)$ de G como o menor grau de um vértice em G.

Dados inteiros r e g, estamos interessados em determinar o menor número de vértices que um grafo G de grau mínimo r e cintura g pode ter. Denotaremos esse número por n(r,g). Mais formalmente, podemos definir

$$n(r,g) = \min\{|V(G)| : \delta(G) = r \text{ e } g(G) = g\}.$$

É fácil verificar, por exemplo, que

- n(2,5) = 5 (o ciclo de tamanho 5 atinge o mínimo),
- n(3,3) = 4 (o grafo completo K^4 atinge o mínimo) e
- n(3,4) = 6 (o grafo bipartido $K_{3,3}$ atinge o mínimo).

Proposição 7.1. Se g = 2k + 1, então

$$n(r,g) \ge 1 + r + r(r-1) + \dots + r(r-1)^{k-1}$$
.

Demonstração. Seja G um grafo tal que $\delta(G)=r$ e g(G)=g. Considere uma árvore de busca em largura a partir de um vértice arbitrário v de G. Como $\delta(G)=r$, o primeiro nível tem pelo menos r vértices e, para $i\geq 1$, o i-ésimo nível tem pelo menos $r(r-1)^{i-1}$ vértices. Ademais, os vértices que aparecem até o nível k são todos distintos, caso contrário haveria dois caminhos distintos de tamanho no máximo k de um mesmo vértice u até v, ou seja, um ciclo de tamanho menor que 2k+1.

Proposição 7.2. Se g = 2k, então

$$n(r,g) > 1 + r + r(r-1) + \dots + r(r-1)^{k-2} + (r-1)^{k-1}$$
.

Demonstração. Seja G um grafo tal que $\delta(G) = r$ e g(G) = g. Procedemos como no caso anterior, considerando uma árvore em busca em largura a partir de um vértice arbitrário v. Temos que levar em consideração que um vértice u no nível k pode aparecer múltiplas vezes. Note, contudo, que u não pode ser adjacente a mais do que r vértices do nível k-1 (caso contrário haveria caminhos distintos de tamanho k-1 de u a um vizinho de v). Portanto há pelo menos $(r-1)^{k-1}$ vértices distintos no k-ésimo nível.

Exercício 7.3. Provar a proposição anterior, considerando uma árvore de busca em largura a partir de um vértice artificial $v \notin V(G)$ adjacente a dois vértices $v_1, v_2 \in V(G)$ com $v_1v_2 \in E(G)$ (note que a cota inferior da proposição é igual a $2\sum_{i=0}^{k-1} (r-1)^i$).

Nesta seção, estamos interessados em demonstrar o seguinte resultado.

Teorema 7.4. Seja $r \ge 3$ e suponha que exista um grafo G de tamanho $n = 1 + r + r(r - 1) = r^2 + 1$, cintura g(G) = 5 e grau mínimo $\delta(G) = r$. Então r = 3,5 ou 57.

Dizemos que $\lambda \in \mathbb{R}$ é um *autovalor* de uma matriz $A \in \mathbb{R}^{n \times n}$ se existe $x \in \mathbb{R}^n$, $x \neq 0$, tal que $Ax = \lambda x$. Nesse caso, dizemos que x é um *autovetor* associado a λ . O *autoespaço* associado a λ é o conjunto de todos os autovetores associados a λ .

Exercício 7.5. Mostrar que o autoespaço associado a um autovalor λ é, de fato, um espaço linear.

Lema 7.6. Toda matriz simétrica $A \in \mathbb{R}^{n \times n}$ possui n autovetores dois a dois ortogonais.

Demonstração. Primeiro note que quaisquer $x,y \in \mathbb{R}^n$ satisfazem $\langle Ax,y \rangle = \langle x,Ay \rangle$. De fato,

$$\langle Ax, y \rangle = (Ax)^T y = x^T A^T y = x^T A y = \langle x, Ay \rangle.$$

Sejam v_1, v_2 autovetores de A associados a autovalores distintos λ e μ , respectivamente. Então

$$\lambda \langle v_1, v_2 \rangle = \langle \lambda v_1, v_2 \rangle = \langle A v_1, v_2 \rangle = \langle v_1, A v_2 \rangle = \langle v_1, \mu v_2 \rangle = \mu \langle v_1, v_2 \rangle.$$

Logo, $(\lambda - \mu) \langle v_1, v_2 \rangle = 0$, da onde segue que $\langle v_1, v_2 \rangle = 0$.

Considere $\{u_1, \ldots, u_\ell\}$ uma base do autoespaço associado a um autovalor λ . Usando o processo de ortogonalização de Grahn-Schimidt, conseguimos uma base ortogonal $\{u'_1, \ldots, u'_\ell\}$ exercicio do autoespaço associado a λ .

Talvez faltaria falar que a soma das dimensões desses autoespaços é n?