O Teorema da Função Implícita

No que segue, se (M,d) é um espaço métrico, $p \in M$ e r > 0 então B[p;r] denota a bola fechada de centro p e raio r.

Lema 1. Seja (M,d) um espaço métrico. Dados $\lambda \in [0,1[, p \in M \text{ e } r > 0 \text{ então existe}$ $\varepsilon > 0 \text{ tal que toda contração } \phi : B[p;r] \to M \text{ com constante de Lipschitz } \lambda \text{ e } d(\phi(p),p) < \varepsilon$ tem imagem contida em B[p;r].

Demonstração. Se $x \in B[p; r]$ calculamos:

$$d(\phi(x), p) \le d(\phi(x), \phi(p)) + d(\phi(p), p) < \lambda d(x, p) + \varepsilon \le \lambda r + \varepsilon.$$

Basta então escolher $\varepsilon \leq r(1-\lambda)$.

Corolário 1. Seja (M,d) um espaço métrico completo. Dados $p \in M$, r > 0 e $\lambda \in [0,1[$ então existe $\varepsilon > 0$ tal que toda contração $\phi : B[p;r] \to M$ com constante de Lipschitz λ e $d(\phi(p),p) < \varepsilon$ possui um único ponto fixo.

Demonstração. Pelo Lema 1, podemos escolher ε tal que toda contração $\phi: B[p;r] \to M$ como no enunciado do corolário possui imagem contida em B[p;r]. A conclusão segue então do Teorema do Ponto Fixo de Banach.

Corolário 2. Sejam (M,d) um espaço métrico completo, $A \subset M$ um aberto e $\lambda \in [0,1[$. Denote por $\operatorname{Contr}_{\lambda}(A,M)$ o espaço das contrações $\phi:A \to M$ com constante de Lipschitz λ , munido da topologia da convergência simples. Então o conjunto $\mathcal F$ formado pelas contrações $\phi \in \operatorname{Contr}_{\lambda}(A,M)$ que admitem ponto fixo é aberto em $\operatorname{Contr}_{\lambda}(A,M)$. Além do mais, a função Fix : $\mathcal F \to A$ que associa a cada $\phi \in \mathcal F$ seu (automaticamente único) ponto fixo é contínua.

Demonstração. Em primeiro lugar, se $\phi \in \operatorname{Contr}_{\lambda}(A, M)$ então ϕ tem no máximo um ponto fixo; de fato, se $\phi(p) = p$ e $\phi(q) = q$ então:

$$d(p,q) = d\big(\phi(p),\phi(q)\big) \leq \lambda d(p,q) \Longrightarrow d(p,q) = 0.$$

Sabemos então que a aplicação Fix está bem definida. Sejam agora $\phi \in \mathcal{F}, r > 0$ fixados e denote por $p \in A$ o ponto fixo de ϕ . Vamos construir uma vizinhança \mathcal{U} de ϕ em $\mathrm{Contr}_{\lambda}(A,M)$ que esteja contida em \mathcal{F} e tal que toda $\psi \in \mathcal{U}$ possui seu ponto fixo em $\mathrm{B}[p;r]$. Isso mostrará simultaneamente que \mathcal{F} é aberto e que Fix é contínua. Para construir \mathcal{U} , diminuímos r > 0 de modo que $\mathrm{B}[p;r] \subset A$ e escolhemos $\varepsilon > 0$ como no Corolário 1. Daí é só tomar:

$$\mathcal{U} = \big\{ \psi \in \mathrm{Contr}_{\lambda}(A, M) : d\big(\psi(p), \phi(p)\big) = d\big(\psi(p), p\big) < \varepsilon \big\}.$$

Isso completa a demonstração. ■

No que segue, se X, Y são espaços de Banach então $\operatorname{Lin}(X,Y)$ denota o espaço de Banach dos operadores lineares contínuos de X em Y.

Teorema. (da função implícita) Sejam X, Y, Z espaços de Banach, $U \subset X, V \subset Y$ abertos e $f: U \times V \to Z$ uma função. Fixe $x_0 \in U, y_0 \in V$ e defina $c = f(x_0, y_0) \in Z$. Suponha que:

- (i) para todo $y \in V$, a função $U \ni x \mapsto f(x,y) \in Z$ é contínua;
- (ii) para todo $x \in U$ a função $V \ni y \mapsto f(x,y) \in Z$ é diferenciável;
- (iii) a função $\frac{\partial f}{\partial y}: U \times V \to \text{Lin}(Y, Z)$ é contínua em $U \times V$;
- (iv) o operador linear $\frac{\partial f}{\partial y}(x_0, y_0): Y \to Z$ é um isomorfismo. Então existem abertos $U_0 \ni x_0, V_0 \ni y_0$ com $U_0 \subset U, V_0 \subset V$ e tais que para todo $x \in U_0$ existe um único $y = \sigma(x) \in V_0$ tal que f(x, y) = c; além do mais, a função $\sigma: U_0 \to V_0$ é contínua.

Demonstração. Para todos $x \in U$, $y \in V$ temos:

$$f(x,y) = c \iff f(x,y) - c - \frac{\partial f}{\partial y}(x_0, y_0) \cdot y = -\frac{\partial f}{\partial y}(x_0, y_0) \cdot y \iff \phi_x(y) = y, \quad (1)$$

onde, para $x \in U$, a aplicação $\phi_x : V \to Y$ é definida por:

$$\phi_x(y) = -\left(\frac{\partial f}{\partial y}(x_0, y_0)\right)^{-1} \left[f(x, y) - c - \frac{\partial f}{\partial y}(x_0, y_0) \cdot y \right].$$

Afirmamos que existem $\lambda \in [0,1[$ e vizinhanças abertas $\widetilde{U}_0 \subset U, \ V_0 \subset V$ de $x_0, \ y_0$ respectivamente tais que para todo $x \in \widetilde{U}_0$ a aplicação $\phi_x|_{V_0}: V_0 \to Y$ é uma contração com constante de Lipschitz λ . De fato, como a aplicação linear contínua $\left(\frac{\partial f}{\partial y}(x_0,y_0)\right)^{-1}$ é Lipschitziana, pela desigualdade do valor médio, é suficiente mostrar que, dado $\varepsilon > 0$ então exitem vizinhanças abertas $\widetilde{U}_0 \subset U, \ V_0 \subset V$ de $x_0, \ y_0$ respectivamente tais que para todo $x \in \widetilde{U}_0$ a aplicação diferenciável:

$$\tau_x(y) = f(x,y) - c - \frac{\partial f}{\partial y}(x_0, y_0) \cdot y,$$

é tal que $\|d\tau_x(y)\| < \varepsilon$ para todo $y \in V_0$. Obviamente:

$$d\tau_x(y) = \frac{\partial f}{\partial y}(x, y) - \frac{\partial f}{\partial y}(x_0, y_0),$$

e a conclusão segue da continuidade de $\frac{\partial f}{\partial y}$.

Observe que para todo $x \in \widetilde{U}_0$ já sabemos que existe no máximo um $y \in V_0$ tal que f(x,y)=c, pois a contração $\phi_x|_{V_0}$ tem no máximo um ponto fixo. Usando agora a notação do Corolário 2 do Lema 1, temos que a aplicação:

$$\phi: \widetilde{U}_0 \ni x \longmapsto \phi_x|_{V_0} \in \operatorname{Contr}_{\lambda}(V_0, Y)$$

é contínua, onde $\operatorname{Contr}_{\lambda}(V_0, Y)$ é munido da topologia da convergência simples (de fato, a continuidade de ϕ é equivalente à continuidade de $x \mapsto \phi_x(y)$ para todo $y \in V_0$ fixado, o

que segue de (i)). Como y_0 é um ponto fixo de ϕ_{x_0} , segue do Corolário 2 do Lema 1 que existe uma vizinhança aberta U_0 de x_0 em \widetilde{U}_0 tal que $\phi_x|_{V_0} \in \mathcal{F}$ para todo $x \in U_0$, i.e., ϕ_x possui um único ponto fixo $y \in V_0$. Equivalentemente (vide (1)), para todo $x \in U_0$ a equação f(x,y) = c possui uma única solução $y \in V_0$. Finalmente, para mostrar a continuidade de σ , simplesmente observe que $\sigma = \operatorname{Fix} \circ \phi$.

Observação. Nas condições do Teorema acima, se $x \in U_0$ é um ponto tal que

$$\frac{\partial f}{\partial y}(x,\sigma(x)):Y\longrightarrow Z$$

é um isomorfismo e tal que f é diferenciável no ponto $(x, \sigma(x))$, então σ é diferenciável no ponto x e:

$$d\sigma(x) = -\left(\frac{\partial f}{\partial u}(x, \sigma(x))\right)^{-1} \circ \frac{\partial f}{\partial x}(x, \sigma(x)).$$

De fato, a diferenciabilidade de f no ponto $(x, \sigma(x))$ nos permite escrever:

$$f(x+h,\sigma(x)+k) = f(x,\sigma(x)) + \frac{\partial f}{\partial x}(x,\sigma(x)) \cdot h + \frac{\partial f}{\partial y}(x,\sigma(x)) \cdot k + \rho(h,k)(\|h\| + \|k\|),$$

para todos $h \in X$, $k \in Y$ com $x + h \in U$, $\sigma(x) + k \in V$, onde ρ é uma função contínua na origem tal que $\rho(0,0) = 0$. Fazendo $k = \sigma(x+h) - \sigma(x)$ na igualdade acima, obtemos:

$$\begin{split} \frac{\partial f}{\partial x} \big(x, \sigma(x) \big) \cdot h + \frac{\partial f}{\partial y} \big(x, \sigma(x) \big) \big(\sigma(x+h) - \sigma(x) \big) \\ + \rho \big(h, \sigma(x+h) - \sigma(x) \big) \big(\|h\| + \|\sigma(x+h) - \sigma(x)\| \big) = 0, \end{split}$$

para todo $h \in X$ com $x + h \in U_0$, já que $f(x, \sigma(x)) = f(x + h, \sigma(x + h)) = c$. Daí:

$$\sigma(x+h) = \sigma(x) - \left(\frac{\partial f}{\partial u}(x,\sigma(x))\right)^{-1} \left[\frac{\partial f}{\partial x}(x,\sigma(x)) \cdot h\right] + r(h), \tag{2}$$

onde:

$$r(h) = -\left(\frac{\partial f}{\partial y}(x, \sigma(x))\right)^{-1} \left[\rho(h, \sigma(x+h) - \sigma(x))\right] (\|h\| + \|\sigma(x+h) - \sigma(x)\|).$$

Resta agora mostrar que $\lim_{h\to 0} \frac{r(h)}{\|h\|} = 0$. Como σ é contínua, temos que

$$\lim_{h \to 0} \rho(h, \sigma(x+h) - \sigma(x)) = 0$$

e portanto a conclusão seguirá se mostrarmos que o quociente:

$$\frac{\|\sigma(x+h) - \sigma(x)\|}{\|h\|}$$

é limitado para $h \neq 0$ numa vizinhança da origem. De (2), obtemos:

$$\sigma(x+h) - \sigma(x) = \psi_1(h) + \psi_2(h) \|\sigma(x+h) - \sigma(x)\|, \tag{3}$$

onde:

$$\psi_1(h) = -\left(\frac{\partial f}{\partial u}(x, \sigma(x))\right)^{-1} \left[\frac{\partial f}{\partial x}(x, \sigma(x)) \cdot h + \rho(h, \sigma(x+h) - \sigma(x)) \|h\|\right]$$

e:

$$\psi_2(h) = -\left(\frac{\partial f}{\partial u}(x,\sigma(x))\right)^{-1} \left[\rho(h,\sigma(x+h)-\sigma(x))\right].$$

Note que o quociente $\frac{\|\psi_1(h)\|}{\|h\|}$ é limitado para $h \neq 0$ numa vizinhança da origem e que $\lim_{h\to 0} \psi_2(h) = 0$. De (3) vem:

$$\|\sigma(x+h) - \sigma(x)\| \le \|\psi_1(h)\| + \|\psi_2(h)\| \|\sigma(x+h) - \sigma(x)\| \le \|\psi_1(h)\| + \frac{1}{2} \|\sigma(x+h) - \sigma(x)\|,$$

para $h \neq 0$ numa vizinhança da origem. Concluímos então que:

$$\frac{1}{2} \|\sigma(x+h) - \sigma(x)\| \le \|\psi_1(h)\|$$

para $h \neq 0$ numa vizinhança da origem, o que termina a demonstração.