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1. Introduction

Introductory statistics textbooks are usually written for students with
little prior knowledge of university-level mathematics, typically just a basic
understanding of calculus and matrix algebra. Additionally, abstract linear
algebra is often avoided even in more advanced textbooks, with the use of
matrices preferred over more abstract concepts such as vector spaces, linear
transformations, dual spaces and tensor products. In probability theory,
only the so called advanced books make use of the language of abstract
measure theory.

Professional mathematicians and graduate mathematics students typi-
cally have a strong background in abstract linear algebra and also a rea-
sonable amount of background in abstract measure theory, topology and
functional analysis. Although other audiences, who are more interested in
applications and have less mathematical background, will understandably
try to avoid such abstractions when learning probability and statistics, for
mathematicians it is the opposite: these abstractions are familiar topics that
are part of their everyday work, and there is no reason to avoid them. In
fact, a significant portion (though not all) of the material presented in ad-
vanced probability textbooks is already well-known to mathematicians, but
with different terminology and motivation. Thus, just by being presented
with a translation from measure theory or functional analysis language to
probability theory language they will be able to learn a lot about the subject.

This is then the goal of this text: presenting some of the main ideas of
probability and statistics to an audience that knows nothing about those
subjects but for which the abstract mathematics is the easy part. Also, we
will make an effort to explain the main ideas and motivations behind each
topic instead of just following the dry definition-lemma-theorem-proof style
used by typical mathematics books.
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2. Probability spaces and events

A probability space is simply a measure space in which the measure of the
entire space is equal to 1. We briefly recall the relevant measure-theoretic
concepts just to make sure our terminology is clear.

Definition 2.1. A probability space is a triple (Ω,A,P), where Ω is a set,
A is a σ-algebra of subsets of Ω (i.e., a nonempty collection of subsets of
Ω closed under countable unions and complements) and P is a probability
measure on A, i.e., a countably additive nonnegative measure defined on A
with P(Ω) = 1. Elements of A will be, as usual, called measurable subsets
of Ω but in the context of probability theory they are also called events; for
A ∈ A, we call P(A) the probability of the event A.

Let us discuss a bit the connection between the definition above and
practical applications. A probability space can be used as a mathematical
model for the set of possible outcomes of a random experiment, what is usu-
ally called the sample space for that experiment. By a random experiment
it is meant some procedure that can be repeated as often as one wishes,
with the repetitions being independent of each other. This is not supposed
to be a formal mathematical definition in any way, of course, as we are now
talking about something outside of the domain of pure mathematics.

One paradigmatic textbook example of a random experiment is a toss of
a coin or a throw of the dice. The outcome of the experiment would be
either heads or tails in the case of a coin and an integer number between 1
and 6 in the case of a die. More relevant examples, connected to real-world
applications of statistics, would be for instance gathering a sample of people
from the population and collecting answers from them using a questionnaire
or gathering a sample of sick patients and testing a new treatment, collecting
data such as the evolution of symptom severity.

If (Ω,A,P) is the probability space used to model a given random ex-
periment then each time the experiment is performed an outcome ω ∈ Ω is
obtained. An element A ∈ A is called an “event” because we are thinking
that “the event A happened” is a short for “the event that the obtained
outcome ω belongs to A happened”. Thus, P(A) — the probability of the
event A — is understood as the probability that the obtained outcome ω is
in A. A possible interpretation for the number P(A), the so called frequentist
interpretation, is that P(A) is the frequency of occurrences of ω ∈ A when
the random experiment is repeated a large number N of times. In more
mathematical language, this can be expressed as the limit of the quotients
NA
N as N tends to +∞, where NA denotes the number of times among the
N repetitions in which the event ω ∈ A occurred.

Almost everything we said above after Definition 2.1 is problematic and
cannot be taken too seriously. To begin with, it is not completely clear
what one means by “repeating” an experiment as, for instance, when we
toss a coin a second time we usually don’t even make an effort to position
our hand in the exact same way as in the first toss. So “repeating” is not
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supposed to mean that everything is exactly the same. The possibility of
repeating the experiment as often as one wishes is also not supposed to
be interpreted stricto sensu, as in practice there is obviously some finite
(though maybe very large) limit to the number of possible repetitions. The
“independence” assumption means that whatever happened in the previous
instances of the experiment should not influence the outcome of the current
one, though that might not be exactly true in all cases. One should also
notice that statistics is often used to analyse observational data, i.e., data
that is collected retrospectively and it is not the outcome of some deliberate
planned or controlled experiment. It is even less clear what “repeating”
would mean in this context.

The frequentist interpretation of probability is also not the only one, as
for instance there is also Bayesian statistics. In the Bayesian framework,
probability is used to express uncertainty about facts due to incomplete
knowledge. For instance, one might be willing to talk about the probability
that the 100-th digit of π be greater than 4. There is definitely no conceivable
sense in which this can be seen as related to repetitions of some procedure,
as the 100-th digit of π is simply some fixed number. Nevertheless, if you
find yourself in a casino and someone proposes to you a bet based on the
value of the 100-th digit of π and if you don’t have access to a computer or
any means to find out the correct value, you would likely appeal to some
sort of probabilistic reasoning to decide if it is a good idea to accept the bet
— say, by assigning a probability of 1

10 to each of the 10 possibilities.
A word of caution should be said with respect to the use of the word

“random”. Is there anything like true randomness in nature and what does
that mean exactly? Is the outcome of a certain experiment really random
or maybe it was determined from complete specification of initial conditions
and the laws of physics? None of this matters for statistics. The fact is
that often the outcomes of sufficiently complicated deterministic processes
exhibit statistical regularities, i.e., properties that one can successfully study
using the methods of probability theory. For example, a pseudo-random
number generator is certainly a deterministic process and yet one can make
good predictions about the frequency properties of its long term outcomes
using probability theory. So statistical reasoning can be thought of as an
approach to studying complicated phenomena — whether true randomness
is involved or not — in which complicated details (say, microscopic details,
uncontrollable variables, etc) are ignored.

Let us now go back to the mathematics to make a few observations and
look at a couple of simple examples. We note that if (Ω,A,P) is a probability
space, A ⊂ Ω is a countable set and every singleton {ω} with ω ∈ A belongs
to the σ-algebra A, then A ∈ A and the probability of A is given by

(2.1) P(A) =
∑
ω∈A

P(ω),
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where we abbreviate P
(
{ω}

)
as P(ω). Therefore, if Ω itself is countable and

all the singletons {ω}, ω ∈ Ω, belong to A — which is typically the case —
thenA coincides with the collection ℘(Ω) of all subsets of Ω and formula (2.1)
holds for every subset A of Ω. In this case, the entire probability measure P
is completely determined by the probabilities P(ω) of the individual points
ω ∈ Ω. In fact, any specification of nonnegative real numbers P(ω), for all
ω ∈ Ω, with

∑
ω∈Ω P(ω) = 1 yields a unique probability measure P on the

σ-algebra A = ℘(Ω) of all subsets of Ω defined by (2.1). A probability space
whose underlying set Ω is countable is usually said to be discrete.

If Ω is uncountable, formula (2.1) usually does not hold for all A ∈ A
and in fact it often happens that P(ω) = 0 for all ω ∈ Ω. For example,
one can take Ω = [0, 1] and P the Lebesgue measure defined on the σ-
algebra A of Lebesgue measurable subsets of [0, 1]. As it is well known, for
uncountable Ω there are obstructions to defining interesting measures on
the collection of all subsets of Ω and that is the main reason why one needs
σ-algebras in measure theory. In the discrete case, as discussed above, one
often simply takes A = ℘(Ω) (though see Subsection 19.1 for another reason
why nontrivial σ-algebras are useful even in the discrete case).

We conclude the section with one comment concerning events of probabil-
ity zero. One would normally expect that an event having zero probability
is an impossible event, but as we saw above there are situations in which Ω
is uncountable and every ω ∈ Ω has zero probability. Of course, it cannot be
true that every ω ∈ Ω is impossible, as Ω is the set of all possible outcomes
so that some ω ∈ Ω will be the outcome. Events with zero probability are
usually referred to as “almost impossible”, with the only truly impossible
event being the empty set. In fact, in the context of probability theory the
expression almost surely or P-almost surely is used with the same meaning
that the expression “almost everywhere” is used in measure theory. Namely,
something happens almost surely if the probability that it doesn’t happen is
zero or, equivalently, if the probability that it does happen is equal to one.

Though an event with positive probability being a union of (uncountably
many) events with zero probability is not a problem within the mathemat-
ical formalism, this possibility seems paradoxical when connections to the
real world are considered. Note, however, that the set of outcomes of a real
experiment — the kind of outcome that you would obtain using some kind
of measuring apparatus and then write down in a piece of paper or in a com-
puter spreadsheet — is always finite. Laboratory equipment and computers
have limited precision and the set of all real numbers in some interval is
never going to be the set of all possible outcomes. The reason why we use
nondiscrete probability spaces is not that they model the outcomes of ex-
periments more faithfully, it is because they make the mathematics simpler
and more elegant.
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3. Random variables and random objects

Though a point of the underlying set Ω of a probability space (Ω,A,P)
is denoted by a simple innocent letter like ω, in many concrete applications
such a point will encode a lot of information. For example, one can consider
an experiment in which a large sample of the population of a country is
sampled and a lot of data (for instance, age, height, weight, home address,
health data, etc) from the individuals of that sample is collected. One
would then consider a probability space such that each ω ∈ Ω contains all
the collected data from all the individuals in that sample. Or maybe a point
ω could represent all the data from the stock market during a certain period
of time. Mathematically speaking, ω would typically be represented as an
element of some large cartesian product of sets. Out of the large dataset
that a single point ω of Ω represents, one will usually want to isolate specific
quantities of interestX(ω) which will be discussed and used in computations.
Such quantities are often real-valued.

For example, if ω contains all the data collected from a sample of the
population of a country then X(ω) could be the average of the heights of
the individuals in that sample, or the median of the ages of such individuals,
or the weight of the seventh individual in the sample (according to some
specified ordering) or the number of individuals in the sample that live in
a certain region of the country. If ω contains all the data from the stock
market during a certain period of time then X(ω) could be the value of some
particular stock in some particular moment — and so on.

In mathematical terms, a real-valued quantity of interest associated to
points of Ω would be represented by a map X : Ω→ R. One would then be
interested in asking questions like “what is the probability that the value of
X belongs to a given subset B of R?” or, for a more specific example, “what
is the probability that the value of X be greater than 1?”. The probability
that the value of X belongs to B, denoted by P(X ∈ B), should of course
be defined as the probability of the set

X−1[B] =
{
ω ∈ Ω : X(ω) ∈ B

}
which is just the inverse image of B under the map X. In other words, we
define:

(3.1) P(X ∈ B) = P
(
X−1[B]

)
.

It is also convenient to denote the set X−1[B] by [X ∈ B] and, in the same
spirit, to use notations such as [X > x] and P(X > x) with the obvious
meaning.

In order for the probability (3.1) to make sense it is necessary that X−1[B]
belongs to the σ-algebra A. In most cases it is not reasonable to expect this
to happen for arbitrary subsets B of R but one would hope this to happen
at least for sufficiently simple subsets of R, say, for intervals. As intervals
generate the entire σ-algebra of Borel subsets of R, if X−1[B] ∈ A whenever
B is an interval, it will also be the case that X−1[B] ∈ A for every Borel
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subset B of R. What we are saying here is that the map X : Ω→ R should
be measurable.

We quickly recall the relevant measure-theoretic definitions.

Definition 3.1. A measurable space (M,B) is a set M endowed with a σ-
algebra B of subsets of M . The elements of B are called measurable subsets
of M . Given measurable spaces (M,B) and (M ′,B′), a map f : M →M ′ is
said to be measurable if f−1[B] ∈ B for all B ∈ B′.

Clearly, for f : M →M ′ to be measurable, it is sufficient that f−1[B] ∈ B
for all B in a collection of generators for the σ-algebra B′.

We now give the main definition of the section.

Definition 3.2. A random variable X on a probability space (Ω,A,P) is a
measurable function X : Ω→ R, where Ω is endowed with the σ-algebra A
and R is endowed with its Borel σ-algebra.

Example 3.3. Here is a dumb example so that we can introduce the relevant
terminology. Given a subset A of a set Ω, the function 1A : Ω → R that
takes the value 1 on A and the value zero on Ω \ A is called the indicator
function of A. Mathematicians usually call this the characteristic function
of A, but in probability theory the name “characteristic function” is reserved
for something else (see Section 14), so one uses “indicator function” instead.
If (Ω,A,P) is a probability space and A ∈ A is an event then obviously 1A
is a random variable in (Ω,A,P).

Though many quantities of interest are real-valued, this is not always the
case and nothing stops us from considering the following obvious general-
ization of the concept of random variable.

Definition 3.4. Given a measurable space (M,B), by an (M,B)-valued
random object X on a probability space (Ω,A,P) we mean a measurable
map X : Ω → M . For every B ∈ B, we write P(X ∈ B) = P

(
X−1[B]

)
.

If M = Rn (or if M is a real finite dimensional vector space) and B is the
Borel σ-algebra of M then an (M,B)-valued random object is also called a
random vector.

Recall that for an arbitrary topological space its Borel σ-algebra is de-
fined as the σ-algebra generated by the open sets and that every real finite-
dimensional vector space has a canonical topology (which can be defined,
for instance, as the topology induced by an arbitrary norm). Clearly, an
Rn-valued random vector X is the same as an n-tuple (X1, . . . , Xn) of ran-
dom variables, as the measurability of an Rn-valued map is equivalent to its
coordinatewise measurability.

The language of random variables is very convenient as it matches closely
the way statisticians think when handling concrete problems. For example,
one can use various operations with random variables to create new ran-
dom variables. Say, if X, Y , Z and W are random variables on the same
probability space and W never vanishes, one can construct a new random
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variable by using a formula like 1
W (X2Y − 3Z). Such operations with ran-

dom variables are to be understood as one usually understands operations
with functions having the same domain, i.e., operations are defined point-
wise. More generally, one can apply a function f to a random variable X
forming a new random variable f(X). What one is thinking here is that f
is applied to some observed value X(ω) of the random variable X, so f(X)
should be understood as a composition.

Definition 3.5. If (M,B) and (M ′,B′) are measurable spaces, f : M →M ′

is a measurable map and X is an (M,B)-valued random object on some
probability space (Ω,A,P), then we define f(X) as the (M ′,B′)-valued ran-
dom object on that same probability space given by f(X) = f ◦X.

Random variables are “variables” not in the sense that logic textbooks
use the term, but in the sense that physicists (and pre-twentieth century
mathematicians) use the term: they are quantities of interest that might
be related with each other by functions. The “variables” used by physicists
could be mathematically formalized as (usually real-valued) functions de-
fined in some state space and functions of such variables would be defined,
as above, using compositions (see [7] for a more complete discussion). In
statistics, we simply replace the state space with a sample space carrying
a probability measure and we imagine that the point of the sample space
was obtained through some random process. In this sense the point ω be-
comes random and thus also the value X(ω) of X becomes random, i.e., the
variable X inherits the randomness from its domain, hence random variable.

4. The distribution of a random object

Let (Ω,A,P) be a probability space and X : Ω→M be a random object,
where (M,B) is a measurable space. The probability distribution (or simply
distribution) of the random object X is the probability measure PX on the
σ-algebra B defined by

PX(B) = P(X ∈ B) = P
(
X−1[B]

)
,

for all B ∈ B.
The construction above is actually familiar from abstract measure theory

and it is known as the push-forward (or image) of a measure under a map.
Namely, if f is a measurable function between measurable spaces and µ is a
measure defined on the σ-algebra in the domain of f then the push-forward
of µ under f is the measure f∗µ defined on the σ-algebra in the counter-
domain of f given by (f∗µ)(B) = µ

(
f−1[B]

)
, for every B in that σ-algebra.

Hence the distribution of a random object X is simply the push-forward
under X of the probability measure in the domain of X:

PX = X∗ P.

Clearly, if two random objects X : Ω → M , Y : Ω → M are equal almost
surely then PX = PY .
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Example 4.1. A random object X is called discrete if its image Im(X) is
a countable set. If X is a discrete (M,B)-valued random object such that
the singleton {x} is in B for every x in the image of X then the distribution
of X is completely determined by the values of PX

(
{x}
)

— abbreviated as
PX(x) — with x in the image of X. Namely, we have

PX(B) =
∑

x∈B∩Im(X)

PX(x),

for any B ∈ B.

Note that if X : Ω → M is a random object and f : M → M ′ is a
measurable map taking values in some other measurable space (M ′,B′) then
the distribution of the random object f(X) is simply the push-forward under
f of the distribution of X:

Pf(X) = (f ◦X)∗P = f∗X∗P = f∗ PX .
In particular, the distribution of f(X) depends only on the distribution of
X. This is a useful observation, as several probability distributions that
are important in statistics are defined by a statement of the form “it is the
distribution of f(X) for a certain given f , where the distribution of X is
. . . ”. The previous observation implies that this type of definition is valid,
as the distribution of f(X) does not depend on the choice of the random
object X as long as X has some required distribution.

5. A useful technical lemma

In order to check that two probability measures defined in the same σ-
algebra are equal it is not sufficient to check that they agree in a collec-
tion of generators of the σ-algebra. For example, if Ω = {0, 1, 2, 3} then{
{0, 1}, {1, 2}

}
generates ℘(Ω) and yet it is easy to give examples of distinct

probability measures on ℘(Ω) that have the same value on the sets {0, 1}
and {1, 2}. We can fix this by adding a simple hypothesis to the set of
generators.

Lemma 5.1. Let (Ω,A) be a measurable space and let µ and ν be finite
countably additive measures defined on A. Let C ⊂ A be a collection that
generates the σ-algebra A and is closed under finite intersections. If

µ(A) = ν(A)

for all A ∈ C ∪ {Ω} then µ = ν. In particular, if two probability measures
defined on A coincide on elements of C then they are equal.

We will prove Lemma 5.1 in a moment, but first we need a definition
and another lemma. The reason why the obvious approach for proving
Lemma 5.1 fails is that the collection of sets in which two probability mea-
sures coincide is not a σ-algebra. Nevertheless, the collection of sets in which
two finite countably additive measures coincide does satisfy certain closure
properties and this leads us to the notion of σ-additive class. A nonempty
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collection S of sets is called a σ-additive class if it is closed under finite
disjoint unions (i.e., A,B ∈ S and A∩B = ∅ implies A∪B ∈ S), proper dif-
ferences (i.e., A,B ∈ S and B ⊂ A implies A \B ∈ S) and increasing limits
(i.e., if (An)n≥1 is an increasing sequence of sets in S then

⋃∞
n=1An ∈ S).

We recall that a σ-ring is a nonempty collection of sets that is closed
under countable unions and differences. Note that a σ-algebra of subsets of
Ω is the same as a σ-ring consisting of subsets of Ω of which Ω itself is a
member. Moreover, one easily checks that a σ-additive class closed under
finite intersections is a σ-ring.

Lemma 5.2. If C is a collection of sets closed under finite intersections
then the σ-additive class generated by C coincides with the σ-ring generated
by C.

Proof. It is sufficient to check that the σ-additive class S generated by C is
closed under finite intersections. To this aim, check first that for any set A,
the collection

(5.1)
{
B ∈ S : A ∩B ∈ S

}
is a σ-additive class. For A ∈ C, the collection (5.1) contains C and thus it
contains S. This establishes that the intersection of a member of C with a
member of S is in S. Now repeat this reasoning noting that we have just
proven that the collection (5.1) contains C for any A ∈ S. �

Proof of Lemma 5.1. Use Lemma 5.2 keeping in mind that{
A ∈ A : µ(A) = ν(A)

}
is a σ-additive class that contains the collection C ∪ {Ω} which is closed
under finite intersection and generates A as a σ-ring. �

6. Joint distributions and marginals

Let (Ω,A,P) be a probability space. Given random objects X and Y
on (Ω,A,P) taking values in measurable spaces (M,B) and (M ′,B′) respec-
tively, we can form a new random object (X,Y ) : Ω→M ×M ′ by setting

(X,Y )(ω) =
(
X(ω), Y (ω)

)
,

for all ω ∈ Ω. The set M×M ′ should be endowed with the product σ-algebra
B ⊗B′ which is the σ-algebra generated by all products B ×B′ with B ∈ B
and B′ ∈ B′. Such σ-algebra is appropriate since it has the property that
(X,Y ) is measurable if and only if both X and Y are measurable.

Definition 6.1. The distribution P(X,Y ) of the random object (X,Y ) is
known as the joint distribution of X and Y .

Note that if

π1 : M ×M ′ →M, π2 : M ×M ′ →M ′
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denote the projections then

PX = (π1)∗ P(X,Y ), PY = (π2)∗ P(X,Y ),

i.e., the distributions of X and Y are obtained by taking the push-forward
of the joint distribution under the projections. In this context one usually
says that the distributions of X and Y are the marginal distributions cor-
responding to the joint distribution P(X,Y ). Note, however, that this is just
a new name for the distributions of X and Y .

To motivate such terminology let us look at the case in which the sets
M and M ′ are countable and B = ℘(M), B′ = ℘(M ′), so that M × M ′

is also countable and B ⊗ B′ = ℘(M × M ′). As discussed in Section 2,
the probability measure in a discrete (i.e., countable) probability space is
determined by the probabilities of individual elements and thus if X is an
(M,B)-valued and Y is an (M ′,B′)-valued random object then the joint
distribution of X and Y is determined by probabilities of the form:

P(X,Y )(x, y) = P
(
[X = x] ∩ [Y = y]

)
,

with x ∈ M and y ∈ M ′. The distributions of X and Y are then obtained
by taking the sums

(6.1) PX(x) =
∑
y∈M ′

P(X,Y )(x, y), PY (y) =
∑
x∈M

P(X,Y )(x, y),

for all x ∈ M and all y ∈ M ′. We normally imagine the probabilities
P(X,Y )(x, y) written in a rectangular table and the row and column totals
PX(x) and PY (y) written on the margins of such table — hence marginal
distributions.

The notion of joint distribution can be generalized to arbitrary families
of random objects. We recall some definitions.

Definition 6.2. Given a set M , a family
(
(Mi,Bi)

)
i∈I of measurable spaces

and a family (fi)i∈I of maps fi : M →Mi, we define the σ-algebra of subsets
of M induced by the family (fi)i∈I as the smallest σ-algebra which makes
all of the maps fi measurable. This obviously coincides with the σ-algebra
generated by: ⋃

i∈I

{
f−1
i [B] : B ∈ Bi

}
.

Note that if Ci generates the σ-algebra Bi for each i ∈ I then

(6.2)
⋃
i∈I

{
f−1
i [B] : B ∈ Ci

}
generates the σ-algebra induced by the family (fi)i∈I ; namely, note that all
maps fi are measurable with respect to the σ-algebra generated by (6.2).

It is readily checked that if M is endowed with the σ-algebra induced
by (fi)i∈I and g is an M -valued map defined in some arbitrary measurable
space then g is measurable if and only if fi ◦ g is measurable, for all i ∈ I.
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Definition 6.3. Let
(
(Mi,Bi)

)
i∈I be a family of measurable spaces. The

σ-algebra of subsets of the cartesian product M =
∏
i∈IMi induced by the

projections
πi : M −→Mi, i ∈ I

is denoted by
⊗

i∈I Bi and it is called the product σ-algebra.

Clearly, an M -valued map g is measurable if and only if all of its coordi-
nates πi ◦ g are measurable.

Definition 6.4. If (Xi)i∈I is a family of random objects on the same prob-
ability space (Ω,A,P) with Xi taking values in a measurable space (Mi,Bi)
then the joint distribution of the family (Xi)i∈I is the distribution P(Xi)i∈I

of the
(∏

i∈IMi,
⊗

i∈I Bi
)
-valued random object defined by

(6.3) (Xi)i∈I(ω) =
(
Xi(ω)

)
i∈I ∈

∏
i∈I

Mi,

for all ω ∈ Ω.

We will use the same notation for the family of maps (Xi)i∈I and for the
map (6.3). This should not cause much confusion.

As in the case of two random objects, the individual distributions of the
random objects Xi can be obtained from the joint distribution of the family
by taking push-forwards under the projections and in this context we call
such individual distributions marginal distributions.

Note that if, for each i ∈ I, Ci is a collection of generators for Bi that is
closed under finite intersections than the collection of all sets of the form

(6.4) π−1
i1

[C1] ∩ . . . ∩ π−1
in

[Cn], C1 ∈ Ci1 , . . . , Cn ∈ Cin ,
with i1, . . . , in ∈ I distinct and n ≥ 1 generates

⊗
i∈I Bi and it is closed

under finite intersections. An application of Lemma 5.1 then yields the
following result.

Proposition 6.5. Let
(
(Mi,Bi)

)
i∈I be a family of measurable spaces and

for each i ∈ I let Ci be a collection of generators for the σ-algebra Bi that is
closed under finite intersections. We have that two probability measures on
the product σ-algebra

⊗
i∈I Bi are equal if they coincide on sets of the form

(6.4) for any i1, . . . , in ∈ I distinct and any n ≥ 1. �

Proposition 6.5 says that the joint distribution of a family (Xi)i∈I of
random objects is completely determined by probabilities of the form

P
(
[Xi1 ∈ C1] ∩ . . . ∩ [Xin ∈ Cn]

)
, C1 ∈ Ci1 , . . . , Cn ∈ Cin ,

with i1, . . . , in ∈ I distinct and n ≥ 1, assuming that Xi is (Mi,Bi)-valued
and that Ci is a collection of generators for Bi that is closed under finite
intersections for all i ∈ I. Taking Ci = Bi we conclude in particular that
the joint distribution of (Xi)i∈I is completely determined by all the joint
distributions of the finite subfamilies (Xi)i∈F , with F ranging over the finite
subsets of I.



A BASIC INTRODUCTION TO PROBABILITY AND STATISTICS 13

For finite families, Proposition 6.5 can be restated in the following more
convenient form.

Proposition 6.6. Let
(
(Mi,Bi)

)
i∈I be a finite family of measurable spaces

and for each i ∈ I let Ci be a collection of generators for the σ-algebra Bi that
is closed under finite intersections. We have that two probability measures
on the product σ-algebra

⊗
i∈I Bi are equal if they coincide on sets of the

form

(6.5)
∏
i∈I

Ci,

with Ci ∈ Ci ∪ {Mi} for all i ∈ I. �

Note that in Proposition 6.6 it is crucial to allow the possibility that
Ci = Mi, otherwise the product sets (6.5) might not generate the product
σ-algebra. In Proposition 6.5 it wasn’t necessary to allow explicitly for
the possibility that Ci = Mi because the collection of indices {i1, . . . , in}
appearing in (6.4) is allowed to be a proper subset of I even if I is finite.

In probability theory, most relevant questions concerning a family of ran-
dom objects (Xi)i∈I depend only on their joint probability distribution —
in some cases the image of the map (6.3) is also important. In any case, the
common probability space (Ω,A,P) in which all of the random objects of
interest are defined is not important and that is why authors seldom care to
clearly specify it. However, one does need to worry about existence results,
i.e., results that ensure the existence of a probability space in which a fam-
ily (Xi)i∈I of random objects with the desired joint distribution (sometimes
also with constraints on the image of (6.3)) can be defined. Examples of
such existence results will be discussed in Sections 16 and 18.

Remark 6.7. A word of caution must be said about products of σ-algebras.
Typically, the spaces Mi above will be topological spaces and Bi will be the
corresponding Borel σ-algebras. The product M =

∏
i∈IMi thus has a prod-

uct topology and one might be tempted to confuse the product σ-algebra
B =

⊗
i∈I Bi with the Borel σ-algebra of the product topology. While

the Borel σ-algebra of the product topology always contains the product
σ-algebra, the two might differ even in the simplest case of a product of
two spaces. When they do not coincide, one cannot infer, for example, the
measurability of a function f

(
(Xi)i∈I

)
of the random objects Xi from the

measurability of the Xi and the continuity of f , as the continuous function
f defined on

∏
i∈IMi is measurable with respect to the Borel σ-algebra and

the
∏
i∈IMi-valued map (Xi)i∈I is measurable with respect to the prod-

uct σ-algebra. However, if I is countable and the topology of each Mi is
second countable then it is easily checked that the Borel σ-algebra of the
product does coincide with the product of the Borel σ-algebras of the spaces
Mi. Namely, in this case the product topology is also second countable and
therefore every open set is a countable union of basic open sets that belong
to the product σ-algebra.
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7. Cumulative distribution function of a random variable

The distribution of a random variable X is a Borel probability measure
PX on the real line, i.e., a probability measure defined on the Borel σ-algebra
of the real line. Note that the collection

{
]−∞, x] : x ∈ R

}
is clearly closed

under finite intersections and it generates the Borel σ-algebra of R. Thus,
by Lemma 5.1, two Borel probability measures on R that agree on sets of
the form ]−∞, x] must be equal. Let then P be a Borel probability measure
on R and define F : R→ R by setting

(7.1) F (x) = P
(

]−∞, x]
)
,

for all x ∈ R. Clearly the map F satisfies the following conditions:

(i) F is increasing;
(ii) F is right-continuous;
(iii) limx→−∞ F (x) = 0 and limx→+∞ F (x) = 1.

Does every map F : R → R satisfying (i), (ii) and (iii) arises from a Borel
probability measure on R? The answer is affirmative and this follows from
the following standard result.

Proposition 7.1. Let F : R → R be an increasing right-continuous func-
tion. There exists a unique nonnegative countably additive Borel measure µ
on R such that

µ
(

]a, b]
)

= F (b)− F (a),

for all a, b ∈ R with a ≤ b. �

Taking Lemma 5.1 and Proposition 7.1 together we obtain the following
characterization of Borel probability measures on the real line.

Proposition 7.2. The mapping P 7→ F , with F defined as in (7.1), is a
bijection between Borel probability measures on R and functions F : R→ R

satisfying (i), (ii) and (iii) above. �

Proposition 7.2 motivates the following definition.

Definition 7.3. Let X be a random variable. The cumulative distribution
function (cdf) of X is the map FX : R→ R defined by

FX(x) = PX
(

]−∞, x]
)

= P(X ≤ x),

for all x ∈ R.

In other words, FX is the map corresponding to the Borel probability
measure PX under the bijection given by Proposition 7.2. It follows that
a map F : R → R is the cumulative distribution function of some random
variable if and only if F satisfies (i), (ii) and (iii) above.
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8. Probability density functions

Let (M,B) be a measurable space and let µ and ν be countably additive
nonnegative measures defined on B. Recall that ν is said to be absolutely
continuous with respect to µ if µ(B) = 0 implies ν(B) = 0 for all B ∈ B.
Assume that µ and ν are both σ-finite; recall that a measure defined on B is
called σ-finite if M is a countable union of sets of B having finite measure.
The celebrated Radon–Nikodym Theorem states that ν is absolutely contin-
uous with respect to µ if and only if there exists a nonnegative real-valued
measurable function f defined on M such that

ν(B) =

∫
B
f dµ,

for all B ∈ B. The function f is unique up to µ-almost everywhere equality
and it is called a Radon–Nikodym derivative of ν with respect to µ. A
Radon–Nikodym derivative of ν with respect to µ is usually denoted by dν

dµ .

Definition 8.1. Let X be a random object taking values in a measurable
space (M,B) and assume that µ is a σ-finite countably additive nonnegative
measure defined on B. If PX is absolutely continuous with respect to µ then
a Radon–Nikodym derivative of PX with respect to µ is called a probability
density function (pdf) of X with respect to µ. In other words, a proba-
bility density function of X with respect to µ is a nonnegative real-valued
measurable function fX : M → [0,+∞[ such that

P(X ∈ B) = PX(B) =

∫
B
fX dµ,

for all B ∈ B.

Of course, if fX is the probability density function with respect to µ of
some (M,B)-valued random object then the integral of fX with respect to µ
must be equal to 1, as PX(M) = 1. Moreover, every nonnegative measurable
map fX : M → [0,+∞[ whose integral with respect to µ is equal to 1 yields
a probability measure on B by integration with respect to µ and thus it is
the probability density function with respect to µ of some (M,B)-valued
random object.

Let us look at a few important examples.

Example 8.2. Let X be a random object taking values in a measurable
space (M,B). If M is countable, B = ℘(M) and µ is the counting measure
on B (i.e., µ(B) is the number of elements of B for all B ⊂ M) then PX is
always absolutely continuous with respect to µ and the unique probability
density function for X with respect to µ is the map fX : M → [0, 1] defined
by

fX(x) = PX(x) = P(X = x),

for all x ∈M . The map fX is called the probability mass function of X.
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Recall that a map F : [a, b] → R is called absolutely continuous if for
every ε > 0 there exists δ > 0 such that

k∑
i=1

|F (yi)− F (xi)| < ε,

for any finite collection ]x1, y1[, . . . , ]xk, yk[ of disjoint open intervals con-

tained in [a, b] with
∑k

i=1(yi−xi) < δ. It is well-known that F is absolutely
continuous if and only if there exists a Lebesgue integrable map f : [a, b]→ R

such that

F (t) = F (a) +

∫
[a,t]

f dm,

for all t ∈ [a, b], where m denotes the Lebesgue measure. Moreover, F is
differentiable at m-almost every point of [a, b] and F ′ = f m-almost every-
where. A map F of class C1, a (continuous) map F that is piecewise C1 or
an everywhere differentiable map F whose derivative is Lebesgue integrable
are all examples of absolutely continuous maps. A function F : R → R

whose restriction to every compact interval [a, b] is absolutely continuous is
called locally absolutely continuous.

Example 8.3. Let X be a random variable, i.e., X is a random object
taking values on the real line R endowed with the Borel σ-algebra. Let m
be the Lebesgue measure restricted to the Borel σ-algebra of R. It follows
directly from the facts discussed above that PX is absolutely continuous with
respect to m if and only if the cumulative distribution function FX : R→ R

of X is locally absolutely continuous. Moreover, if FX is locally absolutely
continuous then any nonnegative Borel-measurable map fX : R → [0,+∞[
that is m-almost everywhere equal to the derivative of FX is a probability
density function of X with respect to m.

Unless otherwise stated, probability density functions for random vari-
ables will always be considered with respect to the Lebesgue measure m.

Example 8.4. Let (M,B) and (M ′,B′) be measurable spaces and let

µ : B −→ [0,+∞], ν : B′ −→ [0,+∞]

be nonnegative countably additive σ-finite measures. We denote by

µ⊗ ν : B ⊗ B′ −→ [0,+∞]

the product measure, which is the unique nonnegative countably additive
measure such that (µ⊗ν)(B×B′) = µ(B)ν(B′), for allB ∈ B and allB′ ∈ B′.
Let X be an (M,B)-valued random object on a probability space and Y be
an (M ′,B′)-valued random object on that same probability space. Assume
that the joint distribution P(X,Y ) is absolutely continuous with respect to
µ⊗ ν, i.e., that there exists a probability density function

f(X,Y ) : M ×M ′ −→ [0,+∞[
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of the random object (X,Y ) with respect to µ ⊗ ν. The map f(X,Y ) is
usually called a joint probability density function for X and Y . It follows
from Fubini–Tonelli’s Theorem that the function fX defined by

fX(x) =

∫
M ′
f(X,Y )(x, y) dν(y), x ∈M

is measurable, µ-almost everywhere finite and that∫
B
fX dµ =

∫
B×M ′

f(X,Y ) d(µ⊗ ν) = P(X,Y )(B ×M ′) = PX(B),

for all B ∈ B. Replacing any infinite values that fX might attain on a set of
µ-measure zero with some fixed finite value, we obtain a probability density
function for X with respect to µ. Similarly, the map

fY (y) =

∫
M
f(X,Y )(x, y) dµ(x), y ∈M ′

becomes a probability density function for Y with respect to ν after infinite
values attained on a set of ν-measure zero are replaced with some fixed finite
value.

Thus, probability density functions for the (marginal) distributions of X
and Y can be obtained by integrating away the undesired variable from the
joint probability density function. Note that this observation generalizes
equalities (6.1) that were obtained in the case of discrete random objects.

As we have seen above, the existence of a joint probability density function
for (X,Y ) with respect to µ⊗ ν implies the existence of probability density
functions for X and Y with respect to µ and ν, but the converse is not
true. For an extreme example, let X and Y be random variables satisfying
some functional relation Y = g(X), with g : R→ R a measurable function.
In this case the P(X,Y )-probability of the graph of g is equal to 1, yet the
Lebesgue measure of such graph is zero, so that P(X,Y ) is never absolutely

continuous with respect to the Lebesgue measure of R2.

Example 8.5. One can easily generalize Example 8.4 to arbitrary n-tuples
(X1, . . . , Xn) of random objects and of nonnegative countably additive σ-
finite measures (µ1, . . . , µn), with Xi taking values in a measurable space
(Mi,Bi) and µi defined on Bi, for i = 1, . . . , n. The most important particu-
lar case happens when Mi = R, Bi is the Borel σ-algebra and µi = m is the
restriction of the Lebesgue measure to the Borel σ-algebra. In this case the
product measure

⊗n
i=1 µi is just the Lebesgue measure of Rn restricted to

the Borel σ-algebra of Rn. We denote such measure also by m and, unless
otherwise stated, the probability density of an Rn-valued random vector
(X1, . . . , Xn) will be always considered with respect to m. In elementary
probability theory textbooks, what is usually meant by “probability density
function” is the probability density function of a random variable or of an
Rn-valued random vector with respect to the Lebesgue measure.
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Example 8.6. Let (M,B) be a measurable space and let µ and ν be non-
negative countably additive σ-finite measures on B such that ν is absolutely
continuous with respect to µ. If X is an (M,B)-valued random object such
that PX is absolutely continuous with respect to ν then PX is also absolutely
continuous with respect to µ. Moreover, if fX is a probability density func-
tion for X with respect to ν then a probability density function for X with
respect to µ is obtained by multiplying fX by a Radon–Nikodym derivative
dν
dµ of ν with respect to µ.

Example 8.7. Let φ : M → M ′ be an isomorphism between measurable
spaces (M,B) and (M ′,B′), i.e., φ is a bijective measurable map whose
inverse is also measurable. Let µ : B → [0,+∞] be a nonnegative countably
additive σ-finite measure and X be an (M,B)-valued random object such
that PX is absolutely continuous with respect to µ. We have then that
Pφ(X) = φ∗PX is absolutely continuous with respect to φ∗µ : B′ → [0,+∞]
and, moreover, if fX is a probability density function for X with respect
to µ then fX ◦ φ−1 is a probability density function for φ(X) with respect
to φ∗µ. The latter statement follows directly from the abstract “change of
variables” result for integration with respect to push-forward measures that
we will state in Section 9 (Proposition 9.1). Note that if φ∗µ is absolutely
continuous with respect to some nonnegative countably additive σ-finite
measure ν : B′ → [0,+∞] then, as in Example 8.6, a probability density
function for φ(X) with respect to ν is obtained by multiplying fX ◦ φ−1 by
a Radon–Nikodym derivative of φ∗µ with respect to ν.

Example 8.8. Given a ∈ R, b ∈ Rn with a 6= 0, we obviously have that the
map φ : Rn → Rn given by φ(x) = ax+ b, for all x ∈ Rn, is an isomorphism
of the measurable space Rn with itself, where Rn is endowed with its Borel
σ-algebra. Moreover, if m denotes the restriction of the Lebesgue measure
of Rn to the Borel σ-algebra then φ∗m = |a|−nm, so that a Radon–Nikodym
derivative of φ∗m with respect to m is the function that is constant and equal
to |a|−n. It then follows from the results stated in Example 8.7 that if X is
an Rn-valued random vector that admits a probability density function fX
with respect to m then a probability density function for φ(X) = aX + b
with respect to m is given by

faX+b(y) =
1

|a|n
fX

(y − b
a

)
,

for all y ∈ Rn.

9. Expected value

Let (Ω,A,P) be a probability space and X : Ω→ R be a random variable.
The expected value of X, denoted E(X), is defined by:

E(X) =

∫
Ω
X dP,
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if such integral exists. Note that if X is nonnegative, such integral always
exists, but possibly takes the value +∞. In general, X has a positive part
X+ and a negative part X− and the integral of X exists (possibly taking
the values +∞ or −∞) if and only if either X+ or X− has a finite integral.

We recall the following simple yet useful “change of variables” result for
integration with respect to push-forward measures.

Proposition 9.1. Let (Ω,A), (M,B) be measurable spaces, X : Ω → M
be a measurable map, µ be a nonnegative countably additive measure on A
and denote by X∗µ : B → [0,+∞] the push-forward measure. For every
measurable map f : M → [−∞,+∞] we have that the equality∫

Ω
f ◦X dµ =

∫
M
f d(X∗µ)

holds, meaning that the integral on the lefthand side of the equality exists if
and only if the integral on the righthand side of the equality exists, with such
integrals being equal when both exist. �

Let X : Ω → M be a random object taking values in some measurable
space (M,B) and let f : M → R be a measurable function, so that f(X) is a
random variable. Since the distribution PX of X is simply the push-forward
of the probability measure P under the map X, Proposition 9.1 yields∫

Ω
f(X) dP =

∫
M
f dPX ,

meaning that the integral on the lefthand side of the equality exists if and
only if the integral on the righthand side of the equality exists and that they
are equal when both exist. Thus

(9.1) E
(
f(X)

)
=

∫
M
f dPX

and, in particular, if X is a random variable and f is the identity function
of R, we get:

(9.2) E(X) =

∫
R

x dPX(x).

Equality (9.2) can be interpreted as saying that E(X) is the average of the
values taken by X weighted by their probabilities. This holds literally if X
is discrete, i.e., if the image of X is countable then (9.2) becomes

E(X) =
∑

x∈Im(X)

xP(X = x)

and (9.1) becomes (assuming {x} ∈ B for all x ∈ Im(X)):

E
(
f(X)

)
=

∑
x∈Im(X)

f(x)P(X = x).

Note that the name “expected value” is somewhat misleading, as E(X)
is not a “value that is expected” in the sense that it has a large probability
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of being observed in some sense. It is really just an average and, in fact, if
X is discrete it often happens that E(X) is not even in the image of X, so
that E(X) is an impossible value for X.

Example 9.2. Let X be a random object taking values in a measurable
space (M,B) and µ be a nonnegative countably additive σ-finite measure
defined on B. Assume that PX is absolutely continuous with respect to µ
and let fX : M → [0,+∞[ be a probability density function for X with
respect to µ. It is well-known from basic measure theory that integrating a
measurable map g : M → R with respect to PX is the same as integrating
gfX with respect to µ and therefore

E
(
g(X)

)
=

∫
M
g dPX =

∫
M
gfX dµ,

i.e., we have

E
(
g(X)

)
=

∫
M
gfX dµ

for any measurable map g : M → R meaning that the integral on the
lefthand side of the equality exists if and only if the integral on the righthand
side of the equality exists and that they are equal when both exist.

10. Variance and covariance

Let V be a real vector space endowed with an inner product 〈·, ·〉 and
let W be a subspace of V . Assume that the orthogonal projection operator
P : V → W is well-defined (which happens, for instance, if W is finite-
dimensional). For every v ∈ V , the point P (v) is the element of W closest
to v and ‖v − P (v)‖2 = 〈v − P (v), v − P (v)〉 is the square of the distance
between v and the set W . If we define

〈〈v1, v2〉〉 = 〈v1 − P (v1), v2 − P (v2)〉,
for all v1, v2 ∈ V , then 〈〈·, ·〉〉 is a positive semi-definite symmetric bilinear

form on V and 〈〈v, v〉〉
1
2 is the distance between v and W for all v ∈ V . In

other words, the semi-norm induced by 〈〈·, ·〉〉 gives the distance from W .
Now let (Ω,A,P) be a probability space and consider the Hilbert space

L2(Ω,A,P) of (equivalence classes of P-almost everywhere equal) square
integrable measurable maps X : Ω→ R endowed with the inner product:

〈X,Y 〉 =

∫
Ω
XY dP = E(XY ), X, Y ∈ L2(Ω,A,P).

We apply the construction above with V = L2(Ω,A,P) and W the one-
dimensional subspace of V consisting of P-almost everywhere constant maps.
The orthogonal projection P : V →W is easily seen to be given by

P (X) = E(X),

for all X ∈ L2(Ω,A,P), in which we identify the real number E(X) with the
map defined on Ω that is constant and equal to E(X). Note that this gives
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another nice interpretation for the expected value of X: it is the constant
random variable that is L2-closest to the random variable X.

The positive semi-definite symmetric bilinear form 〈〈·, ·〉〉 obtained from
〈·, ·〉 and the orthogonal projection P : V →W will be called the covariance
map. More explicitly, we give the following definition.

Definition 10.1. For all X,Y ∈ L2(Ω,A,P), we define the covariance of
X and Y by setting:

Cov(X,Y ) = 〈X − E(X), Y − E(Y )〉 = E
[(
X − E(X)

)(
Y − E(Y )

)]
.

A simple computation yields:

Cov(X,Y ) = E(XY )− E(X)E(Y ),

for all X,Y ∈ L2(Ω,A,P). The square of the semi-norm induced by the
covariance map is called the variance map.

Definition 10.2. For all X in L2(Ω,A,P), we define its variance by setting:

Var(X) = Cov(X,X) = E
[(
X − E(X)

)2]
= E(X2)− E(X)2.

The equality Var(X) = E
[(
X − E(X)

)2]
can also be used to define the

variance of X in case X is not square integrable, but in this case Var(X) is
always equal to +∞.

We thus have that the variance Var(X) is the squared L2-distance between
X and the one-dimensional space of P-almost everywhere constant functions.
In particular, Var(X) = 0 if and only if X is P-almost everywhere constant
or, in the probability theoretic jargon, Var(X) = 0 if and only if X is almost
surely constant. The variance of X can be seen as a measure of how spread
out the distribution of X is on the real line. A small variance Var(X) means
that the values of X tend to fall near to the expected value E(X).

Applying the Cauchy–Schwarz inequality to the positive semi-definite
symmetric bilinear form Cov we obtain

(10.1) |Cov(X,Y )| ≤ Var(X,X)
1
2 Var(Y, Y )

1
2 ,

for all X,Y ∈ L2(Ω,A,P). For inner products (i.e., positive definite sym-
metric bilinear forms) the equality holds in the Cauchy–Schwarz inequality if
and only if the vectors are linearly dependent, but for positive semi-definite
symmetric bilinear forms it holds if and only if the vectors are linearly de-
pendent modulo the kernel of the bilinear form (which for Cov consists of
almost surely constant maps). Hence equality holds in (10.1) if and only if
either X is almost surely constant or Y = aX + b almost surely for certain
a, b ∈ R.

If X,Y ∈ L2(Ω,A,P) and neither X nor Y is almost surely constant, we
define the correlation between X and Y by setting:

ρ(X,Y ) =
Cov(X,Y )

Var(X,X)
1
2 Var(Y, Y )

1
2

.
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By the Cauchy–Schwarz inequality (10.1), we have |ρ(X,Y )| ≤ 1. Moreover,
ρ(X,Y ) = 1 if and only if Y = aX + b almost surely for certain a, b ∈ R
with a > 0 and ρ(X,Y ) = −1 if and only if Y = aX + b for certain a, b ∈ R
with a < 0.

The square root Var(X)
1
2 of the variance of X — that is, the semi-norm

of X induced by the covariance map Cov — is usually called the standard
deviation of X and it is equal to the L2-distance between X and the one-
dimensional space of almost surely constant maps. The correlation ρ(X,Y )
can be interpreted geometrically as the cosine of the angle between X and
Y with respect to the covariance map.

11. Expectation of random vectors and the covariance matrix

Let V be a real finite-dimensional vector space endowed with its Borel
σ-algebra B, where the topology of V is the canonical topology (induced by
an arbitrary norm). Let us discuss the notions of expectation, covariance
and variance for V -valued random objects. Recall that a V -valued random
object is also called a V -valued random vector.

The theory of integration with respect to a measure for V -valued measur-
able functions is a simple extension of the theory of integration of real-valued
measurable functions. Here we focus on integration with respect to a prob-
ability measure. Given a probability space (Ω,A,P) and a random vector
X : Ω→ V there exists a unique vector

∫
ΩX dP ∈ V such that

α

(∫
Ω
X dP

)
=

∫
Ω
α ◦X dP,

for every linear functional α ∈ V ∗, provided that α(X) = α ◦X has a finite
integral with respect to P for every α ∈ V ∗. Here, as usual, V ∗ denotes the
dual space of V . This fact is easily proven using a basis of V and defining
the integral

∫
ΩX dP coordinatewise.

Note that, for any p ∈ [1,+∞[, the following statements about a random
vector X : Ω→ V are equivalent:

(i) |α(X)|p has finite integral with respect to P for all α ∈ V ∗;
(ii) V ∗ is contained in Lp(V,B,PX), i.e., the map V 3 v 7→ |α(v)|p has

finite integral with respect to PX for every α ∈ V ∗;
(iii) the map Ω 3 ω 7→ ‖X(ω)‖p has finite integral, where ‖ · ‖ is some

fixed arbitrary norm in V .

When any of these conditions is satisfied, we will say thatX is p-th integrable;
for p = 1 we simply say that X is integrable and for p = 2 we say that X
is square integrable. For any p ∈ [1,+∞[, we denote by Lp(Ω,A,P;V ) the
space of (equivalence classes of P-almost everywhere equal) p-th integrable
measurable maps X : Ω→ V .
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Definition 11.1. For an integrable random vector X : Ω→ V , its expected
value is defined by:

E(X) =

∫
Ω
X dP ∈ V.

Clearly, for any linear transformation T : V → W taking values in some
other real finite-dimensional vector space W we have:

(11.1) E
(
T (X)

)
=

∫
Ω
T ◦X dP = T

(∫
Ω
X dP

)
= T

(
E(X)

)
.

Remark 11.2. If X : Ω → V is a V -valued random vector and W is a
subspace of V containing the image of X then we can regard X also as a
W -valued random vector. Using (11.1) with T : W → V the inclusion map,
we see that X has the same expected value when regarded as a V -valued
random vector and as a W -valued random vector. In particular, if the image
of X is contained in a subspace W then E(X) ∈ W . Recall that an affine
subspace of a vector space V is a translation v +W =

{
v + w : w ∈ W

}
of

some vector subspace W of V . Note that if the image of X is contained in
an affine subspace v+W of V then E(X) is in v+W , since E(X − v) is in
W and E(v) = v for any v ∈ V (regarded as a constant V -valued random
vector).

How do we go about defining variance and covariance for square integrable
random vectors? To motivate the definitions we will think in terms of tensor
products. The official definitions presented after the motivation will not be
dependent on the facts used in the reasoning below.

Observe first that there is a natural identification between Lp(Ω,A,P;V )
and the tensor product Lp(Ω,A,P)⊗ V given by the isomorphism:

Lp(Ω,A,P)⊗ V 3 X ⊗ v 7−→ Xv ∈ Lp(Ω,A,P;V ).

Moreover, the covariance map of square integrable random variables is a
bilinear map

Cov : L2(Ω,A,P)× L2(Ω,A,P) −→ R

and for real finite-dimensional vector spaces V and W such map naturally
induces a bilinear map(

L2(Ω,A,P)⊗ V
)
×
(
L2(Ω,A,P)⊗W

)
−→ V ⊗W

that sends (X ⊗ v, Y ⊗w) to Cov(X,Y )(v ⊗w), for all X,Y ∈ L2(Ω,A,P),
all v ∈ V and all w ∈W . Using the identifications

L2(Ω,A,P;V ) ∼= L2(Ω,A,P)⊗ V, L2(Ω,A,P;W ) ∼= L2(Ω,A,P)⊗W
we then obtain a bilinear map

Cov : L2(Ω,A,P;V )× L2(Ω,A,P;W ) −→ V ⊗W
that will be called the covariance map for V -valued and W -valued random
vectors.
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Recall that, since V and W are finite-dimensional, the tensor product
V ⊗ W can be naturally identified with the space of bilinear maps from
V ∗ ×W ∗ to R by setting

(v ⊗ w)(α, β) = α(v)β(w),

for all α ∈ V ∗ and all β ∈ W ∗. From now on we will use such identifica-
tion throughout, i.e., we will simply regard the tensor product V ⊗W as a
notation for such space of bilinear maps.

Here is our official definition of covariance of square integrable random
vectors. Such definition is equivalent to what was described above.

Definition 11.3. Given real finite-dimensional vector spaces V and W , a
probability space (Ω,A,P) and square integrable random vectors X : Ω→ V
and Y : Ω→W , we define their covariance Cov(X,Y ) ∈ V ⊗W by setting:

Cov(X,Y )(α, β) = Cov
(
α(X), β(Y )

)
,

for all α ∈ V ∗ and all β ∈W ∗. The variance of the square integrable random
vector X : Ω→ V is defined by:

Var(X) = Cov(X,X) ∈ V ⊗ V.

We have

Var(X)(α, β) = Cov
(
α(X), β(X)

)
,

for all α, β ∈ V ∗, so that Var(X) is a positive semi-definite symmetric bilin-
ear form on V ∗. Since Var(X) is positive semi-definite, its kernel, i.e., the
subspace of V ∗ given by

Ker
(
Var(X)

)
=
{
α ∈ V ∗ : Var(X)(α, β) = 0 for all β ∈ V ∗

}
coincides with the set of those α ∈ V ∗ with Var(X)(α, α) = Var

(
α(X)

)
= 0.

Hence:

(11.2) Ker
(
Var(X)

)
=
{
α ∈ V ∗ : α(X) is almost surely constant

}
.

Using this equality we can show that Var(X) is degenerate, i.e., has a nonzero
kernel, if and only if the support of the distribution PX of X is contained
in a proper affine subspace of V . The definition of support of a measure on
a topological space is recalled below.

Definition 11.4. If M is a topological space and µ is a nonnegative count-
ably additive measure defined on the Borel σ-algebra of M then the support
of µ is defined as the complement in M of the union of all open subsets of
M having zero measure, in case such union also has zero measure. This is
always the case if the topology of M is second countable, as in this case such
union can be replaced with a countable union.

Thus, saying that the support of a probability measure on the Borel σ-
algebra of a second countable topological space is contained in a closed
subset simply means that such closed subset has probability equal to one.
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Proposition 11.5. Let X : Ω → V be a square integrable random vector
on a probability space (Ω,A,P), where V is a real finite-dimensional vector
space. If

W =
{
v ∈ V : α(v) = 0 for all α ∈ Ker

(
Var(X)

)}
denotes the subspace of V annihilated by Ker

(
Var(X)

)
then the support of

PX is contained in some translation v+W of W . Moreover, no proper affine
subspace of v +W contains the support of PX .

Proof. If (αi)
k
i=1 is a basis for Ker

(
Var(X)

)
then

T : V 3 v 7−→
(
α1(v), . . . , αk(v)

)
∈ Rk

is a linear map whose kernel is W and, by (11.2), the random vector T (X)
is almost surely equal to some constant T (v), for some v ∈ V . Hence the
support of PX is contained in v +W .

If the support of PX were contained in some proper affine subspace of
v + W then such affine subspace would be a translation of a proper vector
subspace W ′ of W . This would imply that every α ∈ V ∗ that annihilates
W ′ is such that α(X) is almost surely constant and thus that the annihi-
lator of W ′ is contained in Ker

(
Var(X)

)
. But this is not possible, as the

annihilator of W ′ properly contains the annihilator of W , which is equal to
Ker

(
Var(X)

)
. �

Corollary 11.6. Let X : Ω → V be a square integrable random vector
on a probability space (Ω,A,P), where V is a real finite-dimensional vector
space. We have that the symmetric bilinear form Var(X) is nondegenerate
(and thus positive definite) if and only if there is no proper affine subspace
of V containing the support of PX . �

11.1. Matrix representation of the variance. If (ei)
n
i=1 is a basis of V ,

then the symmetric bilinear form Var(X) on V ∗ is represented by an n× n
symmetric matrix with respect to the dual basis (αi)

n
i=1 of (ei)

n
i=1. The

element on the i-th row and j-th column of that matrix is equal to

Var(X)(αi, αj) = Cov
(
αi(X), αj(X)

)
,

for all i, j = 1, . . . , n. In a different perspective, we have that (ei ⊗ ej)ni,j=1

is a basis of V ⊗ V and

Var(X) =
n∑

i,j=1

Var(X)(αi, αj) ei ⊗ ej =
n∑
i=1

Cov
(
αi(X), αj(X)

)
ei ⊗ ej .

Definition 11.7. Given a square integrable V -valued random vector X and
a basis (ei)

n
i=1 of V with dual basis (αi)

n
i=1 then the n×n symmetric matrix

whose entry in the i-th row and j-th column is Cov
(
αi(X), αj(X)

)
is called

the covariance matrix of X with respect to the basis (ei)
n
i=1.

Standard textbooks usually focus only on the case that V = Rn. In that
case, we have a canonical basis (ei)

n
i=1 and X is of the form (X1, . . . , Xn)
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with Xi = αi(X), for all i = 1, . . . , n, where (αi)
n
i=1 is dual to the canonical

basis. Thus the corresponding covariance matrix is(
Cov(Xi, Xj)

)n
i,j=1

.

We will call this simply the covariance matrix of the Rn-valued random
vector X, without explicit mention to the canonical basis.

11.2. Naturality of covariance with respect to linear maps. A pair
of linear maps T1 : V1 →W1, T2 : V2 →W2 induces a linear map

T1 ⊗ T2 : V1 ⊗ V2 3 v1 ⊗ v2 7−→ T1(v1)⊗ T2(v2) ∈W1 ⊗W2

between tensor products. Identifying as before elements of V1 ⊗ V2 with
bilinear maps B : V ∗1 × V ∗2 → R, we have:

(T1 ⊗ T2)(B) = B(T ∗1 · , T ∗2 · ),
or, more explicitly

(T1 ⊗ T2)(B)(β1, β2) = B
(
T ∗1 (β1), T ∗2 (β2)

)
= B(β1 ◦ T1, β2 ◦ T2),

for all β1 ∈ V ∗1 and all β2 ∈ V ∗2 . The following result follows directly from
the definitions.

Proposition 11.8. Let T1 : V1 → W1 and T2 : V2 → W2 be linear maps
between real finite-dimensional vector spaces, X be a square integrable V1-
valued random vector on a probability space and Y be a square integrable
V2-valued random vector on that same probability space. We have:

Cov
(
T1(X), T2(Y )

)
= (T1 ⊗ T2)

(
Cov(X,Y )

)
. �

Corollary 11.9. Let T : V → W be a linear map between real finite-
dimensional vector spaces and X be a V -valued square integrable random
vector. We have:

Var
(
T (X)

)
= (T ⊗ T )

(
Var(X)

)
. �

11.3. Random objects with values in an abstract affine space. The
theory developed in this section can be readily generalized to random objects
that take values in a real finite-dimensional abstract affine space instead of
a vector space. Such generalization is sometimes convenient (see Proposi-
tion 11.5).

Recall that an affine space is a nonempty set P endowed with a transitive
action

P × V 3 (p, v) 7−→ p+ v ∈ P
without fixed points of the additive group of a vector space V . For p, q ∈ P ,
we write p−q for the unique vector in V such that q+(p−q) = p. Each choice
of a point O ∈ P — usually called an origin — leads to an identification
V 3 v 7→ O + v ∈ P between V and P . A distinct choice of origin leads to
a different identification between V and P that differs from the first by a
translation of V . We call V the vector space parallel to P .
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We assume below that V is real and finite-dimensional, so that it has a
canonical topology which induces a canonical topology on P through any
choice of an origin. Let P be endowed with the corresponding Borel σ-
algebra.

Given a random object X with values in P , we can define the expected
value of X by setting

E(X) = E(X −O) +O ∈ P,
for any choice of O ∈ P , provided that ω 7→ (X − O)(ω) = X(ω) − O ∈ V
is integrable. It is easily checked that E(X) does not depend on the choice
of O. The fact that the measure is a probability measure is crucial here!

Covariance and variance can also be defined for random objects taking
values in affine spaces. If P is an affine space parallel to a real finite-
dimensional vector space V and Q is an affine space parallel to a real finite-
dimensional vector space W , we define

Cov(X,Y ) = Cov(X −O, Y −O′) ∈ V ⊗W,
for a P -valued random object X and a Q-valued random object Y such that
X − O and Y − O′ are both square integrable, where O ∈ P and O′ ∈ Q
are chosen arbitrarily. The definition of Cov(X,Y ) does not depend on the
choices of O and O′. The variance of X is then defined by:

Var(X) = Cov(X,X) ∈ V ⊗ V.
There are obvious generalizations of Proposition 11.5, Corollary 11.6, Propo-
sition 11.8 and Corollary 11.9 to the context of affine space-valued random
objects.

12. Convergence of random variables

In measure theory courses one studies several notions of convergence for
real-valued measurable functions defined on a measure space. Since random
variables are also real-valued measurable functions on a measure space, all
such notions of convergence can be used for random variables. Probabilists
have their own favorite names for such convergence notions and below we
present the suitable translations from measure theory language to probabil-
ity theory language.

Let (Xn)n≥1 be a sequence of random variables on a probability space
(Ω,A,P) and let X be another random variable on that same probability
space. In probability theory we will say that (Xn)n≥1 converges almost
surely to X if (Xn)n≥1 converges pointwise almost everywhere to X, i.e., if

lim
n→+∞

Xn(ω) = X(ω)

for all ω ∈ Ω outside of some measurable subset of Ω with zero probability.
We say that (Xn)n≥1 converges in probability to X if (Xn)n≥1 converges in
measure to X, i.e., if for all ε > 0 we have:

lim
n→+∞

P
(
|Xn −X| ≥ ε

)
= 0.
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Recall that a sequence of real-valued measurable functions on a measure
space is said to converge almost uniformly to another real-valued measurable
function if for every ε > 0 there exists a measurable subset with measure
less than ε outside of which the convergence is uniform. Due to Egoroff’s
Theorem, for finite measure spaces, almost uniform convergence is equivalent
to pointwise convergence almost everywhere. Since probability measures
are finite, almost uniform convergence does not give rise to a new notion of
convergence of random variables, i.e., it is equivalent to convergence almost
surely. Note that since almost uniform convergence implies convergence
in measure, we have that almost surely convergence of random variables
implies convergence in probability. Standard results from measure theory
courses also yield that if (Xn)n≥1 converges to X in probability then some
subsequence of (Xn)n≥1 converges to X almost surely.

Another important notion of convergence for real-valued measurable func-
tions is convergence with respect to the Lp-norm for some p ∈ [1,+∞[. In
the context of probability theory, this is called convergence in the p-th mean
or simply convergence in the mean if p = 1. Thus, (Xn)n≥1 converges in the
p-th mean to X if and only if:

lim
n→+∞

E
(
|Xn −X|p

)
= 0.

Clearly, convergence in the p-th mean is stronger than convergence in prob-
ability. Moreover, since the probability measure is finite, for 1 ≤ q ≤ p,
convergence in the p-th mean implies convergence in the q-th mean. By the
Dominated Convergence Theorem, if |Xn| ≤ |Y | almost surely for all n ≥ 1
and some Y ∈ Lp(Ω,A,P), then almost surely convergence of (Xn)n≥1 im-
plies convergence in the p-th mean.

We prove below a couple of other results regarding convergence of random
variables that are less well-known from measure theory courses.

Proposition 12.1. Let (Xn)n≥1 be a sequence of random variables on a
probability space and X be a random variable on that same probability space.
If f : D → R is a continuous function defined in a subset D of R contain-
ing the image of X and the image of all Xn and if (Xn)n≥1 converges in
probability to X then

(
f(Xn)

)
n≥1

converges in probability to f(X).

Proof. Assuming by contradiction that the thesis is false, one obtains ε > 0,
η > 0 and a strictly increasing sequence (nk)k≥1 of positive integers with

(12.1) P
(
|f(Xnk)− f(X)| ≥ ε

)
≥ η,

for all k ≥ 1. Passing to a subsequence, we may assume that (Xnk)k≥1

converges to X almost surely, which yields that
(
f(Xnk)

)
k≥1

converges al-

most surely to f(X). But almost surely convergence implies convergence in
probability and this yields a contradiction with (12.1). �

Proposition 12.2. Let (Xn)n≥1 be a sequence of random variables on a
probability space and X be a random variable on that same probability space.
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If (Xn)n≥1 converges in probability to X and |Xn| ≤ Y almost surely for all
n ≥ 1 and some Y ∈ Lp(Ω,A,P) then (Xn)n≥1 converges to X in the p-th
mean and in particular limn→+∞E(Xn) = E(X).

Proof. Similar to the proof of Proposition 12.1: assume by contradiction
that the thesis is false, pick a subsequence that converges almost surely and
apply the Dominated Convergence Theorem. �

We note that the definitions and results discussed in this section are easily
generalized to random objects taking values in a separable metric space
(M,d) endowed with its Borel σ-algebra. Separability of (M,d) is required
for instance because if X and Y are random objects taking values in M we
will often need the function d(X,Y ) : Ω → R to be measurable and this
requires separability (see Remark 6.7).

13. Topologies for the set of probability measures

The notions of convergence of random variables discussed in Section 12
can all be seen as stating that the random variable Xn “becomes close” to
the random variable X as n goes to +∞. This should imply that also the
distribution of Xn becomes close to the distribution of X in some sense.
However, in some situations, we are just interested in the closeness of the
distributions and we do not care about the closeness of the random variables.
We then need a notion of convergence for probability measures.

Let (M,B) be a measurable space and denote by Prob(M,B) the set of all
probability measures defined on B. Let us discuss some possible topologies
for the set Prob(M,B). Such topologies will, of course, correspond to notions
of convergence of probability measures. It is well known that the space
ca(M,B) of all finite signed countably additive measures defined on B is a
Banach space endowed with the total variation norm ‖µ‖ = |µ|(M). We
explain below why the topology induced by such norm is usually not a very
useful topology for Prob(M,B). We need a definition.

Definition 13.1. Given a measurable space (M,B), for each x ∈ M , we
denote by δx : B → [0, 1] the probability measure defined by δx(B) = 1 if
x ∈ B and δx(B) = 0 otherwise. This is called the Dirac delta probability
measure centered at x.

We assume that all singletons {x} with x ∈M are in B to avoid patholo-
gies. The Dirac delta probability measure δx models a degenerate random
experiment in which the outcome x is obtained with certainty. Note that if
x, y ∈M are distinct, the distance ‖δx− δy‖ between δx and δy with respect
to the total variation norm is equal to 2.

Now assume that M is endowed with some topology (say, M is a metric
space) and B is the Borel σ-algebra. In the context of real-world applica-
tions, if x and y are very very close, the probability measures δx and δy
are indistinguishable, as experimental equipment has limited precision. In
this context it is thus completely inappropriate that the distance between



A BASIC INTRODUCTION TO PROBABILITY AND STATISTICS 30

δx and δy remains fixed no matter how close y 6= x becomes to x. Having
this example in mind, a good requirement for a topology in Prob(M,B) is
that the map

δ : M 3 x 7−→ δx ∈ Prob(M,B)

be continuous. In order to find such a topology, we look for topologies that
are weaker than the total variation norm topology.

A first possible candidate is the weak topology of the Banach space
ca(M,B), i.e., the smallest topology that makes all norm-continuous lin-
ear functionals continuous. But this topology does not satisfy our require-
ment: namely, any bounded measurable function f : M → R defines a
norm-continuous linear functional

(13.1) ca(M,B) 3 µ 7−→
∫
M
f dµ ∈ R

and the composition of (13.1) with the map δ is simply the function f . Ex-
cept for trivial cases, it is not true that every bounded measurable function
is continuous and thus δ is not continuous with respect to the weak topology
of the Banach space ca(M,B).

The considerations above yield a suggestion of topology for Prob(M,B).
Namely, endow ca(M,B) and Prob(M,B) with the smallest topology that
makes the linear functional (13.1) continuous for every bounded continuous
function f : M → R. This will obviously make the map δ continuous. In
probability theory textbooks this topology is usually called the weak topology
on Prob(M,B), but one should be careful to distinguish it from the weak
topology of the Banach space ca(M,B).

Using the terminology that is normally employed in topological vector
spaces books, the topology defined above is the weak topology on ca(M,B)
induced by the bilinear pairing

(13.2) ca(M,B)× Cb(M,R) 3 (µ, f) 7−→
∫
M
f dµ ∈ R,

where Cb(M,R) denotes the space of bounded continuous real-valued maps
defined on M .

Remark 13.2. If M is metrizable then standard regularity results for finite
Borel measures on metric spaces plus the Hahn Decomposition Theorem for
signed measures imply that

‖µ‖ = sup
f∈Cb(M,R)

∫
M
f dµ.

It follows that the linear functionals (13.1) with f bounded and continuous
separate the points of ca(M,B) and hence the weak topology corresponding
to the bilinear pairing (13.2) is Hausdorff.

Definition 13.3. Let M be a topological space endowed with its Borel σ-
algebra B. If (Xn)n≥1 is a sequence of (M,B)-valued random objects and
X is an (M,B)-valued random object, we say that (Xn)n≥1 converges in
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distribution to X if limn→+∞ PXn = PX with respect to the weak topol-
ogy of Prob(M,B) defined above. In other words, (Xn)n≥1 converges in
distribution to X if and only if

(13.3) lim
n→+∞

E
(
f(Xn)

)
= E

(
f(X)

)
,

for every bounded continuous function f : M → R.

Note that for the definition above it is not even relevant that the objects
Xn and X be all defined on the same probability space.

The following is a direct consequence of the generalizations of Proposi-
tions 12.1 and 12.2 to random objects taking values in a separable metric
space.

Proposition 13.4. Let M be a separable metric space endowed with its
Borel σ-algebra B. Let (Xn)n≥1 be a sequence of (M,B)-valued random
objects on the same probability space and X be an (M,B)-valued random
object on that same probability space. If (Xn)n≥1 converges in probability to
X then (Xn)n≥1 converges in distribution to X. �

The converse of Proposition 13.4 does not hold in general, but it does if
X is almost surely constant.

Proposition 13.5. Let M be a separable metric space endowed with its
Borel σ-algebra B. Let (Xn)n≥1 be a sequence of (M,B)-valued random
objects on the same probability space and X be an (M,B)-valued random
object on that same probability space. If X is almost surely constant and
(Xn)n≥1 converges in distribution to X then (Xn)n≥1 converges in probability
to X.

Proof. If P(X = x) = 1 for some x ∈ M , take ε > 0 and apply (13.3) to a
continuous function f : M → [0, 1] that vanishes on x and equals 1 outside
of the open ball of center x and radius ε > 0. �

14. The characteristic function of a random variable

Let X be a random variable on some probability space. We define a
complex-valued function φX : R→ C by setting

φX(t) = E(eitX) =

∫
R

eitx dPX(x),

for all t ∈ R. This is called the characteristic function of the random variable
X. Note that |φX(t)| ≤ 1 for all t ∈ R. Moreover, it follows easily from the
Dominated Convergence Theorem that φX is continuous.

The characteristic function φX is essentially the same thing as the Fourier
transform of the probability measure PX regarded as a tempered distribution
on the real line. In fact, the Fourier transform of PX is given by

R 3 t 7−→ 1√
2π

φX(−t) ∈ C.
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The notion of characteristic function can be readily generalized to random
vectors.

Definition 14.1. Let V be a real finite-dimensional vector space endowed
with its Borel σ-algebra and X be a V -valued random vector. The charac-
teristic function of X is the complex-valued map φX : V ∗ → C defined on
the dual space V ∗ and given by

φX(α) = E(eiα(X)) =

∫
V
eiα(x) dPX(x),

for all α ∈ V ∗.

As before, |φX(α)| ≤ 1 for all α ∈ V ∗ and φX is continuous. Moreover,
up to a sign in α and a multiplicative constant, φX is simply the Fourier
transform of the probability measure PX regarded as a tempered distribu-
tion.

Since the Fourier transform is injective on tempered distributions and
the inclusion of finite countably additive measures in the space of tempered
distributions is also injective, we obtain the following result.

Proposition 14.2. Let V be a real finite-dimensional vector space and X
and Y be V -valued random vectors. If φX = φY then PX = PY . In par-
ticular, if α(X) and α(Y ) have the same distribution for all α ∈ V ∗ then
PX = PY . �

15. Conditional probability and independence

Let (Ω,A,P) be a probability space and let A,B ∈ A be events. We wish
to define the conditional probability P(A|B) of A given B. Before present-
ing the formal definition, we give a motivation in terms of the frequentist
interpretation of probability.

Imagine that the random experiment modelled by (Ω,A,P) is repeated
a large number N of times and, for C ∈ A, denote by NC the number
of times that the event ω ∈ C occurs, where ω ∈ Ω denotes the outcome
of the experiment. We then have P(C) = limN→+∞

NC
N . The conditional

probability P(A|B) should be the limit as N → +∞ of the frequency with
which the event ω ∈ A happens among those repetitions of the experiment
in which the event ω ∈ B happens. Clearly, among the NB repetitions in
which ω ∈ B happens, we have that the number of repetitions in which
ω ∈ A happens is equal to NA∩B. Hence:

P(A|B) = lim
N→+∞

NA∩B
NB

=
P(A ∩B)

P(B)
.

We take the latter quotient as the official definition of conditional probabil-
ity.



A BASIC INTRODUCTION TO PROBABILITY AND STATISTICS 33

Definition 15.1. Given A,B ∈ A with P(B) > 0, the conditional probability
P(A|B) of A given B is defined by:

P(A|B) =
P(A ∩B)

P(B)
.

Note that the map

(15.1) P( · |B) : A 3 A 7−→ P(A|B) ∈ [0, 1]

is a probability measure on A. This is the probability measure obtained from
the following recipe: first, change P so that it vanishes on the complement
of B and remains the same on measurable subsets of B. This yields the
measure A 3 A 7−→ P(A ∩ B) ∈ [0, 1], which is not in general a probability
measure. Now multiply such measure by the appropriate constant to make
it a probability measure, obtaining (15.1).

If X : Ω → M is a random object taking values in a measurable space
(M,B), then for any A ∈ A and B ∈ B we write

P(A|X ∈ B) =
P(A ∩ [X ∈ B])

P(X ∈ B)

for the conditional probability of A given the event [X ∈ B], provided
that P(X ∈ B) > 0. In particular, if x ∈ M is such that {x} ∈ B and
P(X = x) > 0, we write P(A|X = x) for the conditional probability of A
given [X = x].

The definition of conditional probability leads naturally to a definition of
independence of events. We say that two events A and B are independent
if the conditional probability P(A|B) is equal to P(A), i.e., the probability
of A remains unchanged if we learn that B happened. We rewrite this in a
way that P(B) does not appear in the denominator to avoid the assumption
that P(B) > 0.

Definition 15.2. We say that two events A,B ∈ A are independent if:

P(A ∩B) = P(A)P(B).

Clearly A and B are independent if either A or B has a probability of
zero or one.

The law of total probability, stated below, is a useful method for comput-
ing the probability of an event by “breaking into cases”, i.e., we compute
the probability of A under various values for a random object X and we
combine such probabilities into the probability of A.

Proposition 15.3 (law of total probability). Let (Ω,A,P) be a probability
space and X : Ω → M be a random object taking values in a countable
measurable space (M,B) with B = ℘(M). Given A ∈ A, we have that:

(15.2) P(A) =
∑
x∈M

P(X=x)>0

P(A|X = x)P(X = x).
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Moreover, for any subset B of M we have:

(15.3) P
(
A ∩ [X ∈ B]

)
=

∑
x∈B

P(X=x)>0

P(A|X = x)P(X = x).

Proof. Simply note that A is the disjoint countable union of A ∩ [X = x]
with x ranging over M and that A∩ [X ∈ B] is the disjoint countable union
of A ∩ [X = x] with x ranging over B. �

If the random object X is not discrete it might happen that P(X = x) = 0
for all x ∈ M , so that the conditional probability P(A|X = x) will never
make sense. Yet we want it to make sense and we want a version of the
law of total probability to hold when X is not discrete! We will achieve
this by replacing the sums in (15.2) and (15.3) with an integral with respect
to PX and by defining the conditional probability P(A|X = x) even when
P(X = x) = 0 in a way that forces the law of total probability (with an
integral) to hold. More explicitly, equality (15.3) should be replaced by:

(15.4) P
(
A ∩ [X ∈ B]

)
=

∫
B
P(A|X = x) dPX(x).

Note that if X : Ω → M is a random object taking values in an arbitrary
measurable space (M,B) then for any A ∈ A the map

(15.5) B 3 B 7−→ P
(
A ∩ [X ∈ B]

)
∈ [0, 1]

is a finite nonnegative countably additive measure. Moreover, the statement
that equality (15.4) holds for all B ∈ B is equivalent to the statement that
the map

Ω 3 x 7−→ P(A|X = x) ∈ [0,+∞[

be a Radon–Nikodym derivative of the finite measure (15.5) with respect to
the probability measure PX . Clearly, (15.5) is absolutely continuous with
respect to PX and thus the Radon–Nikodym Theorem guarantees that such
derivative exists. Moreover, since

P
(
A ∩ [X ∈ B]

)
≤ PX(B)

for all B ∈ B, any such Radon–Nikodym derivative will take values in [0, 1]
at PX -almost every point of M . We may then choose a Radon–Nikodym
derivative that takes values in [0, 1] at every point of M .

Definition 15.4. Let (Ω,A,P) be a probability space and X : Ω→M be a
random object taking values in a measurable space (M,B). For any A ∈ A,
a conditional probability of A given X is any measurable map

(15.6) M 3 x 7−→ P(A|X = x) ∈ [0, 1]

such that (15.4) holds for all B ∈ B.

We have proven the following result.



A BASIC INTRODUCTION TO PROBABILITY AND STATISTICS 35

Proposition 15.5. Let (Ω,A,P) be a probability space and X : Ω→ M be
a random object taking values in a measurable space (M,B). Given an event
A ∈ A, a conditional probability of A given X exists. Moreover, if (15.6) is
a conditional probability of A given X then another measurable map

M 3 x 7−→ P(A|X = x)′ ∈ [0, 1]

is also a conditional probability of A given X if and only if it is equal PX-
almost everywhere to (15.6). �

Thus a conditional probability of A given X is not usually unique and for
a specific point x ∈ M , the value of P(A|X = x) typically depends on the
choice of a particular conditional probability of A given X. If {x} ∈ B and
P(X = x) > 0, using (15.4) with B = {x} we get

P(A|X = x) =
P
(
A ∩ [X = x]

)
P(X = x)

,

so that P(A|X = x) is indeed well-defined in a way that is consistent with
Definition 15.1. However, if {x} ∈ B and P(X = x) = 0 then one can change
the value of (15.6) at will at the point x and the new map will remain a
valid conditional probability of A given X.

Remark 15.6. Within a purely mathematical point of view, it makes no sense
to put any restrictions on the measurable space (M,B) in Definition 15.4,
as the definition makes sense and some basic results will hold for arbitrary
measurable spaces. However, for practical applications, one has to be careful
since for weird choices of (M,B) what we call P(A|X = x) might not mean
what our notation and terminology suggests it to mean. To begin with, if
it is not true that all singletons {x}, x ∈M , belong to B then the meaning
of P(A|X = x) is often what one would normally call the probability of A
conditioned on [X ∈ B], with B the atom of B containing x if it exists (see
the discussion in Subsection 19.1). Even when all singletons are in B, the
conditional probability P(A|X = x) might behave in an unexpected way.
For example, assume that M is uncountable and that B is the σ-algebra of
subsets of M consisting of all countable subsets of M and of all subsets of
M whose complement in M is countable. In this case, if P(X = x) = 0 for
all x ∈ M , then one easily checks that setting P(A|X = x) = P(A) for all
x ∈ M we obtain a conditional probability of A given X. Thus, we might
have situations in which the value of X gives relevant information about
the event A, and yet the totally unreasonable equality P(A|X = x) = P(A)
holds. It is the weird choice of σ-algebra B that is creating the problem
here.

So, what are the “safe” cases in which what we defined as P(A|X = x)
means what one expect it to mean at least for PX -almost every x ∈ M?
As we explain below, a separable metric space M endowed with its Borel
σ-algebra B is a “safe” case.
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Let M be a metric space and B be the Borel σ-algebra of M . If µ and ν
are nonnegative countably additive measures on B that are finite on bounded
sets and if ν is absolutely continuous with respect to µ, then for µ-almost
every x ∈ M the value at x of a Radon–Nikodym derivative dν

dµ can be

written as a limit of quotients of the form

(15.7)
ν(B)

µ(B)

with B ∈ B containing x, the diameter of B tending to zero and (x,B)
belonging to what is called a Vitali relation V for µ. See [2, Sections 2.8,
2.9] for details. If M is separable, a Vitali relation V always exists and in
fact, in many cases — for instance, if M is a real finite-dimensional normed
vector space — one can take V simply as the set of pairs (x,B) with B
a closed ball centered at x. In the case we are interested, ν is (15.5) and
µ = PX , so that the quotient (15.7) is simply the standard conditional
probability of A given the event [X ∈ B]. Hence P(A|X = x) will be equal
for PX -almost all x ∈M to a limit of conditional probabilities and such limit
can reasonably be called the conditional probability of A given [X = x].

A difficulty related to the nonuniqueness of the conditional probability of
an event given a random object is that if we choose a conditional probability
of A given X for every A ∈ A, it will not in general be true that

(15.8) P
( ∞⋃
n=1

An|X = x
)

=
∞∑
n=1

P(An|X = x),

for every x ∈M and every sequence (An)n≥1 of disjoint elements of A. It is
easily checked that equality (15.8) must holt for PX -almost every x ∈M , but
the set of probability zero in which the equality fails in general depends on
the sequence (An)n≥1 and since there are usually uncountably many such
sequences, it is not clear that one can make such set of probability zero
independent of (An)n≥1.

Though sets of probability zero are not important, it would nevertheless
be nice if the map A 3 A 7→ P(A|X = x) ∈ [0, 1] were truly a probability
measure for all x ∈ M . This leads us to the notion of regular conditional
probability.

Definition 15.7. Let (Ω,A,P) be a probability space, X : Ω → M be a
random object taking values in a measurable space (M,B) and Y : Ω→M ′

be a random object taking values in a measurable space (M ′,B′). A regular
conditional probability for Y given X is a map

(15.9) M × B′ 3 (x,B) 7−→ P(Y ∈ B|X = x) ∈ [0, 1]

having the following properties:

(i) for every B ∈ B′, the map M 3 x 7→ P(Y ∈ B|X = x) ∈ [0, 1] is a
conditional probability of [Y ∈ B] given X, i.e., it is a measurable
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map such that

P
(
[Y ∈ B] ∩ [X ∈ C]

)
=

∫
C
P(Y ∈ B|X = x) dPX(x),

for all C ∈ B;
(ii) for every x ∈ M , the map B′ 3 B 7→ P(Y ∈ B|X = x) ∈ [0, 1] is a

probability measure.

If (M ′,B′) = (Ω,A) and Y is the identity map of Ω, we write simply
P(A|X = x) instead of P(Y ∈ A|X = x) for all A ∈ A and all x ∈ M
and we call the map

M ×A 3 (x,A) 7−→ P(A|X = x) ∈ [0, 1]

a regular conditional probability given X.

Thus, a regular conditional probability given X is the same thing as a
choice of conditional probability of A given X for all A ∈ A in such a way
that equality (15.8) holds for all x ∈ M and every sequence (An)n≥1 of
disjoint elements of A and P(Ω|X = x) = 1 for all x ∈M .

Note that a regular conditional probability (15.9) of Y given X can be
identified with a map

(15.10) M 3 x 7−→ P(Y ∈ · |X = x) ∈ Prob(M ′,B′)

taking values in the set Prob(M ′,B′) of probability measures on the measur-
able space (M ′,B′), where P(Y ∈ · |X = x) denotes the probability measure
B′ 3 B 7−→ P(Y ∈ B|X = x) ∈ [0, 1].

Unfortunately, a regular conditional probability for Y given X does not
always exist, though in Section 17 we will show that it does exist under mild
assumptions on the measurable space (M ′,B′) in which Y takes values. That
is the reason why we chose to define regular conditional probabilities of Y
given X instead of simply defining regular conditional probabilities given X:
it could happen that (M ′,B′) satisfies the assumption that ensures existence
of a regular conditional probability of Y given X, while (Ω,A) does not
satisfy such assumption and we cannot be sure that a regular conditional
probability given X exists. When a regular conditional probability given
X does exist, one can obtain a regular conditional probability of Y given
X simply by applying the conditional probability given X to events of the
form [Y ∈ B].

15.1. Independence of two random objects. We will say that two ran-
dom objects X and Y are independent if a regular conditional probability
(15.9) of Y given X can be found that is independent of x ∈ M . This is
easily seen to be equivalent to the definition below.

Definition 15.8. Let (Ω,A,P) be a probability space, X : Ω → M be a
random object taking values in a measurable space (M,B) and Y : Ω→M ′
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be a random object taking values in a measurable space (M ′,B′). We say
that X and Y are independent if

(15.11) P
(
[X ∈ B] ∩ [Y ∈ B′]

)
= P(X ∈ B)P(Y ∈ B′),

for all B ∈ B and all B′ ∈ B′.

In other words, X and Y are independent if and only if every event in the
σ-algebra

{
X−1[B] : B ∈ B

}
induced by X is independent of every event in

the σ-algebra
{
Y −1[B′] : B′ ∈ B′

}
induced by Y . Moreover, X and Y are

independent if and only if

P(X,Y ) = PX ⊗ PY ,
where PX ⊗PY denotes the product of the measures PX and PY . Using this
observation and Lemma 5.1 we conclude that in order to check that X and
Y are independent it is sufficient to check that equality (15.11) holds for all
B and B′ belonging to fixed sets of generators of the σ-algebras B and B′
that are closed under finite intersections.

The following is a direct consequence of Definition 15.8.

Proposition 15.9. Let X be a random object taking values in a measurable
space (M,B), Y be a random object on the same probability space taking
values in a measurable space (M ′,B′) and let f : M →M1 and g : M ′ →M ′1
be measurable maps, where (M1,B1) and (M ′1,B′1) are measurable spaces. If
the random objects X and Y are independent then so are the random objects
f(X) and g(Y ). �

Using Fubini–Tonelli’s Theorem for the product measure PX ⊗ PY we
show the following useful property of the expected value of the product of
two independent random variables.

Proposition 15.10. Let X and Y be independent random variables on the
same probability space. If either X and Y are both nonnegative or both X
and Y have finite expected value then the expected value of the product XY
exists and it is equal to the product of the expected values, i.e.

E(XY ) = E(X)E(Y ),

where the convention 0 · (+∞) = (+∞) · 0 = 0 is used.

Proof. Simply note that

E(XY ) =

∫
R2

xy dP(X,Y )(x, y) =

∫
R2

xy d(PX ⊗ PY )(x, y)

and apply Fubini–Tonneli’s Theorem. �

Corollary 15.11. If X and Y are independent square integrable random
variables on the same probability space then Cov(X,Y ) = 0. Moreover,
if X and Y are independent square integrable random vectors on the same
probability space taking values in real finite-dimensional vector spaces V and
W then Cov(X,Y ) ∈ V ⊗W is zero.
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Proof. The first part of the statement follows directly from Proposition 15.10
and the second follows from the first by noting that, by Proposition 15.9,
the random variables α(X) and β(Y ) are independent for all α ∈ V ∗ and
β ∈W ∗. �

Note that the proof of Corollary 15.11 does not use the fact that X and
Y are square integrable, but we include that assumption in the statement
as covariance was only defined for square integrable random variables (or
random vectors).

15.2. The uniqueness problem for regular conditional probability.
Let X be a random object on a probability space (Ω,A,P) taking values in a
measurable space (M,B) and Y be a random object on the same probability
space taking values in a measurable space (M ′,B′). We have seen that a
regular conditional probability of Y given X is typically not unique if it
exists. Moreover, if

M × B′ 3 (x,B) 7−→ P(Y ∈ B|X = x) ∈ [0, 1],(15.12)

M × B′ 3 (x,B) 7−→ P(Y ∈ B|X = x)′ ∈ [0, 1](15.13)

are both regular conditional probabilities of Y given X then for all B ∈ B′
the equality

(15.14) P(Y ∈ B|X = x) = P(Y ∈ B|X = x)′

holds for PX -almost every x ∈M .
As discussed above, the maps (15.12) and (15.13) can be identified with

the maps:

M 3 x 7−→ P(Y ∈ · |X = x) ∈ Prob(M ′,B′),(15.15)

M 3 x 7−→ P(Y ∈ · |X = x)′ ∈ Prob(M ′,B′).(15.16)

Is it true that (15.15) and (15.16) are equal for PX -almost every x ∈ M?
That is equivalent to saying that the set of probability zero in which equality
(15.14) fails can be chosen independently of B ∈ B′. This can indeed be done
if B′ is countably generated.

Proposition 15.12. Let (Ω,A,P) be a probability space, X : Ω → M be a
random object taking values in a measurable space (M,B) and Y : Ω→ M ′

be a random object taking values in a measurable space (M ′,B′). If the σ-
algebra B′ admits a countable set of generators (for instance, if B′ is the
Borel σ-algebra of a second countable topology) then two regular conditional
probabilities (15.15) and (15.16) of Y given X are equal PX-almost surely.

Proof. Simply note that a countable set of generators for B′ can be made
closed under finite intersections and use Lemma 5.1. �

There are some situations in which one really needs to give a meaning to
the conditional probability P(Y ∈ · |X = x) for a specific point x ∈M with
P(X = x) = 0, notably in the context of Bayesian statistics. This can be
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achieved in many situations by adding suitable continuity requirements to
the regular conditional probabilities.

Proposition 15.13. Let (Ω,A,P) be a probability space and X : Ω → M
and Y : Ω → M ′ be random objects taking values in topological spaces M
and M ′ endowed with their respective Borel σ-algebras B and B′. Assume
that M ′ is metrizable and separable and let Prob(M ′,B′) be endowed with
the weak topology. If the regular conditional probabilities (15.15) and (15.16)
of Y given X are continuous at a point x ∈M in the support of the measure
PX then such regular conditional probabilities coincide at the point x.

Proof. It follows from Proposition 15.12 and from the fact that the weak
topology is Hausdorff (Remark 13.2). �

16. Markov kernels and generalized product measures

A regular conditional probability is an example of what we call a Markov
kernel.

Definition 16.1. Let (M,B) and (M ′,B′) be measurable spaces. A Markov
kernel (or simply kernel) with source (M,B) and target (M ′,B′) is a map

K : M −→ Prob(M ′,B′)
from M to the set of probability measures on (M ′,B′) such that the map

(16.1) M 3 x 7−→ K(x)(B) ∈ [0, 1]

is measurable, for every B ∈ B′.
It follows from Lemma 5.2 that K : M → Prob(M ′,B′) is a Markov

kernel if and only if the map (16.1) is measurable for every B in a certain
fixed collection of generators of the σ-algebra B′ that is closed under finite
intersections. Namely, note that the collection of sets B ∈ B′ for which the
map (16.1) is measurable is a σ-additive class of which M ′ is a member.

Given a kernel K as in Definition 16.1 and a probability measure defined
on B, we can construct a probability measure defined on the product σ-
algebra B ⊗ B′ which generalizes the standard construction of a product
measure by allowing the measure on the second factor to be a function of
the point on the first factor. We need a preparatory lemma.

Lemma 16.2. Let (M,B) and (M ′,B′) be measurable spaces and K be a
kernel with source (M,B) and target (M ′,B′). For every element C of the
product σ-algebra B ⊗ B′, the map

M 3 x 7−→ K(x)(Cx) ∈ [0, 1]

is measurable, where:

(16.2) Cx =
{
y ∈M ′ : (x, y) ∈ C

}
.

Proof. Follows from Lemma 5.2 by noting that the collection of all C ∈ B⊗B′
for which the thesis holds is a σ-additive class that contains all products
B ×B′ with B ∈ B and B′ ∈ B′. �
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Proposition 16.3. Let (M,B) and (M ′,B′) be measurable spaces, P be a
probability measure defined on B and K be a kernel with source (M,B) and
target (M ′,B′). There exists a unique probability measure P ? K defined on
the product σ-algebra B ⊗ B′ such that:

(P ? K)(B ×B′) =

∫
B
K(x)(B′) dP(x),

for all B ∈ B and all B′ ∈ B′. Moreover, for every C ∈ B ⊗ B′, we have:

(16.3) (P ? K)(C) =

∫
M
K(x)(Cx) dP(x),

where Cx is defined by (16.2).

Proof. Uniqueness follows from Lemma 5.1 and existence follows by noting
that formula (16.3) defines a probability measure with the desired property.
Lemma 16.2 ensures that the integral in (16.3) is well-defined. �

Obviously, the measure P ? K is simply the standard product measure in
the trivial case in which the kernel K is constant.

Note that P is the push-forward of P ? K under the first projection. If
X is an (M,B)-valued random object and Y is an (M ′,B′)-valued random
object on the same probability space as X then it follows directly from the
corresponding definitions that a regular conditional probability of Y given
X, when identified with the map (15.10), is the same thing as a kernel K
with source (M,B) and target (M ′,B′) such that:

P(X,Y ) = PX ? K.

We can think about the probability measure P ?K as modelling the process
of randomly choosing (x, y) ∈ M ×M ′ by first choosing x ∈ M according
to the probability measure P and then choosing y ∈ M ′ according to the
probability measure K(x).

The following is a simple consequence of (16.3) and the observation above.

Proposition 16.4. Let (Ω,A,P) be a probability space, X : Ω → M be a
random object taking values in a measurable space (M,B) and Y : Ω→ M ′

be a random object taking values in a measurable space (M ′,B′). Given a
regular conditional probability

M × B′ 3 (x,B) 7−→ P(Y ∈ B|X = x) ∈ [0, 1]

of Y given X we have that

P
(
(X,Y ) ∈ C

)
=

∫
M

P(Y ∈ Cx|X = x) dPX(x),

for any C ∈ B ⊗ B′, where Cx is defined by (16.2). �

Example 16.5. Let (Ω,A,P) be a probability space and X : Ω → M be
a random object with (M,B) a measurable space. Assume that all single-
tons {x}, x ∈ M , belong to the σ-algebra B. Given a regular conditional
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probability of X given X, it seems reasonable that one should have

(16.4) P(X = x|X = x) = 1,

for all x ∈M . This is not in general true as one can replace the probability
measure P(X ∈ · |X = x) by any other probability measure for x in a subset
of M with PX -probability zero (as long as the appropriate measurability
requirements are kept). Can we at least show that (16.4) holds for PX -
almost every x ∈ M? In general no (see Example 16.6 below), but the
answer is yes under a mild assumption. Assume that the diagonal

∆M =
{

(x, x) : x ∈M
}

belongs to B ⊗ B. This is true, for instance, if B is the Borel σ-algebra of a
Hausdorff second countable topology on M . Proposition 16.4 yields:

1 = P
(
(X,X) ∈ ∆M

)
=

∫
M

P(X = x|X = x) dPX(x)

and since P(X = x|X = x) ≤ 1 for all x ∈M it follows that (16.4) holds for
PX -almost every x ∈M .

Example 16.6. Let Ω be an uncountable set, A be the σ-algebra consisting
of all countable subsets of Ω and all subsets of Ω with a countable comple-
ment in Ω. Define a probability measure P : A → [0, 1] by setting P(A) = 0
if A is countable and P(A) = 1 if the complement of A in Ω is countable.
Since P only takes the values 0 and 1, every pair of events is independent.
If (M,B) = (Ω,A) and X : Ω → M is the identity map, we then have that
X is independent of itself. Thus

M × B 3 (x,B) 7−→ P(X ∈ B|X = x) = P(X ∈ B) ∈ [0, 1]

is a regular conditional probability of X given X. Note that

P(X = x|X = x) = P(X = x) = 0,

for all x ∈M .

There is a Fubini–Tonelli Theorem for the generalized product measures
P ? K.

Theorem 16.7. Let (M,B) and (M ′,B′) be measurable spaces, P be a prob-
ability measure defined on B and K be a kernel with source (M,B) and target
(M ′,B′). If f : M×M ′ → [−∞,+∞] is a B⊗B′-measurable function whose
integral with respect to P ? K exists (i.e., either its positive part or its neg-
ative part has a finite integral) then for P-almost every x ∈ M the integral∫
M ′ f(x, y) dK(x)(y) of f(x, ·) with respect to the probability measure K(x)
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exists, the function1

(16.5) M 3 x 7−→
∫
M ′
f(x, y) dK(x)(y) ∈ [−∞,+∞]

is measurable, its integral exists and the equality∫
M×M ′

f d(P ? K) =

∫
M

(∫
M ′
f(x, y) dK(x)(y)

)
dP(x)

holds.

Proof. Follow the standard recipe: prove the result first for indicator func-
tions of measurable subsets using (16.3), then for nonnegative simple mea-
surable functions using linear combinations, then for nonnegative measur-
able functions f using the Monotone Convergence Theorem and the fact
that f is an increasing pointwise limit of nonnegative simple measurable
functions. Finally prove the general case by writing f as the difference of
its positive and negative part. �

The generalized product can be easily iterated a finite number of times.
Let (Mi,Bi), i = 1, . . . , n be measurable spaces, P be a probability measure
defined on B1 and for each i = 1, . . . , n − 1 let Ki be a kernel with source(∏i

j=1Mj ,
⊗i

j=1 Bj
)

and target (Mi+1,Bi+1). We define a probability mea-

sure P ? (K1, . . . ,Kn−1) on
(∏n

j=1Mj ,
⊗n

j=1 Bj
)

recursively by setting:

P ? (K1, . . . ,Kj) =
(
P ? (K1, . . . ,Kj−1)

)
? Kj ,

for all j = 1, . . . , n−1, where P? ( ) (the product constructed with an empty
sequence of kernels) is simply the same as P. We can think about the prob-
ability measure P ? (K1, . . . ,Kn−1) as modelling the process of randomly
choosing a sequence (x1, . . . , xn) ∈

∏n
i=1Mi by first choosing x1 ∈ M1 ac-

cording to the probability measure P, then choosing x2 ∈ M2 according to
the probability measure K1(x1), then choosing x3 ∈ M3 according to the
probability measure K2(x1, x2) and so on.

Measure theory textbooks usually construct only products of measure
spaces with a finite number of factors but in the case of probability spaces
it is possible to construct also infinite products. Moreover, infinite products
are actually a necessary foundation for various limit theorems concerning
infinite sequences of random variables.

Proposition 16.8. Let
(
(Mn,Bn)

)
n≥1

be a sequence of measurable spaces,

P be a probability measure on (M1,B1) and for each n ≥ 1 let Kn be a
kernel with source

(∏n
i=1Mi,

⊗n
i=1 Bi

)
and target (Mn+1,Bn+1). For each

n ≥ 1, set Pn = P ? (K1, . . . ,Kn−1) (so that P1 = P). There exists a

1More precisely, once should assign some value to the integral
∫
M′ f(x, y) dK(x)(y) for

x in the probability zero set in which such integral does not exist. As the measure is
not assumed to be complete, in order to ensure measurability of (16.5), such assignment
cannot be too crazy, i.e., one has to choose a measurable function on that set of probability
zero for the assignment (for instance, a constant function).
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unique probability measure P∞ = P ? (K1,K2, . . .) on the infinite product(∏∞
n=1Mn,

⊗∞
n=1 Bn

)
such that for all n ≥ 1 the push-forward of P∞ under

the projection

πn :
∞∏
i=1

Mi 3 (x1, x2, . . .) 7−→ (x1, x2, . . . , xn) ∈
n∏
i=1

Mi

onto the first n coordinates is equal to Pn.

Proof. For each n ≥ 1, denote by An the σ-algebra of subsets of the infinite
product M =

∏∞
i=1Mi induced by πn. Clearly, (An)n≥1 is an increasing se-

quence of σ-algebras of subsets of M and therefore the union A∞ =
⋃∞
n=1An

is an algebra of subsets of M (i.e., it is a nonempty collection of subsets of
M closed under finite unions and complements). Moreover, A∞ generates
the product σ-algebra

⊗∞
i=1 Bi.

The requirement that the push-forward of P∞ under πn is equal to Pn
is equivalent to the statement that P∞ extends the map Pn : An → [0, 1]
defined by

(16.6) Pn
(
π−1
n [B]

)
= Pn(B),

for all B ∈
⊗n

i=1 Bi. Note that the surjectivity of πn implies that every
element of An is of the form π−1

n [B] for a unique B ∈
⊗n

i=1 Bi, so that
equality (16.6) indeed defines a map Pn on An. Moreover, it is clear that Pn
is a probability measure. We have to check that the maps Pn, n ≥ 1, admit
a common extension P∞ to A∞. To this aim, for m ≥ n ≥ 1, denote by

πn,m :
m∏
i=1

Mi −→
n∏
i=1

Mi

the projection onto the first n coordinates. Using that Pn is the push-
forward of Pn+1 under πn,n+1 and that πn,n+1 ◦πn+1 = πn, one obtains that
Pn+1 extends Pn for all n ≥ 1 and this implies that the common extension
P∞ : A∞ → [0, 1] of all Pn exists. Moreover, P∞ is finitely additive.

We will prove that the finitely additive measure P∞ is actually countably
additive and then Carathéodory’s Extension Theorem yields a countably
additive extension of P∞ to the σ-algebra generated by A∞. Such extension
is the probability measure P∞ whose existence is asserted by the statement of
the proposition and the proof will be concluded. To establish the countable
additivity of P∞, it is sufficient to show that limk→+∞ P∞(Bk) = 0 for any
decreasing sequence of sets (Bk)∞k=1 in A∞ with

⋂∞
k=1B

k = ∅. We start by
introducing some notation to make the exposition cleaner.

For each n ≥ 1 we denote by Mn the set of all [0, 1]-valued measurable
maps on

(∏n
i=1Mi,

⊗n
i=1 Bi

)
, by M the set of all [0, 1]-valued measurable

maps on
(
M,
⊗∞

i=1 Bi
)

and by

π∗n,m :Mn −→Mm, π∗n :Mn −→M
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the right-composition maps defined by π∗n,m(f) = f◦πn,m and π∗n(f) = f◦πn,
respectively, for all m ≥ n ≥ 1 and all f ∈ Mn. We also denote by M∞
the union of all the images of the injective maps π∗n, n ≥ 1. Note that M∞
contains the indicator functions of the sets that belong to A∞. Let

ρn,n+1 :Mn+1 −→Mn

denote for each n ≥ 1 the map given by integration with respect to the
(n+ 1)-th variable, i.e.:

ρn,n+1(f)(x) =

∫
Mn+1

f(x, y) dKn(x)(y),

for all f ∈ Mn+1 and all x ∈
∏n
i=1Mi. It follows from the generalized

Fubini–Tonelli’s Theorem 16.7 that ρn,n+1 is well-defined and preserves in-
tegrals, i.e., the integral of f with respect to Pn+1 is equal to the integral of
ρn,n+1(f) with respect to Pn. Moreover, the map ρn,n+1 preserves the point-
wise partial order of functions and it commutes with pointwise limits by the
Dominated Convergence Theorem. The fact that Kn(x) is a probability
measure implies that ρn,n+1 is a left inverse for the map π∗n,n+1.

More generally, for m ≥ n ≥ 1, we define ρn,m : Mm → Mn by letting
ρn,n be the identity of Mn and by setting:

ρn,m = ρn,n+1 ◦ ρn+1,n+2 ◦ · · · ◦ ρm−1,m,

so that ρn,m preserves integrals, preserves the pointwise partial order of
functions, commutes with pointwise limits and is a left inverse for π∗n,m.

For each n ≥ 1 we now want to define a map

ρn :M∞ −→Mn

that is a common extension of all ρn,m in the sense that

ρn ◦ π∗m = ρn,m

for all m ≥ n. The existence of ρn will follow if we check the compatibility
condition

ρn,m+1 ◦ π∗m,m+1 = ρn,m

for all m ≥ n. Such equality is easily obtained as follows:

ρn,m+1 ◦ π∗m,m+1 = ρn,m ◦ ρm,m+1 ◦ π∗m,m+1 = ρn,m.

Clearly ρn preserves the pointwise partial order of functions. We claim
that

ρn,n+1 ◦ ρn+1 = ρn,(16.7) ∫
∏n
i=1Mi

ρn(1B) dPn = P∞(B),(16.8)

for all n ≥ 1 and all B ∈ A∞. To prove (16.7), note that both sides of
the equality become equal when composed on the right with π∗m for any
m ≥ n+ 1 and to prove (16.8) use that 1B = π∗m(1C) for some C ∈

⊗m
i=1 Bi

and some m ≥ n.
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We have completed the introduction of all the necessary notation and are
ready to continue the proof. Let (Bk)k≥1 be a decreasing sequence of sets
in A∞ with

⋂∞
k=1B

k = ∅ and assume by contradiction that:

lim
k→+∞

P∞(Bk) > 0.

For all n ≥ 1 and all k ≥ 1, set fkn = ρn(1Bk), so that (fkn)k≥1 is a pointwise
decreasing sequence inMn and thus we can define fn ∈Mn as the pointwise
limit fn = limk→+∞ f

k
n . It follows from (16.7) that

ρn,n+1(fkn+1) = fkn

for all k ≥ 1 and thus taking the pointwise limit as k → +∞ we obtain

ρn,n+1(fn+1) = fn,

for all n ≥ 1. Moreover, the Dominated Convergence Theorem and (16.8)
yield

(16.9)

∫
∏n
i=1Mi

fn dPn = lim
k→+∞

∫
∏n
i=1Mi

fkn dPn = lim
k→+∞

P∞(Bk) > 0,

for all n ≥ 1. We now construct by recursion a sequence (xn)n≥1 in
∏∞
n=1Mn

such that

(16.10) fn(x1, . . . , xn) > 0,

for all n ≥ 1. Using (16.9) with n = 1 we obtain that f1(x1) > 0 for some
x1 ∈M1. Assuming that x1, . . . , xn have been chosen satisfying (16.10), we
have∫

Mn+1

fn+1(x1, . . . , xn, y) dKn(x1, . . . , xn)(y) = ρn,n+1(fn+1)(x1, . . . , xn)

= fn(x1, . . . , xn) > 0

and therefore there exists xn+1 ∈Mn+1 with fn+1(x1, . . . , xn, xn+1) > 0.
To conclude the proof, let us show that x = (xn)n≥1 is in Bk for all k ≥ 1,

which will yield a contradiction. Given k ≥ 1, we have Bk = π−1
n [C] for some

C ∈
⊗n

i=1 Bi and some n ≥ 1, so that 1Bk = π∗n(1C), fkn = ρn(1Bk) = 1C
and

0 < fn(x1, . . . , xn) ≤ fkn(x1, . . . , xn) = 1C(x1 . . . , xn) = 1Bk(x). �

16.1. Compositions of kernels with measurable maps. There are two
natural ways of composing a kernel with a measurable map. The first way
is composition on the right: if K is a kernel and f is a measurable map
taking values in the source of K, then the composition K ◦ f is a kernel.
The second way is composition on the left with the map that does the push-
forward operation: if f is a measurable map defined on the target of the
kernel K, then f∗ ◦K is a kernel, where f∗ : P 7→ f∗P is the map that does
the push-forward of probability measures under f .

We have the following simple results.
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Proposition 16.9. Let (M,B) and (M ′,B′) be measurable spaces, K be
a kernel with souce (M,B) and target (M ′,B′) and f : M ′′ → M be a
measurable map, where (M ′′,B′′) is a measurable space. If P is a probability
measure on B′′ then

(f∗P) ? K = (f × Id)∗[P ? (K ◦ f)],

where f × Id : M ′′ ×M ′ →M ×M ′ is defined by (f × Id)(x, y) =
(
f(x), y

)
,

for all x ∈M ′′ and all y ∈M ′.

Proof. Simply note that both sides of the equality agree on sets of the form
B ×B′, with B ∈ B and B′ ∈ B′. �

Proposition 16.10. Let (M,B) and (M ′,B′) be measurable spaces, K be
a kernel with souce (M,B) and target (M ′,B′) and f : M ′ → M ′′ be a
measurable map, where (M ′′,B′′) is a measurable space. If P is a probability
measure on B then

(Id× f)∗(P ? K) = P ? (f∗ ◦K),

where Id× f : M ×M ′ →M ×M ′′ is defined by (Id× f)(x, y) =
(
x, f(y)

)
,

for all x ∈M and all y ∈M ′.

Proof. Simply note that both sides of the equality agree on sets of the form
B ×B′′, with B ∈ B and B′′ ∈ B′′. �

Corollary 16.11. Let (M,B) and (M ′,B′) be measurable spaces, X be a
random object on a probability space taking values in (M,B) and Y be a
random object on that same probability space taking values in (M ′,B′). If
f : M ′ → M ′′ is a measurable map, where (M ′′,B′′) is a measurable space,
and K is a regular conditional probability of Y given X then f∗ ◦ K is a
regular conditional probability of f(Y ) given X.

Proof. If K is a conditional probability of Y given X then P(X,Y ) = PX ?K
and therefore:

P(X,f(Y )) = (Id× f)∗ P(X,Y ) = (Id× f)∗(PX ? K) = PX ? (f∗ ◦K),

which yields the conclusion. �

16.2. Iterated conditioning. The star operation P?K that creates a gen-
eralized product measure using a probability measure P and a kernel K
satisfies an associative property which is easy to formulate and prove. Such
associative property has an important interpretation in terms of regular
conditional probabilities which roughly states that conditioning a random
object Z first on X = x and then on Y = y is the same as conditioning Z
on (X,Y ) = (x, y). We give the details below.

In order to formulate the associative property for the star operation we
need a suitable notion of the star product for two kernels.
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Definition 16.12. Let (M,B), (M ′,B′) and (M ′′,B′′) be measurable spaces,
K be a kernel with source (M,B) and target (M ′,B′) and K ′ be a kernel
with source (M ×M ′,B⊗B′) and target (M ′′,B′′). We define K ?K ′ as the
kernel with source (M,B) and target (M ′ ×M ′′,B′ ⊗ B′′) given by

(K ?K ′)(x) = K(x) ? K ′(x, ·) ∈ Prob(M ′ ×M ′′,B′ ⊗ B′′),

for all x ∈ M , where K ′(x, ·) denotes the kernel with source (M ′,B′) and
target (M ′′,B′′) given by M ′ 3 y 7→ K ′(x, y) ∈ Prob(M ′′,B′′).

To see that K ?K ′ is indeed a kernel, check that the function

M 3 x 7−→ (K ?K ′)(x)(B1 ×B2) =

∫
B1

K ′(x, y)(B2) dK(x)(y) ∈ [0, 1]

is measurable for all B1 ∈ B′ and all B2 ∈ B′′ by using Theorem 16.7 with
f(x, y) = K ′(x, y)(B2) 1B1(y).

Proposition 16.13. Let (M,B), (M ′,B′) be measurable spaces, K be a
kernel with source (M,B) and target (M ′,B′) and K ′ be a kernel with source
(M×M ′,B⊗B′) and target (M ′′,B′′), where (M ′′,B′′) is a measurable space.
For any probability measure P on (M,B), we have:

(16.11) (P ? K) ? K ′ = P ? (K ?K ′).

Proof. Both sides of the equality (16.11) are probability measures on the
product B ⊗ B′ ⊗ B′′ and thus, by Proposition 6.6, it is sufficient to check
that they coincide on B×B′×B′′, for all B ∈ B, B′ ∈ B′ and B′′ ∈ B′′. This
follows by applying Theorem 16.7 with f(x, y) = K ′(x, y)(B′′)1B′(y)1B(x).

�

Corollary 16.14 (conditional law of total probability). Let X, Y and Z
be random objects on the same probability space, with X taking values in
a measurable space (M,B), Y taking values in a measurable space (M ′,B′)
and Z taking values in a measurable space (M ′′,B′′). Let

K(x)(B′) = P(Y ∈ B′|X = x), x ∈M, B′ ∈ B′

be a regular conditional probability of Y given X and

K ′(x, y)(B′′) = P
(
Z ∈ B′′|(X,Y ) = (x, y)

)
, x ∈M, y ∈M ′, B′′ ∈ B′′

be a regular conditional probability of Z given (X,Y ). We have that K ?K ′

is a regular conditional probability of (Y, Z) given X; using the notation

P
(
(Y,Z) ∈ C|X = x

)
= (K ?K ′)(x)(C), x ∈M, C ∈ B′ ⊗ B′′

we have the equality:

(16.12) P
(
(Y,Z) ∈ B′ ×B′′|X = x

)
=

∫
B′

P
(
Z ∈ B′′|(X,Y ) = (x, y)

)
dK(x)(y),
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for all x ∈M , B′ ∈ B′ and B′′ ∈ B′′. Moreover, the equality

(16.13) P(Z ∈ B′′|X = x) =

∫
M ′

P
(
Z ∈ B′′|(X,Y ) = (x, y)

)
dK(x)(y),

x ∈M, B′′ ∈ B′′

defines a regular conditional probability of Z given X.

Proof. We have

PX ? (K ?K ′) = (PX ? K) ? K ′ = P(X,Y ) ? K
′ = P(X,Y,Z),

which implies that K ? K ′ is a regular conditional probability of (Y,Z)
given X. Equality (16.12) follows by noting that the righthand side of
such equality is simply the definition of (K ? K ′)(x)(B′ × B′′). From the
fact that K ? K ′ is a regular conditional probability of (Y, Z) given X,
we obtain that (π2)∗ ◦ (K ? K ′) is a regular conditional probability of Z
given X, where π2 denotes the second projection of the product M ′ ×M ′′
(Corollary 16.11). Finally, the righthand side of equality (16.13) is simply(
(π2)∗ ◦ (K ?K ′)

)
(x)(B′′) and this concludes the proof. �

Recall that the original law of total probability — which became simply
the definition of conditional probability given the value of a random object
— says that P

(
(Y,Z) ∈ B′ × B′′

)
= P

(
[Y ∈ B′] ∩ [Z ∈ B′′]

)
is obtained

by integrating the conditional probability P(Z ∈ B′′|Y = y) over y ∈ B′

with respect to the distribution of Y . Equality (16.12), which we call the
conditional law of total probability, is the same thing but with everything
conditioned on X = x.

Now let us see how Corollary 16.14, which is a consequence of the associa-
tive property (16.11), can be interpreted in terms of iterated conditioning
of a random object. Let X, Y , Z, K and K ′ be as in the statement of
Corollary 16.14, so that K ?K ′ is a regular conditional probability of (Y,Z)
given X. For each x ∈M , consider a pair of random objects

(16.14) Y|X=x, Z|X=x

whose joint distribution is (K ? K ′)(x). Concretely, one can simply take
(16.14) as the projections of M ′ × M ′′, with B′ ⊗ B′′ endowed with the
probability measure (K ? K ′)(x). We then have that the joint distribution
of (16.14) can be understood as being obtained from the distribution of
(Y, Z) by conditioning on X = x.

Since (K ? K ′)(x) = K(x) ? K ′(x, ·), we have that K ′(x, ·) is a regular
conditional probability of Z|X=x given Y|X=x. This means that, for y ∈M ′,
the probability measure K ′(x, y) on B′′ can be understood as obtained by
conditioning Z first on X = x and then on Y = y. However, K ′ is a
regular conditional probability of Z given (X,Y ), so that K ′(x, y) can also
be understood as obtained by conditioning Z on (X,Y ) = (x, y).
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17. Standard Borel spaces

Despite the fact that the general theory of probability spaces and random
objects can be developed to some extent for completely arbitrary measurable
spaces, we need to focus on a smaller class of measurable spaces to avoid
certain problems after establishing some basic fundamental facts. A useful
class of measurable spaces to work with is the class of standard Borel spaces,
as it is both well-behaved and sufficiently general to encompass everything
necessary for applications.

Definition 17.1. A Polish space is a separable topological space whose
topology is induced by some complete metric. A standard Borel space is
a measurable space that is isomorphic to a Borel subset of a Polish space
endowed with its Borel σ-algebra.

Recall that an isomorphism of measurable spaces is a bijective measurable
map whose inverse is also measurable.

While it may look like the class of standard Borel spaces is really large,
it turns out that modulo isomorphisms the class is really small.

Theorem 17.2. Every two uncountable standard Borel spaces are isomor-
phic.

Proof. See [6, Theorem 3.3.13]. �

We can now prove an existence result for regular conditional probabilities.

Theorem 17.3. Let (Ω,A,P) be a probability space and let X : Ω→M and
Y : Ω → M ′ be random objects, where (M,B) and (M ′,B′) are measurable
spaces. If (M ′,B′) is a standard Borel space then there exists a regular
conditional probability of Y given X. In particular, if (Ω,A) is a standard
Borel space then there exists a regular conditional probability given X.

Proof. If M ′ is countable, we pick for each y ∈M ′ a conditional probability
of the event [Y = y] given X

M 3 x 7−→ P(Y = y|X = x) ∈ [0, 1]

and we set

P(Y ∈ B|X = x) =
∑
y∈B

P(Y = y|X = x),

for all x ∈ M and all B ∈ B′ = ℘(M ′). This defines a regular conditional
probability of Y given X, except for the fact that the condition

P(Y ∈M ′|X = x) = 1

might fail for x in a subset of M with PX -probability zero. This is easily
fixed, for instance, by simply replacing P(Y ∈ · |X = x) with some fixed
arbitrary probability measure (say, a Dirac delta) defined on B′ for x in that
subset with PX -probability zero.
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Assume now that M ′ is uncountable, so that by Theorem 17.2 we can
assume that M ′ = R and B′ is the Borel σ-algebra of R. Since a proba-
bility measure on the Borel σ-algebra of R is determined by its cumulative
distribution function, that is all we need to define for every x ∈M .

For each rational number y ∈ Q, choose a conditional probability of the
event [Y ≤ y] given X:

M 3 x 7−→ P(Y ≤ y|X = x) ∈ [0, 1].

By adjusting the value of P(Y ≤ y|X = x) for x in a subset of M with
PX -probability zero, we can assume that the map

(17.1) Q 3 y 7−→ P(Y ≤ y|X = x) ∈ [0, 1]

is increasing, right continuous and satisfies

lim
y→−∞

P(Y ≤ y|X = x) = 0, lim
y→+∞

P(Y ≤ y|X = x) = 1,

for all x ∈ M . Namely, note that right-continuity at a point y ∈ Q of an
increasing function F : Q → R is equivalent to limn→+∞ F (yn) = F (y) for
one specific decreasing sequence (yn)n≥1 in ]y,+∞[∩Q with limn→+∞ yn = y
and thus what we are demanding of the map (17.1) can be expressed in terms
of a countable number of conditions.

Now, every increasing right continuous function F : Q → R satisfying
limy→−∞ F (y) = 0 and limy→+∞ F (y) = 1 has a unique increasing right
continuous extension to all of R and such extension is the cumulative dis-
tribution function of a unique probability measure defined on the Borel
σ-algebra of R. We thus obtain a kernel K with source (M,B) and target
(M ′,B′) by letting K(x) be the probability measure whose cumulative dis-
tribution function extends (17.1), for all x ∈M . We then have that PX ?K
agrees with P(X,Y ) on sets of the form B × ]−∞, y] with B ∈ B and y ∈ Q
and it follows from Lemma 5.1 that P(X,Y ) = PX ? K. �

18. Independence of arbitrary families of random objects

The notion of independence of a pair of random objects given in Defini-
tion 15.8 can be generalized to arbitrary families of random objects. Recall
that two random objects X and Y are independent if and only if their joint
distribution P(X,Y ) coincides with the product PX ⊗ PY of the distributions
of X and Y . In order to generalize the notion of independence to arbitrary
families it is then convenient to first generalize the notion of product of
probability measures to arbitrary families. The hard work has already been
done in Proposition 16.8 which implies the existence of countable products
of probability measures. The existence of products of arbitrary cardinality
then follows from the easy fact proven below that a consistent family of
probability measures defined in the products of countable subfamilies can
be glued together into a probability measure in the product of an arbitrary
family.
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Lemma 18.1. Let
(
(Mi,Bi)

)
i∈I be an arbitrary family of measurable spaces

and let the cartesian product

M =
∏
i∈I

Mi

be endowed with the product σ-algebra B =
⊗

i∈I Bi. For each countable sub-
set E of I, denote by ME the countable cartesian product

∏
i∈EMi endowed

with the σ-algebra BE =
⊗

i∈E Bi and by πE the projection:

πE : M 3 (xi)i∈I 7−→ (xi)i∈E ∈ME .

Assume also that for each countable subset E of I we are given a probability
measure PE on BE satisfying the following consistency condition: for every
pair of countable subsets E and E′ of I with E ⊂ E′, it holds that

(18.1) (πE,E′)∗ PE′ = PE ,

where πE,E′ denotes the projection:

πE,E′ : ME′ 3 (xi)i∈E′ 7−→ (xi)i∈E ∈ME .

Under these conditions, there exists a unique probability measure P on B
such that (πE)∗ P = PE, for every countable subset E of I.

Proof. For each countable subset E of I, let AE be the σ-algebra induced
by πE . It is easy to see that the union of all AE , with E ranging over
all countable subsets of I, is a σ-algebra and therefore it is equal to B. For
each countable subset E of I, the fact that πE is surjective implies that every
element of AE is of the form π−1

E [B] for a unique B ∈ BE and therefore we

obtain a probability measure PE on AE by setting

PE
(
π−1
E [B]

)
= PE(B),

for all B ∈ BE . The condition (πE)∗ P = PE on the probability measure
P that we want to define is equivalent to the condition that P extends PE .
Noting that πE = πE,E′ ◦ πE′ one readily checks that the consistency condi-

tion (18.1) means that PE′ extends PE , for every pair of countable subsets
E, E′ of I with E ⊂ E′. Hence there exists a unique map P : B → [0, 1] that
extends PE for every countable subset E of I and it is easily seen that P is
a probability measure. �

Proposition 18.2. Let
(
(Mi,Bi,Pi)

)
i∈I be an arbitrary family of probability

spaces and consider the product M =
∏
i∈IMi endowed with the product σ-

algebra B =
⊗

i∈I Bi. There exists a unique probability measure P defined
on B such that

(18.2) P
(
π−1
i1

[B1] ∩ . . . ∩ π−1
in

[Bn]
)

= Pi1(B1) · · ·Pin(Bn),

for any distinct i1, . . . , in ∈ I, any B1 ∈ Bi1, . . . , Bn ∈ Bin and any n ≥ 1,
where πi : M → Mi denotes the projection onto the i-th coordinate for all
i ∈ I.
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Proof. Uniqueness follows from Proposition 6.5. To prove existence, we will
use Lemma 18.1. For every countable subset E of I, Proposition 16.8 yields
that there exists a unique probability measure PE on BE such that

(18.3) PE
(
π−1
E,i1

[B1] ∩ . . . ∩ π−1
E,in

[Bn]
)

= Pi1(B1) · · ·Pin(Bn),

for any distinct i1, . . . , in ∈ E, any B1 ∈ Bi1 , . . . , Bn ∈ Bin and any n ≥ 1,
where πE,i : ME → Mi denotes the projection onto the i-th coordinate for
all i ∈ E. Namely, simply choose an arbitrary enumeration of E and use
the particular case of Proposition 16.8 in which the kernels are constant.
The validity of the consistency condition (18.1) follows from the fact that
(πE,E′)∗ PE′ satisfies the condition (18.3) that characterizes PE and then the
probability measure P given by Lemma 18.1 satisfies the condition in the
statement of the proposition. �

Definition 18.3. The probability measure P whose existence and unique-
ness is established by Proposition 18.2 is called the product of the family of
probability measures (Pi)i∈I and it is denoted by

⊗
i∈I Pi.

Note that condition (18.2) implies in particular that Pi is the push-forward
of the product P under the i-th projection πi. More generally, if J ⊂ I is
any subset, then

⊗
i∈J Pi is the push-forward of the product P =

⊗
i∈I Pi

under the projection

(18.4)
∏
i∈I

Mi 3 (xi)i∈I 7−→ (xi)i∈J ∈
∏
i∈J

Mi

as such push-forward satisfies the condition that characterizes the product⊗
i∈J Pi.

Definition 18.4. Let (Ω,A,P) be a probability space and (Xi)i∈I be a
family of random objects Xi : Ω → Mi, with (Mi,Bi) a measurable space
for all i ∈ I. The family (Xi)i∈I is said to be independent if its joint
distribution P(Xi)i∈I coincides with the product

⊗
i∈I PXi .

Note that one can equivalently define that (Xi)i∈I is independent if the
joint distribution P(Xi)i∈I is equal to some product

⊗
i∈I Pi of probability

measures Pi : Bi → [0, 1], as taking the push-forward under the i-th projec-
tion we obtain that necessarily Pi = PXi . Moreover, if (Xi)i∈I is independent
then for every J ⊂ I the subfamily (Xi)i∈J is also independent as the map
(Xi)i∈J is the composition of the map (Xi)i∈I with the projection (18.4).

It follows directly from the definition of the product of a family of prob-
ability measures that (Xi)i∈I is independent if and only if

(18.5) P
(
[Xi1 ∈ B1] ∩ . . . ∩ [Xin ∈ Bn]

)
= P(Xi1 ∈ B1) · · ·P(Xin ∈ Bn),

for any distinct i1, . . . , in ∈ I, any B1 ∈ Bi1 , . . . , Bn ∈ Bin and any n ≥ 1.
In particular, (Xi)i∈I is independent if and only if (Xi)i∈F is independent
for any finite subset F of I. Note also that Proposition 6.5 yields that in
order to check that (Xi)i∈I is independent it is sufficient to verify equality
(18.5) for sets B1, . . . , Bn belonging to fixed collections of generators Ci for
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the σ-algebras Bi that are closed under finite intersections. If I is finite,
Proposition 6.6 gives the following more convenient formulation: (Xi)i∈I is
independent if and only if

P
(⋂
i∈I

[Xi ∈ Bi]
)

=
∏
i∈I

P(Xi ∈ Bi),

for any choice of Bi ∈ Ci ∪{Mi}, i ∈ I, where Ci is a collection of generators
closed under finite intersection for the σ-algebra Bi.

Remark 18.5. Let (Xi)i∈I be a family of random objects in the same prob-
ability space with Xi taking values in a measurable space (Mi,Bi). If M ′i
is a subset of Mi containing the image of Xi and M ′i is endowed with the
σ-algebra B′i =

{
B ∩M ′i : B ∈ Bi

}
induced by the inclusion map M ′i →Mi

then each Xi can also be regarded as an (M ′i ,B′i)-valued random object.
Since (18.5) is equivalent to

P
(
[Xi1 ∈ B1 ∩M ′i1 ] ∩ . . . ∩ [Xin ∈ Bn ∩M ′in ]

)
= P(Xi1 ∈ B1 ∩M ′i1) · · ·P(Xin ∈ Bn ∩M ′in),

it follows that the family (Xi)i∈I is independent with each Xi being regarded
as (Mi,Bi)-valued if and only if such family is independent with each Xi

being regarded as (M ′i ,B′i)-valued.

If we apply measurable functions to the members of a family of indepen-
dent random objects we get a new family of independent random objects.
This is shown in the next result, which generalizes Proposition 15.9.

Proposition 18.6. Consider a family (fi : Mi → M ′i)i∈I of measurable
maps fi from a measurable space (Mi,Bi) to a measurable space (M ′i ,B′i).
Let f :

∏
i∈IMi →

∏
i∈IM

′
i be defined by f

(
(xi)i∈I

)
=
(
fi(xi)

)
i∈I , for all

(xi)i∈I ∈
∏
i∈IMi. Given, for each i ∈ I, a probability measure Pi on Bi we

have:

(18.6) f∗
⊗
i∈I

Pi =
⊗
i∈I

(fi)∗Pi.

In particular, if (Xi)i∈I is a family of random objects on the same probability
space with Xi taking values in Mi and if (Xi)i∈I is independent then also(
fi(Xi)

)
i∈I is independent.

Proof. Equality (18.6) follows by noting that f∗
⊗

i∈I Pi satisfies the prop-
erty that characterizes the product

⊗
i∈I(fi)∗Pi. The second part of the

statement then follows from the fact that the map
(
fi(Xi)

)
i∈I is equal to

the composition of the map (Xi)i∈I with f . �

Proposition 18.6 is very easy to prove but it is not in general sufficient for
handling many concrete problems. For example, one often has a situation
in which, say, independent random objects X1, X2, X3, X4 are given and
one wishes to conclude that f(X1, X2) and g(X3, X4) are independent, i.e.,
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we want to aggregate our independent random objects in disjoint smaller
families before applying measurable functions. It turns out that this can be
obtained from Proposition 18.6, but one needs to prove first that the pair
(Y1, Y2) of aggregated random objects Y1 = (X1, X2), Y2 = (X3, X4) is also
independent. This amounts to an associative property for the product of
families of probability measures that we state in full generality below.

Proposition 18.7. Let
(
(Mi,Bi,Pi)

)
i∈I be an arbitrary family of probability

spaces and write I =
⋃
λ∈Λ Jλ as the union of a family (Jλ)λ∈Λ of pairwise

disjoint subsets. The bijective map

(18.7)
∏
λ∈Λ

∏
i∈Jλ

Mi 3
(
(xi)i∈Jλ

)
λ∈Λ
7−→ (xi)i∈I ∈

∏
i∈I

Mi

is an isomorphism of measurable spaces, where the domain is endowed with
the σ-algebra

⊗
λ∈Λ

⊗
i∈Jλ Bi and the counter-domain is endowed with the

σ-algebra
⊗

i∈I Bi. Moreover, the push-forward under (18.7) of the iterated
product of probability measures

(18.8)
⊗
λ∈Λ

⊗
i∈Jλ

Pi

is equal to
⊗

i∈I Pi.

Proof. Simply check that the push-forward of (18.8) under (18.7) satisfies
the property that characterizes

⊗
i∈I Pi. �

Corollary 18.8. Let (Xi)i∈I be a family of random objects in the same
probability space with Xi taking values in a measurable space (Mi,Bi). Write
I =

⋃
λ∈Λ Jλ as the union of a family (Jλ)λ∈Λ of pairwise disjoint subsets.

For each λ ∈ Λ, consider the random object Yλ = (Xi)i∈Jλ taking values
in
(∏

i∈JλMi,
⊗

i∈Jλ Bi
)

whose i-th coordinate is Xi, for all i ∈ Jλ. The
following statements are equivalent:

• the family (Xi)i∈I is independent;
• for every λ ∈ Λ the family (Xi)i∈Jλ is independent and the family

(Yλ)λ∈Λ is independent.

Proof. Follows from the fact that the map (Xi)i∈I is the composition of the
map (Yλ)λ∈Λ with the isomorphism (18.7). �

We now obtain the desired generalization of Proposition 18.6.

Corollary 18.9. Let (Xi)i∈I be a family of random objects in the same
probability space with Xi taking values in a measurable space (Mi,Bi). Write
I =

⋃
λ∈Λ Jλ as the union of a family (Jλ)λ∈Λ of pairwise disjoint subsets.

For each λ ∈ Λ let fλ :
∏
i∈JλMi → M ′λ be a measurable map taking values

in some measurable space (M ′λ,B′λ) and let Yλ be defined as in the statement
of Corollary 18.8. If the family (Xi)i∈I is independent, then also the family(
fλ(Yλ)

)
λ∈Λ

is independent.

Proof. Follows directly from Corollary 18.8 and Proposition 18.6. �
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Let us now prove a simple useful criterion for independence of finite fam-
ilies of random objects in terms of probability density functions.

Proposition 18.10. Let (Xi)
n
i=1 be an n-tuple of random objects with Xi

taking values in a measurable space (Mi,Bi). For each i = 1, . . . , n, let
µi be a nonnegative countably additive σ-finite measure defined on Bi and
denote by µ the product measure

⊗n
i=1 µi. If Xi admits a probability density

function fXi with respect to µi for all i = 1, . . . , n and the family (Xi)
n
i=1 is

independent then the map fX defined by

fX(x1, . . . , xn) = fX1(x1) · · · fXn(xn), (x1, . . . , xn) ∈
n∏
i=1

Mi

is a probability density function for X = (Xi)
n
i=1 with respect to µ. Con-

versely, if X admits a probability density function with respect to µ of the
form

fX(x1, . . . , xn) = f1(x1) · · · fn(xn), (x1, . . . , xn) ∈
n∏
i=1

Mi

for certain maps fi : Mi → [0,+∞[, i = 1, . . . , n, then the family (Xi)
n
i=1 is

independent and there are positive constants ci, i = 1, . . . , n, such that cifi
is a probability density function of Xi with respect to µi, for all i = 1, . . . , n.

Proof. For the first part, note that a simple application of Fubini–Tonelli’s
Theorem yields∫

B
fX dµ =

n∏
i=1

∫
Bi

fXi dµi =

n∏
i=1

P(Xi ∈ Bi) = P(X ∈ B),

for all Bi ∈ Bi, i = 1, . . . , n, where B =
∏n
i=1Bi. By Proposition 6.6, this

shows that fX is a probability density function for X with respect to µ. For
the converse, we first check that each fi is measurable. To this aim, note
that since fX cannot be identically zero, for each i = 1, . . . , n there exists
x̄i ∈ Mi with fi(x̄i) > 0. To conclude that fi is measurable use that fX is
measurable and that fi(xi) is obtained by locking the value of xj at x̄j for
j 6= i in fX(x1, . . . , xn) and by multiplying the result by a positive constant.
Now an application of Fubini–Tonelli’s Theorem yields

1 =

∫
M
fX dµ =

n∏
i=1

∫
Mi

fi dµi

where M =
∏n
i=1Mi. This implies that for each i = 1, . . . , n we can find

ci > 0 such that
∫
Mi
cifi dµi = 1 and

∏n
i=1 ci = 1. We then have

fX(x1, . . . , xn) =
n∏
i=1

cifi(xi)
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and applying again Fubini-Tonelli’s Theorem we get:

PX(B) =

∫
B
fX dµ =

n∏
i=1

Pi(Bi),

for all Bi ∈ Bi, i = 1, . . . , n, where B =
∏n
i=1Bi and Pi is the probability

measure on Bi defined by Pi(Bi) =
∫
Bi
cifi dµi. Thus PX =

⊗n
i=1 Pi and

taking the push-forward under the i-th projection we obtain that Pi = PXi ,
for all i = 1, . . . , n. This implies that cifi is a probability density function
for Xi with respect to µi and that the family (Xi)

n
i=1 is independent. �

18.1. Independence of families of events. In Section 15 we have defined
independence for pairs of events. Clearly, if (Ω,A,P) is a probability space
and A,B ∈ A are events, we have that A and B are independent if and
only if the indicator random variables 1A and 1B are independent. This
fact suggests the following definition.

Definition 18.11. Given a probability space (Ω,A,P), we say that a family
of events (Ai)i∈I in A is independent if the family (1Ai)i∈I of indicator
random variables is independent.

We have the following simple characterization for independence of families
of events.

Proposition 18.12. Let (Ω,A,P) be a probability space and (Ai)i∈I be a
family of events in A. We have that (Ai)i∈I is independent if and only if

P(Ai1 ∩ . . . ∩Ain) = P(Ai1) · · ·P(Ain),

for any distinct i1, . . . , in ∈ I and any n ≥ 1.

Proof. By Remark 18.5, we can regard each indicator random variable 1Ai
as a random object taking values in the set {0, 1} endowed with the σ-
algebra ℘

(
{0, 1}

)
. Now use the fact that

{
{1}
}

is a collection of generators

for ℘
(
{0, 1}

)
closed under finite intersections. �

19. Conditional expectation

Let (Ω,A,P) be a probability space. If A ∈ A is an event with posi-
tive probability, then the map that associates to each event its conditional
probability given A

P( · |A) : A 3 B 7−→ P(B|A) ∈ [0, 1]

is a probability measure on Ω. Thus, if Y : Ω→ R is a random variable, we
can integrate Y with respect to P( · |A) and such integral should naturally be
called the conditional expected value (or conditional expectation) of Y given
the event A and be denoted by E(Y |A). As the measure P( · |A) vanishes
outside of A and is equal to 1

P(A) P on measurable subsets of A, we have:

(19.1) E(Y |A) =
1

P(A)

∫
A
Y dP,



A BASIC INTRODUCTION TO PROBABILITY AND STATISTICS 58

provided that the integral of Y over A with respect to P exists.
Just like with conditional probability, we would like to be able to condi-

tion also on events of probability zero of the form [X = x], with X a random
object taking values in some measurable space (M,B). If a regular condi-
tional probability P( · |X = x) given X exists, we can define E(Y |X = x)
as the integral of Y with respect to the probability measure P( · |X = x)
or, alternatively, as the integral of the identity map of R with respect to
the push-forward of P( · |X = x) under Y . Such push-forward is a regular
conditional probability of Y given X. Since Y is real-valued, a regular con-
ditional probability of Y given X always exists (Theorem 17.3) so we might
as well start with that and define

(19.2) E(Y |X = x) =

∫
R

y dK(x)(y),

for all x ∈ M , where K(x)(C) = P(Y ∈ C|X = x) is a regular conditional
probability of Y given X. Of course, the integral in (19.2) is going to
depend on the choice of K but, as usual, only the equivalence class of the
map x 7→ E(Y |X = x) modulo PX -almost sure equality is expected to be
well-defined.

Now pick B ∈ B and let us integrate the map x 7→ E(Y |X = x) defined
in (19.2) over B with respect to PX using the generalized Fubini–Tonelli’s
Theorem 16.7. We have∫

B
E(Y |X = x) dPX(x) =

∫
M

(∫
R

y1B(x) dK(x)(y)

)
dPX(x)

=

∫
M×R

y1B(x) d(PX ? K)(x, y) =

∫
M×R

y1B(x) dP(X,Y )(x, y)

=

∫
[X∈B]

Y dP,

provided that the integral
∫

[X∈B] Y dP exists. What we have proven is that

if Y is integrable then the map x 7→ E(Y |X = x) defined in (19.2) is a
Radon–Nikodym derivative of the finite countably additive signed measure

(19.3) B 3 B 7−→
∫

[X∈B]
Y dP = E

(
Y 1[X∈B]

)
∈ R

with respect to the probability measure PX . Now it is obvious that for
any integrable random variable Y : Ω → R the map (19.3) defines a finite
countably additive signed measure that is absolutely continuous with respect
to PX and thus we can give the following definition.

Definition 19.1. Let (Ω,A,P) be a probability space, Y : Ω → R be
a random variable with finite expected value (i.e., Y is P-integrable) and
X : Ω→M be a random object taking values in a measurable space (M,B).
A conditional expectation of Y given X is any measurable real-valued map

M 3 x 7−→ E(Y |X = x) ∈ R
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which is a Radon–Nikodym derivative of the finite countably additive signed
measure (19.3) with respect to PX , i.e., any measurable real-valued map such
that: ∫

B
E(Y |X = x) dPX(x) =

∫
[X∈B]

Y dP = E
(
Y 1[X∈B]

)
,

for any B ∈ B.

The Radon–Nikodym Theorem ensures that the conditional expectation
of Y given X exists and is unique up to PX -almost sure equality. Defini-
tion 19.1 is the standard approach for defining conditional expectation of a
random variable given a random object. Using (19.2) as a definition is also
possible since, as we have shown, (19.2) is consistent with Definition 19.1.
Though (19.2) is more intuitive, Definition 19.1 is simpler as it has the
advantage of not requiring a regular conditional probability.

Remark 19.2. If the random variable Y : Ω→ R is not P-integrable but its
integral with respect to P at least exists in [−∞,+∞] (equivalently, if either
the positive or the negative part of Y is P-integrable) then the countably
additive signed measure (19.3) will not be finite and it might not even be
σ-finite. It turns out that the Radon–Nikodym Theorem does have a version
in which only the measure in the denominator is assumed to be σ-finite and
the measure in the numerator is arbitrary. For such version, the Radon–
Nikodym derivative might be a function taking values in the extended real
line [−∞,+∞]. Thus, one can define E(Y |X = x) as in Definition 19.1
assuming only that E(Y ) =

∫
Ω Y dP exists in [−∞,+∞], but in that case

E(Y |X = x) might also take values in [−∞,+∞].

We note that conditional probability of a fixed event A ∈ A given a
random object X (as in Definition 15.4) is a particular case of conditional
expectation given X. Namely, probability is a particular case of expected
value, since P(A) = E(1A) and, similarly, P(A|X = x) is a particular case
of E(1A|X = x).

Example 19.3. Let X and Y be square integrable random variables on the
same probability space, so that the covariance Cov(X,Y ) is well-defined.
Let K(x)(B) = P(Y ∈ B|X = x) be a regular conditional probability of Y
given X, so that P(X,Y ) = PX ? K and the map

f(x) =

∫
R

y dK(x)(y) = E(Y |X = x), x ∈ R

is a conditional expectation of Y given X. The expected value E(XY ) of
the product of X and Y can be written as

E(XY ) =

∫
R2

xy dP(X,Y )(x, y) =

∫
R2

xy d(PX ? K)(x, y)

and using the generalized Fubini–Tonelli’s Theorem 16.7 we obtain:

E(XY ) =

∫
R

xf(x) dPX = E
(
Xf(X)

)
.
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Moreover

E(Y ) =

∫
R

f(x) dPX

so that the covariance of X and Y is given by:

Cov(X,Y ) = E(XY )− E(X)E(Y ) =

∫
R

(
x− E(X)

)
f(x) dPX .

The latter equality says that the covariance Cov(X,Y ) is the L2-inner
product with respect to the probability measure PX between the maps
f(x) = E(Y |X = x) and g(x) = x − E(X). The map g is clearly L2-
orthogonal to the constant maps. If X and Y are independent then the
regular conditional probability K of Y given X is PX -almost surely con-
stant (Proposition 15.12), so that in particular the conditional expectation
f(x) = E(Y |X = x) is also PX -almost surely constant and hence f and g
are L2-orthogonal. This is just a new proof of the fact that independent ran-
dom variables have zero covariance (Corollary 15.11). However, here we get
a sense of how much stronger independence is than merely zero covariance:
namely, zero covariance simply says that f and g are L2-orthogonal with
respect to PX . While the L2-orthogonal complement of g contains the con-
stant maps, it is typically a very large space (usually infinite-dimensional).
So Cov(X,Y ) = 0 is much weaker than the condition that the conditional ex-
pectation f(x) = E(Y |X = x) be (PX -almost surely) independent of x ∈ R
and the latter condition is much weaker than independence between X and
Y , which is equivalent to the condition that the probability distribution
K(x) = P( · |X = x) of Y given X = x be (PX -almost surely) independent
of x ∈ R

19.1. Conditioning on a σ-algebra. Let Y : Ω → R be an integrable
random variable in a probability space (Ω,A,P) and X : Ω → M be a
random object taking values in a measurable space (M,B). The conditional
expectation of Y given X introduced above is a measurable map f : M → R

and we write f(x) = E(Y |X = x), for all x ∈M .
In practical applications, we sometimes want to talk about the conditional

expected value E(Y |X = x) for some given fixed value of x ∈ M , but in
some cases we want to think about x as a function X(ω) of the random
outcome ω of the random experiment modelled by (Ω,A,P). This change
of point of view corresponds to replacing the map f : M → R with the
composition f(X) = f ◦ X of f with X, which yields a random variable
E(Y |X) = f(X) : Ω→ R.

It follows directly from Definition 19.1 that the random variable E(Y |X)
satisfies

(19.4)

∫
[X∈B]

E(Y |X) dP =

∫
[X∈B]

Y dP,

for every B ∈ B. Moreover, E(Y |X) is measurable with respect to the σ-
algebra AX =

{
X−1[B] : B ∈ B

}
induced by X, since it is a function of X.
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Equality (19.4) says that E(Y |X) and Y have the same integral over every
element of AX . The fact that E(Y |X) is AX -measurable taken together
with (19.4) means that E(Y |X) is a Radon–Nikodym derivative of the finite
countably additive signed measure

(19.5) AX 3 A 7−→
∫
A
Y dP ∈ R

with respect to the probability measure on AX given by the restriction of P.
It is obvious that (19.5) is indeed absolutely continuous with respect to the
restriction of P to AX . What this shows is that we can give a description
of the conditional expectation E(Y |X) without any direct reference to the
random object X, but instead using only the σ-algebra AX induced by X.
This leads naturally to the following definition.

Definition 19.4. Let (Ω,A,P) be a probability space, Y : Ω → R be an
integrable random variable and B be a σ-algebra of subsets of Ω contained in
A. We define a conditional expectation of Y given B, denoted E(Y |B), as a
Radon–Nikodym derivative of the finite countably additive signed measure

B 3 A 7−→
∫
A
Y dP = E(Y 1A) ∈ R

with respect to the restriction of P to A, i.e., E(Y |B) : Ω → R is a B-
measurable map which has the same integral as Y with respect to P over
any A ∈ B.

The Radon–Nikodym Theorem ensures that the conditional expectation
of Y given B exists and is unique up to P-almost sure equality. As discussed
above, the conditional expectation of Y given the σ-algebra AX induced by
a random object X is the same thing as E(Y |X), i.e., the random variable
obtained by composing x 7→ E(Y |X = x) with X.

We note that, as in the case of conditioning on a random object, the
assumption that Y be integrable in Definition 19.4 can be relaxed to the
assumption that E(Y ) exists in [−∞,+∞], as long as one allows E(Y |B) to
take values in [−∞,+∞] (see Remark 19.2).

It turns out that the map x 7→ E(Y |X = x) (or, more precisely, its
class of maps modulo PX -almost everywhere equality) can be recovered from
E(Y |X) = E(Y |AX).

Lemma 19.5. Let Ω be a set, (M,B) be a measurable space, X : Ω → M
be a map and denote by AX the σ-algebra of subsets of Ω induced by X. A
real-valued map g : Ω → R is measurable with respect to AX if and only if
there exists a measurable map f : M → R such that g = f ◦X.

Proof. The nontrivial part of the thesis is that if g is AX -measurable then
g = f ◦ X for some measurable map f : M → R. The validity of such
statement is clear if g is an indicator function or a simple map, i.e., a finite
linear combination of indicator functions. For the general case, note that
if g : Ω → R is AX -measurable then g is the pointwise limit of a sequence
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(gn)n≥1 of simple AX -measurable maps gn : Ω→ R and thus for each n ≥ 1
we have gn = fn ◦X for some measurable map fn : M → R. The conclusion
is obtained by taking f for instance as the lim sup of (fn)n≥1 (replacing ±∞
values that f might assume outside the image of X by some arbitrary finite
value). �

Using Lemma 19.5 we see that if Y in an integrable random variable on
a probability space (Ω,A,P), X : Ω→ M is a random object taking values
in a measurable space (M,B) and E(Y |AX) is a conditional expectation of
Y given the σ-algebra AX induced by X then E(Y |AX) = f(X) for some
measurable map f : M → R. The map f then satisfies∫

B
f dPX =

∫
[X∈B]

f(X) dP =

∫
[X∈B]

Y dP

for all B ∈ B and thus it is a valid conditional expectation of Y given X in
the sense of Definition 19.1.

We observe that a conditional expectation E(Y |B) on an arbitrary σ-
algebra B contained in A can always be seen as a particular case of E(Y |X)
for some random object X. For example, take X as the identity map from
(Ω,A) to (Ω,B) so that AX = B.

The idea of conditioning on σ-algebras might at first sound weird as one
normally thinks that “conditioning” should always mean “conditioning on
some fact”, such as the fact that an event like [X = x] happened. To make
conditioning on a σ-algebra more palatable, one should think about a σ-
algebra B ⊂ A as representing a certain amount of information regarding
the outcome ω ∈ Ω. More specifically, in nonpathological cases (such as if
B is induced by a random object taking values on a separable metric space
endowed with its Borel σ-algebra — see the discussion in Remark 15.6), one
can think of an agent as being B-informed if such agent knows enough about
ω ∈ Ω to figure out whether or not ω is in B, for any B ∈ B. Alternatively,
a B-informed agent is an agent that knows the value of any B-measurable
random variable.

Larger σ-algebras correspond to more information. For example, the
largest possible σ-algebra, which is the σ-algebra A in which the probability
measure is defined, should be thought as the perfect information σ-algebra,
i.e., A-informed agents know everything. On the other extreme, the smallest
possible σ-algebra, which is just {∅,Ω}, corresponds to no information at
all. If Y : Ω→ R is an integrable random variable, then the expected value
of Y conditioned on the no-information σ-algebra {∅,Ω} is simply the stan-
dard expected value E(Y ) of Y — or, more precisely, the random variable
that is constant and equal to E(Y ). That makes sense, as conditioning on
no-information is the same as not conditioning on anything. On the other
extreme, the conditional expectation E(Y |A) of Y on the perfect informa-
tion σ-algebra A is just Y itself. This also makes sense, as the A-informed
agent knows the true value of ω ∈ Ω and for such agent the expected value
of Y is the true value Y (ω) of Y .
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To get further insight into this matter let us look at the case of a σ-algebra
generated by a countable partition. Let (Ω,A,P) be a probability space and
suppose we are given a countable partition of Ω into measurable subsets.
We can represent such partition by the corresponding equivalence relation
∼ on Ω, which is an equivalence relation whose equivalence classes are in A
and such that the quotient set Ω/∼ is countable. Let B be the σ-algebra of
subsets of Ω generated by the collection of all equivalence classes. Clearly,
B coincides with the collection of all possible unions of equivalence classes,
which is also the σ-algebra induced by the quotient map q : Ω → Ω/∼,
where Ω/∼ is endowed with the σ-algebra ℘(Ω/∼) of all its subsets. The
equivalence classes are then what are usually called atoms of B, i.e., an
equivalence class A is a nonempty element A ∈ B such that the only subsets
of A that are in B are the empty set and A itself.

A B-measurable random variable is simply a random variable that is con-
stant on every atom. Given an integrable random variable Y : Ω→ R, it is
easily checked that E(Y |B) is a random variable whose restriction to every
positive probability atom A of B is constant and equal to the conditional
expectation E(Y |A) of Y on the event A (recall (19.1)). Thus, taking the
conditional expectation of Y on the σ-algebra B has the effect of forcing Y
to become constant on the atoms of B by averaging Y inside such atoms. A
B-informed agent does not know the true value of ω ∈ Ω, but knows what
is the atom A of B that contains ω. Thus, for such an agent, the expected
value of Y is the expected value of Y conditioned on A.

20. Images of densities under diffeomorphisms

If X is an Rn-valued random vector which admits a probability density
function fX : Rn → [0,+∞[ (with respect to Lebesgue measure) it would
be useful to be able to obtain a formula for the probability density function
of a random vector of the form φ(X), where φ : Rn → Rm is a sufficiently
nice function (say, a function of class C1). However, it is not true in gen-
eral that φ(X) admits a probability density function, even when φ is really
nice. For instance, if φ is constant, then the distribution of φ(X) is a Dirac
delta (Definition 13.1) which is not absolutely continuous with respect to
Lebesgue measure. More generally, if the image of φ has null Lebesgue mea-
sure, then Pφ(X) cannot be absolutely continuous with respect to Lebesgue
measure as the Pφ(X)-probability of a Borel set that contains the image of
φ is equal to one. In this section we will study the case in which φ is a local
diffeomorphism of class C1.

Recall that a diffeomorphism φ : U → V between open subsets U and V
of Rn is a bijective differentiable map whose inverse is also differentiable. If
φ is of class Ck (with 1 ≤ k ≤ +∞) and φ−1 is differentiable then φ−1 is
automatically of class Ck. A map φ : U → Rn defined in an open subset U
of Rn is said to be a local diffeomorphism if every point of U has an open
neighborhood in U such that the restriction of φ to such neighborhood is a
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diffeomorphism onto some open subset of Rn. If φ is a local diffeomorphism
then the image of φ is open and if φ is also injective then φ is actually a
diffeomorphism onto its image.

For a differentiable map φ : U → Rm defined in an open subset U of
Rn, we denote by dφ(x) its differential at the point x ∈ U , which is a
linear transformation from Rn to Rm. The matrix that represents dφ(x)
with respect to the canonical bases is the so called Jacobian matrix of φ
at x. The celebrated Inverse Function Theorem states that if φ : U → Rn

is of class C1 then φ is a local diffeomorphism if and only if dφ(x) is an
isomorphism (equivalently, the determinant of dφ(x) is nonzero) for every
x ∈ U .

The key ingredient for obtaining a probability density function for φ(X)
is the change of variables theorem for Lebesgue integration in Rn which
we recall below. We will denote by m the Lebesgue measure of Rn and
all probability density functions of Rn-valued random vectors will be taken
with respect to (the restriction to the Borel σ-algebra of) m.

Integration theorems will be stated with more generality than what is
needed for the probability theory related applications, for the sake of com-
pleteness. We will call a function f defined in some subset of Rn Lebesgue-
measurable if it is measurable with respect to the Lebesgue σ-algebra on its
domain and Borel-measurable if it is measurable with respect to the Borel
σ-algebra on its domain, where the Borel σ-algebra is used for the counter-
domain in both cases. Recall that a map of class C1 from an open subset
of Rn to Rn, being locally Lipschitz, maps sets of Lebesgue measure zero
to sets of Lebesgue measure zero. Thus C1 diffeomorphisms map Lebesgue
measurable sets to Lebesgue measurable sets.

Theorem 20.1. Let φ : U → V be a diffeomorphism of class C1 between
open subsets U and V of Rn. If f : V → [−∞,+∞] is a Lebesgue-measurable
function then

(20.1)

∫
U
f
(
φ(x)

)∣∣det
(
dφ(x)

)∣∣dm(x) =

∫
V
f(y) dm(y),

meaning that the integral on the lefthand side of the equality exists if and
only if the integral on the righthand side of the equality exists and that they
are equal when both exist. �

Theorem 20.1 could be restated by saying that the push-forward under φ
of the measure on U given by integration of x 7→

∣∣det
(
dφ(x)

)∣∣ with respect
to Lebesgue measure is the Lebesgue measure on V . Equality (20.1) then
follows from the simple abstract version of the change of variables theorem
given in Proposition 9.1.

Remark 20.2. Though we will not need such generalization, we mention that
Theorem 20.1 also holds if φ : U → Rn is merely an injective function of
class C1 defined in an open subset U of Rn and V is the image of φ. In this
case V might not be open, but it is Borel since it is a countable union of
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compact sets. To obtain such generalization, note that if U0 is the (open) set
of points x ∈ U with det

(
dφ(x)

)
6= 0 and V0 = φ[U0] then Theorem 20.1 can

be applied to the restriction of φ to U0, which is a diffeomorphism onto V0.
Moreover, the integrand on the lefthand side of (20.1) obviously vanishes on
U \ U0 and the set V \ V0 is contained in the set of critical values of φ and
thus has Lebesgue measure zero due to Sard’s Theorem.

As a consequence of Theorem 20.1 we immediately obtain the following
method for obtaining a probability density function for φ(X) if φ is a dif-
feomorphism of class C1 and X is a random vector admitting a probability
density function.

Proposition 20.3. Let φ : U → V be a diffeomorphism of class C1 between
open subsets U and V of Rn and let X be an Rn-valued random vector with
image contained in U (so that X can be regarded as an U -valued random
object). If X admits a probability density function fX : U → [0,+∞[ then a
probability density function fφ(X) : V → [0,+∞[ for φ(X) is given by:

(20.2) fφ(X)(y) =
fX(x)∣∣det
(
dφ(x)

)∣∣ ,
for all y ∈ V , where x = φ−1(y).

Proof. Apply Theorem 20.1 with f being the function defined by (20.2)
multiplied by the indicator function of a Borel subset of V . �

In the statement of Proposition 20.3 the function fφ(X) is defined only on
V , so it is a probability density function for φ(X) regarded as a V -valued
random object. If we want a probability density function for φ(X) regarded
as an Rn-valued random vector, we can just extend fφ(X) to all of Rn by
assiging to it the value zero outside of V .

Example 20.4. Let X and Y be Rn-valued random vectors on the same
probability space and assume that they admit a joint probability density
function f(X,Y ) : Rn × Rn → [0,+∞[. Let us obtain a probability density
function for X+Y using Proposition 20.3. We cannot apply the proposition
directly with φ being the sum map from Rn ×Rn to Rn, but we can use it
with the diffeomorphism φ : Rn ×Rn → Rn ×Rn given by

φ(x, y) = (x+ y, y),

for all x, y ∈ Rn. Note that φ is linear, so that its differential dφ(x, y) at
any point (x, y) ∈ Rn × Rn is equal to the linear map φ itself. Moreover,
detφ = 1, as the matrix of φ has a null lower left n×n block and two n×n
identity blocks over the main diagonal. Proposition 20.3 then yields

f(X+Y,Y )(u, y) = f(X,Y )

(
φ−1(u, y)

)
= f(X,Y )(u− y, y),

for all (u, y) ∈ Rn×Rn, where f(X+Y,Y ) denotes a probability density func-
tion for (X + Y, Y ) = φ(X,Y ). A probability density function fX+Y for
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X + Y can now be obtained by simply integrating over y (see Example 8.4)

fX+Y (u) =

∫
Rn

f(X,Y )(u− y, y) dm(y), u ∈ Rn,

taking care of replacing the infinite values that fX+Y might assume in a set
of null measure with some fixed finite value. In the particular case in which
X and Y are independent with probability density functions fX and fY , we
have f(X,Y )(x, y) = fX(x)fY (y) (Proposition 18.10) and thus

fX+Y (u) =

∫
Rn

fX(u− y)fY (y) dm(y), u ∈ Rn,

i.e., fX+Y is (m-almost everywhere equal to) the convolution fX ∗ fY of fX
and fY .

The assumption in Proposition 20.3 that the map φ be injective is too
strong and we need to get rid of it. For this we need a better version of
Theorem 20.1.

Theorem 20.5. Let φ : U → Rn be a local diffeomorphism of class C1

defined in an open subset U of Rn and let V be the (automatically open)
image of φ. Assume that g : U → [−∞,+∞] is a Lebesgue-measurable
function whose integral over U with respect to the Lebesgue measure exists.
The map f : V → [−∞,+∞] given by

(20.3) f(y) =
∑

x∈φ−1(y)

g(x)∣∣det
(
dφ(x)

)∣∣ , y ∈ V

is well-defined for Lebesgue-almost every y ∈ V . The map f is always
Lebesgue-measurable and it is also Borel-measurable if g is Borel-measurable.
Moreover, the integral of f over V with respect to the Lebesgue measure
exists and it is equal to the integral of g over U with respect to the Lebesgue
measure.

In the statement of the theorem above, when we say that “f(y) is well-
defined” for a certain y ∈ V what we mean is that either the sum of the
positive parts or the sum of the negative parts of the terms in the sum
appearing in (20.3) is finite. In order to make f a Lebesgue-measurable
function on all of V one has simply to choose some arbitrary value for f(y)
when it is not well-defined. When g is Borel-measurable and we want f to
be Borel-measurable on all of V , we have to make the choice of values for
f(y) in the undefined cases in a Borel-measurable way (say, by picking a
constant value).

Proof of Theorem 20.5. We can assume that g is nonnegative, as the general
case will then follow by applying the result to the positive and negative part
of g. If there exists an open subset U0 of U such that φ is injective on U0 and
g vanishes on U \U0 then the result follows directly from Theorem 20.1. In
general, we can cover U by countably many open sets in which φ is injective
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and by the standard disjointification method we write U as a disjoint union⋃∞
n=1Bn of Borel subsets Bn such that each Bn is contained in some open

subset of U in which φ is injective. The conclusion then follows by noting
that g =

∑∞
n=1 g1Bn and that the result holds for each g1Bn . �

As a corollary of Theorem 20.5 we obtain the improved version of Propo-
sition 20.3 in which φ is not assumed to be injective. We will also allow
for the assumptions of Proposition 20.3 to fail on sets of measure zero. In
order to simplify the statement, we adopt the convention that the sum of
an empty family is equal to zero.

Proposition 20.6. Let φ : U → Rn be a map of class C1 defined in some
open subset U of Rn and assume that det

(
dφ(x)

)
6= 0 for Lebesgue-almost

every x ∈ U . Let X be an Rn-valued random vector with P(X ∈ U) = 1
and consider the Rn-valued random vector φ(X), to which we assign some
arbitrary fixed value in the probability zero set [X 6∈ U ]. If X admits a
probability density function fX : Rn → [0,+∞[ then a probability density
function fφ(X) : Rn → [0,+∞[ for φ(X) exists and it is given by

fφ(X)(y) =
∑

x∈φ−1(y)

fX(x)∣∣det
(
dφ(x)

)∣∣ ,
for all y ∈ Rn, except for y in some subset of Rn with null Lebesgue measure
in which the sum above is infinite or any of the denominators appearing in
the sum vanish (in which case we replace the sum with some arbitrary fixed
nonnegative finite value).

Proof. If det
(
dφ(x)

)
6= 0 for all x ∈ U and the image of X is contained

in U , the result follows by picking an arbitrary Borel subset B of Rn and
applying Theorem 20.5 with g equal to the restriction of fX1φ−1[B] to U ,
keeping in mind that fφ(X) vanishes outside of V = φ[U ] and fX vanishes
Lebesgue-almost everywhere outside of U . For the general case, set

U0 =
{
x ∈ U : det

(
dφ(x)

)
6= 0
}
,

so that U0 is open and U \ U0 has Lebesgue measure zero. Since PX is
absolutely continuous with respect to the Lebesgue measure, we have that
P(X ∈ U0) = 1 and thus we can change X in a set of measure zero so
that its image becomes contained in U0. Such adjustment does not alter the
distributions of X and φ(X). Applying the version of the proposition which
we have already proven with φ|U0 in the place of φ, we obtain that

fφ(X)(y) =
∑

x∈φ−1(y)∩U0

fX(x)∣∣det
(
dφ(x)

)∣∣ , y ∈ Rn

defines a probability density function for φ(X). The conclusion then follows
by noting that for y ∈ Rn outside of the null Lebesgue measure set φ[U \U0]
we have that φ−1(y) = φ−1(y) ∩ U0. �
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21. The univariate normal distribution

The normal distribution is one of the most basic and important proba-
bility distributions in statistics. A standard motivation for studying such
distribution is the celebrated Central Limit Theorem. In this section we
will simply present the definition of the univariate normal distribution. The
multivariate case will be discussed later in Section 24.

When we talk about “defining a distribution” (such as the normal dis-
tribution) what we mean is that we are going to define a certain collection
of probability measures on the real line endowed with the Borel σ-algebra
(or a collection of probability measures on some other measurable space).
It is often convenient to define such collection using the language of ran-
dom variables (or random objects), i.e., we define that a random variable
X has a certain type of distribution under certain conditions. Yet, what
really matters is the collection of probability measures PX being defined by
that statement, i.e., saying that X has a certain distribution means that PX
belongs to a certain collection of probability measures. The map X itself is
not important unless one is interested in discussing the relationship between
X and other random objects defined on the same probability space. Note
that given a probability measure P on the real line (resp., on some other
measurable space) one can always obtain a random variable (resp., random
object) X with PX = P by letting X be the identity map, where the domain
of X is endowed with the probability measure P.

We will denote by m the Lebesgue measure of R (restricted to the Borel
σ-algebra) and, as usual, probability density functions of random variables
will be taken with respect to m. We will say that a random variable has a
(nondegenerate) normal distribution if it admits a probability density func-
tion that is the exponential of a second degree polynomial. Clearly, the
exponential of a second degree polynomial has finite integral if and only if
the leading coefficient is negative and thus, since the integral of a probability
density function must be equal to 1, only second degree polynomials with a
negative leading coefficient are admissible.

Definition 21.1. A random variable X is said to have a nondegenerate
normal distribution (alternatively, X is a nondegenerate normal random
variable or PX is a nondegenerate normal distribution on R) if

(21.1) fX(x) = e−ax
2+bx+c, x ∈ R

is a probability density function for X for certain a, b, c ∈ R with a > 0.

We used above the name “nondegenerate normal distribution” instead
of just “normal distribution” because random variables whose distribution
is a Dirac delta (i.e., almost surely constant random variables) will also
be regarded as normal — that is the “degenerate” case. Most textbooks
simply use something equivalent to Definition 21.1 above as their definition
of normal distribution, but we find convenient to include also the degenerate
case under the umbrella of “normal”.
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Definition 21.2. A random variable is said to have a normal distribution
(alternatively, X is a normal random variable or PX is a normal distribution
on R) if either X has a nondegenerate normal distribution or X is almost
surely constant.

Note that the fact that fX must have integral equal to 1 implies that the
constant term c of the polynomial in (21.1) is determined by a and b, as the
following equality must hold:

e−c =

∫ +∞

−∞
e−ax

2+bx dm(x).

Proposition 21.3. If X is a normal random variable then αX + β is also
a normal random variable, for any α, β ∈ R.

Proof. If either X is almost surely constant or α = 0 then αX + β is almost
surely constant. Moreover, if X admits a probability density function given
by (21.1) and α 6= 0 then, using the formula given in Example 8.8, we see
that αX + β admits a probability density function given by

fαX+β(y) =
1

|α|
fX

(y − β
α

)
, y ∈ R.

Such probability density function is given by the exponential of the second
degree polynomial

− a

α2
(y − β)2 +

b

α
(y − β) + c− ln |α|

which has a negative leading coefficient. �

Let us derive a formula for the probability density function of a nondegen-
erate normal random variable that is more useful for practical applications
as it explicitly shows the expected value and variance. We start by consider-
ing the integral of the exponential of the simplest second degree polynomial
with a negative leading coefficient:∫ +∞

−∞
e−x

2
dm(x).

There is a standard trick from basic multivariate calculus courses for com-
puting this integral, which is to write its square as a double integral and then
switch to polar coordinates. One then obtains that the integral is equal to√
π and therefore

fX(x) =
1√
π
e−x

2
, x ∈ R

is the probability density function of a random variable X. Note that fX
is of the form (21.1) as the multiplicative constant can be turned into an
additive constant in the exponent. Let us compute the expected value and
variance of X. The expected value is given by (recall Example 9.2)

E(X) =
1√
π

∫ +∞

−∞
xe−x

2
dm(x)
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and since (the integral is finite and) the integrand is an odd function we get
E(X) = 0. The variance of X is given by:

Var(X) = E(X2)− E(X)2 = E(X2) =
1√
π

∫ +∞

−∞
x2e−x

2
dm(x).

One then easily obtains that Var(X) = 1
2 by writing x2e−x

2
= x(xe−x

2
) and

by computing the latter integral using integration by parts. Thus, if we set
Z =

√
2X, we have that Z is a normal random variable with E(Z) = 0 and

Var(Z) = 1. Moreover, a probability density function fZ for Z is given by
(recall Example 8.8):

fZ(z) =
1√
2
fX

( z√
2

)
=

1√
2π

e−
z2

2 , z ∈ R.

Definition 21.4. A random variable Z is said to have a standard normal
distribution (alternatively, Z is a standard normal random variable or PZ is
a standard normal distribution on R) if

(21.2) fZ(z) =
1√
2π

e−
z2

2 , z ∈ R

is a probability density function for Z.

Since E(Z) = 0 and Var(Z) = 1, given µ ∈ R and σ ∈ ]0,+∞[, we have
that µ+σZ is a normal random variable with expected value µ and variance
σ2. A probability density function for µ+ σZ is given by:

(21.3) fµ+σZ(x) =
1

σ
fZ

(x− µ
σ

)
=

1√
2π σ

e−
(x−µ)2

2σ2 , x ∈ R.

We have shown that (21.3) is a probability density function for a nondegen-
erate normal random variable with mean µ and variance σ2. Let us verify
that, conversely, every nondegenerate normal random variable with mean µ
and variance σ2 has (21.3) as a probability density function. Let then X be
a nondegenerate normal random variable with probability density function
given by (21.1). We can choose µ ∈ R and σ > 0 such that the polynomial
in the exponent in (21.1) is equal to the polynomial in the exponent in (21.3)
up to the independent term. Namely, µ ∈ R and σ > 0 must be chosen such
that

(21.4) a =
1

2σ2
, b =

µ

σ2

and such equalities are equivalent to:

(21.5) µ =
b

2a
, σ =

1√
2a
.

Thus, defining µ and σ by (21.5) we obtain

(21.6) e−ax
2+bx+c =

1√
2π σ

e−
(x−µ)2

2σ2 ,
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for all x ∈ R, since the independent term of the polynomial in the exponent
of a probability density function of the form (21.1) is determined by the two
other coefficients of the polynomial. Equality (21.6) implies that, if µ and
σ are defined by (21.5), then µ and σ2 are indeed the expected value and
the variance, respectively, of the normal random variable X with probability
density function (21.1).

We have proven the following result.

Proposition 21.5. Every normal random variable has a finite expected
value and a finite variance. Moreover, given µ ∈ R and σ > 0, we have
that a normal random variable X has expected value µ and variance σ2 if
and only if

fX(x) =
1√
2π σ

e−
(x−µ)2

2σ2 , x ∈ R

is a probability density function for X. In particular, two normal random
variables with the same expected value and the same variance have the same
distribution. �

The fact that a normal distribution is completely determined by the ex-
pected value and the variance makes the following definition useful.

Definition 21.6. Given µ ∈ R and σ ≥ 0, we write

X ∼ N(µ, σ2)

to indicate that X is a normal random variable with expected value µ and
variance σ2. In this case we also say that PX is a normal distribution with
mean µ and variance σ2 (or a normal distribution with mean µ and standard
deviation σ).

Clearly X ∼ N(µ, 0) if and only if X = µ almost surely, i.e., if and only
if PX is a Dirac delta centered at µ.

Observe that the univariate normal distribution can be thought as a col-
lection of probability measures on the Borel σ-algebra of the real line and
also as a family of probability measures on Borel σ-algebra of the real line
indexed (in a one-to-one manner) by the parameters µ ∈ R and σ ≥ 0.
Though µ is the expected value of a random variable X with X ∼ N(µ, σ2),
it is more usual to call µ the mean in this context since here we are thinking
about µ as a property of a probability distribution.

22. The uniform distribution

The uniform distribution models the experiment of choosing an element
from a set in a such a way that every element of that set has the same
probability of being chosen. This is the exact definition of the uniform
distribution in the discrete case, which we consider first. For the general
case this can be regarded as an informal description which motivates the
precise definition.
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Definition 22.1. Let M be a nonempty finite set endowed with the σ-
algebra ℘(M) of all its subsets. The discrete uniform distribuiton on M is
the unique probability measure P : ℘(M) → [0, 1] which assigns the same
probability to all points of M . More explicitly, P is given by

P(A) =
|A|
|M |

,

where | · | denotes the number of elements of a set. An
(
M,℘(M)

)
-valued

random object X is said to have a discrete uniform distribution if PX is a
discrete uniform distribution.

Note that if M is infinite and B is a σ-algebra of subsets of M that
contains all singletons then a probability measure on B that assigns the
same probability to every point of M must assign a null probability to every
point. It follows that if such a probability measure exists then M must be
uncountable, otherwise the probability of M itself would be zero.

Unlike the finite case, if M is uncountable then merely requiring that all
points of M have the same probability does not adequately express the idea
of uniformity. For instance, if M is a measurable subset of the real line,
then every probability measure that is absolutely continuous with respect
to the Lebesgue measure assigns a null probability to every point. In this
context, uniformity is properly expressed by requiring the probability density
function with respect to the Lebesgue measure to be constant. This leads
us to the definition below.

Definition 22.2. Let M be a Borel subset of Rn endowed with its Borel
σ-algebra B. If 0 < m(M) < +∞ then the uniform distribution on M is the
probability measure P : B → [0, 1] defined by

P(B) =
m(B)

m(M)
,

for all B ∈ B, where m denotes the Lebesgue measure of Rn. An (M,B)-
valued random object X is said to have a uniform distribution if PX is a
uniform distribution.

Example 22.3. If a random variable X has a uniform distribution on the
interval [a, b], with a < b, then its expected value

E(X) =
1

b− a

∫ b

a
x dm(x) =

a+ b

2

is the midpoint of the interval [a, b]. The expected value of X2 is given by

E(X2) =
1

b− a

∫ b

a
x2 dm(x) =

1

3
(a2 + ab+ b2)

and hence the variance Var(X) = E(X2)− E(X)2 is equal to:

Var(X) =
(b− a)2

12
.
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More generally, if X has a uniform distribution on a Borel subset M of Rn

with 0 < m(M) < +∞ then the expected value of X (if it exists) is what is
normally called the center of mass of M .

22.1. Abstract generalization. A natural way to generalize the concept
of uniform distribution to more abstract settings is through the theory of
invariant measures. We recall some relevant definitions. Let X be a locally
compact Hausdorff topological space. A nonnegative regular Borel measure
µ on X is a nonnegative countably additive measure µ defined on the Borel
σ-algebra of X satisfying the following conditions:

(i) µ(B) is the infimum of
{
µ(U) : U ⊃ B open

}
, for every Borel subset

B of X;
(ii) µ(U) is the supremum of

{
µ(K) : K ⊂ U compact

}
, for every open

subset U of X;
(iii) µ(K) is finite for every compact subset K of X.

It is well-known (see [4, Theorem 2.14]) that nonnegative regular Borel mea-
sures on X are in one-to-one correspondence with positive linear functionals
on the space of continuous real-valued functions on X with compact support.
Such correspondence associates to every nonnegative regular Borel measure
µ the integration functional f 7→

∫
X f dµ.

Let G be a locally compact Hausdorff topological group and assume that
a locally compact Hausdorff topological space X is endowed with a con-
tinuous transitive action G × X 3 (g, x) 7→ g · x ∈ X such that the map-
ping G 3 g 7→ g · x ∈ X is open for some (and hence for all) x ∈ X.
A nonnegative regular Borel measure µ on X is said to be G-invariant if
µ(g · B) = µ(B), for every g ∈ G and every Borel subset B of X, where
g · B =

{
g · x : x ∈ B

}
. It is well-known ([2, Theorem 2.7.11]) that if µ is

a nonzero nonnegative G-invariant regular Borel measure on X then every
other nonnegative G-invariant regular Borel measure on X is a scalar multi-
ple of µ. A necessary and sufficient condition for the existence of a nonzero
nonnegative G-invariant regular Borel measure on X can be expressed in
terms of the modular function of G and the isotropy group of a point of X
([2, Theorem 2.7.11]); such condition is always satisfied for instance if such
isotropy group is compact ([2, 2.7.12]).

Example 22.4. If X is a nonempty finite set endowed with the discrete
topology then the counting measure is a nonzero nonnegative G-invariant
regular Borel measure on X, for any transitive action of a group G on X. If
X = G = Rn and G acts on X by translations then the Lebesgue measure
(restricted to the Borel σ-algebra) is a nonzero nonnegative G-invariant reg-
ular Borel measure on X. More generally, if a locally compact Hausdorff
topological group G acts on itself by left translations then a nonzero nonneg-
ative G-invariant regular Borel measure on G always exists and it is called
a left-invariant Haar measure on G.

We can now define the abstract generalization of the uniform distribution.
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Definition 22.5. Let G and X be as above and assume that a nonzero
nonnegative G-invariant regular Borel measure µ on X exists. If M is a
Borel subset of X with 0 < µ(M) < +∞ and M is endowed with its Borel
σ-algebra B then theG-uniform distribution (or simply uniform distribution)
on M is the probability measure P on B defined by

P(B) =
µ(B)

µ(M)
,

for all B ∈ B. An (M,B)-valued random object X is said to have a uniform
distribution if PX is a uniform distribution.

23. Quick review of linear and multilinear algebra

This section primarily serves to establish notation and conventions, as
prior knowledge of the topics is assumed. All vector spaces considered will
be real and finite-dimensional. The bidual space V ∗∗ of a vector space V
will be identified with V itself through the standard natural isomorphism.

If T : V → W is a linear map, we denote as usual by T ∗ : W ∗ → V ∗ the
adjoint (also called transpose) of T which is given by T ∗(α) = α ◦ T , for
all α ∈ W ∗. If V and W are endowed with bases and the dual spaces are
endowed with the corresponding dual bases then the matrix that represents
T ∗ is the transpose of the matrix that represents T . Under the natural
identification of the bidual spaces with the original spaces, the map T ∗∗

defined as the transpose of the transpose of T is simply equal to T .
Given vector spaces V and W , the tensor product V ∗⊗W ∗ of their duals is

naturally identified with the space of bilinear forms on V ×W by associating
α⊗ β to the bilinear form given by

(α⊗ β)(v, w) = α(v)β(w),

for all v ∈ V , w ∈ W , α ∈ V ∗ and β ∈ W ∗. In particular, the space
V ⊗W ∼= V ∗∗ ⊗W ∗∗ is naturally identified with the space of bilinear forms
on V ∗ ×W ∗ by associating v ⊗ w to the bilinear form given by

(v ⊗ w)(α, β) = α(v)β(w),

for all α ∈ V ∗, β ∈ W ∗, v ∈ V and w ∈ W . These identifications of tensor
products with spaces of bilinear forms were already used in Section 11.

We will also often use a natural identification of the space of bilinear forms
with a space of linear transformations that is very convenient as it allows
us to write several operations involving bilinear forms and linear transfor-
mations in terms of compositions and inversions of linear transformations.
Since compositions and inversions of linear transformations become prod-
ucts and inversions of matrices once matrix representations are used, the
identification of bilinear forms with linear transformations allows for quick
translations of the operations with bilinear forms in terms of operations with
matrices.
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Given vector spaces V , W and a bilinear form B : V × W → R, we
identify B with the linear transformation from V to W ∗ given by

(23.1) V 3 v 7−→ B(v, ·) ∈W ∗,

where B(v, ·) maps w ∈W to B(v, w). The map that sends B to (23.1) is a
linear isomorphism from the space of bilinear forms on V ×W to the space
of linear transformations from V to W ∗. The linear transformation (23.1)
will be simply denoted by B : V → W ∗. If T : V ′ → V is a linear map
defined in some other vector space V ′, we can combine B and T to obtain a
bilinear form

(23.2) B(T · , · ) : V ′ ×W 3 (v′, w) 7−→ B
(
T (v′), w

)
∈ R.

Under the identification of bilinear forms with linear transformations, the
bilinear form (23.2) is identified with the composition B ◦ T : V ′ → W ∗.
Similarly, if S : W ′ →W is a linear map defined in some other vector space
W ′, we can combine B and S to obtain a bilinear form

B( · , S · ) : V ×W ′ 3 (v, w′) 7−→ B
(
v, S(w′)

)
∈ R

which is identified with the linear transformation S∗◦B : V → (W ′)∗. Hence
the bilinear form

B(T · , S · ) : V ′ ×W ′ 3 (v′, w′) 7−→ B
(
T (v′), S(w′)

)
∈ R

is identified with the linear transformation S∗ ◦B ◦ T .
Note that the adjoint B∗ : W ∗∗ ∼= W → V ∗ of the linear transformation

B : V → W ∗ identified with a bilinear form B : V ×W → R is the linear
transformation identified with the bilinear form

W × V 3 (w, v) 7−→ B(v, w) ∈ R

obtained by switching the variables of B. This implies that if V = W then
B is symmetric if and only if B∗ = B.

A word of caution must be said about matrix representations concerning
the identification of bilinear forms with linear transformations discussed
above. If (ei)

n
i=1 is a basis of V and (fi)

m
i=1 is a basis of W , then the matrix

that represents the bilinear form B : V ×W → R is typically defined as
the matrix having B(ei, fj) in its i-th row and j-th column. However, if
W ∗ is endowed with the dual basis, the matrix that represents the linear
transformation B : V →W ∗ that is identified with B is the transpose of the
matrix that is normally used to represent the bilinear form B. Thus, if one
is going to translate compositions of the form S∗ ◦ B ◦ T into products of
matrices, one should be aware that the matrix that must be used for B is
the transpose of the usual matrix. This observation is of course irrelevant if
V = W and B is symmetric.
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23.1. Correspondence between inner products on V and V∗. Let V
be a vector space and B : V × V → R be a symmetric bilinear form. The
subspace {

v ∈ V : B(v, w) = 0, for all w ∈ V
}

of V which is normally known as the kernel of B is simply the kernel Ker(B)
of the linear transformation B : V → V ∗ that is identified with B. If B is
nondegenerate, i.e., if the kernel of B is zero then B : V → V ∗ is a linear
isomorphism. Such linear isomorphism can be used to transfer a bilinear
form C : V ×V → R on V to a bilinear form C(B−1 · , B−1 · ) : V ∗×V ∗ → R

on V ∗. As discussed above, C(B−1 · , B−1 · ) is identified with the linear
transformation from V ∗ to V given by

(B−1)∗ ◦ C ◦B−1 = (B∗)−1 ◦ C ◦B−1 = B−1 ◦ C ◦B−1.

Setting C = B we obtain that the bilinear form on V ∗ that corresponds to
B via the isomorphism B : V → V ∗ induced by B itself is the bilinear form
on V ∗ that is identified with the linear transformation B−1 : V ∗ → V .

The mapping B 7→ B−1 is a bijection between nondegenerate symmetric
bilinear forms on V and nondegenerate symmetric bilinear forms on the
dual space V ∗. Moreover, B is positive definite if and only if B−1 is positive
definite and thus the mapping B 7→ B−1 restricts to a bijection between
inner products on V and inner products on V ∗. This is the standard way2

of inducing an inner product on the dual space V ∗ from an inner product
on V .

In terms of matrix representations, if V is endowed with some basis and
V ∗ is endowed with the dual basis then the matrix that represents B−1 is
just the inverse of the matrix that represents B. In particular, if B is an
inner product on V then the dual of a B-orthonormal basis of V is a B−1-
orthonormal basis of V ∗ since a basis is orthonormal if and only if the inner
product is represented by the identity matrix with respect to such basis.
Note also that the isomorphism B : V → V ∗ maps a B-orthonormal basis of
V to its dual basis. The norms corresponding to the inner products B and
B−1 are related by the standard formula for the operator norm

‖α‖ = sup
{
|α(v)| : v ∈ V, ‖v‖ ≤ 1

}
, α ∈ V ∗,

in which we use the notation ‖ · ‖ for both the norm associated to B and for
the norm associated to B−1.

Example 23.1. If B : V ×V → R and B′ : W ×W → R are nondegenerate
symmetric bilinear forms on vector spaces V and W then, for any linear
map T : V → W , there exists a unique linear map S : W → V that is
characterized by the equality

(23.3) B′
(
T (v), w

)
= B

(
v, S(w)

)
, v ∈ V, w ∈W.

2Physicists call this construction “raising the indexes” of the metric tensor.
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The linear map S is usually called the transpose of T with respect to B
and B′. Identifying B and B′ with linear isomorphisms B : V → V ∗ and
B′ : W →W ∗, we have that equality (23.3) is equivalent to:

(23.4) B′ ◦ T = S∗ ◦B.

Taking adjoints on both sides of (23.4) we get an equivalent equality

T ∗ ◦B′ = B ◦ S,

which yields:

S = B−1 ◦ T ∗ ◦B′.

23.2. A bit of exterior algebra. Recall that, given a vector space V and
a nonnegative integer k, the k-th exterior power of V consists of a vector
space

∧
k V and an alternating k-linear map

V k 3 (v1, . . . , vk) 7−→ v1 ∧ . . . ∧ vk ∈
∧
k

V

such that the following property holds: for every vector space W and every
alternating k-linear map B : V k →W there exists a unique linear transfor-
mation B :

∧
k V → W such that B(v1 ∧ . . . ∧ vk) = B(v1, . . . , vk), for all

v1, . . . , vk ∈ V . In particular, setting W = R we obtain that the dual space
of
∧
k V can be naturally identified with the space of alternating k-linear

forms on V by associating α ∈
(∧

k V )∗ to the alternating k-linear form:

V k 3 (v1, . . . , vk) 7−→ α(v1 ∧ . . . ∧ vk) ∈ R.

If (ei)
n
i=1 is a basis of V then

(23.5) ei1 ∧ . . . ∧ eik , 1 ≤ i1 < · · · < ik ≤ n

is a basis of
∧
k V , so that the dimension of

∧
k V is

(
n
k

)
= n!

(n−k)!k! for k ≤ n
and zero for k > n, where n denotes the dimension of V . In particular, the
dimension of

∧
n V is equal to 1.

We have a bilinear map

〈·, ·〉 :
∧
k

V ×
∧
k

V ∗ −→ R

characterized by the equality

(23.6) 〈v1 ∧ . . . ∧ vk, α1 ∧ . . . ∧ αk〉 = det
(
αi(vj)

)
k×k,

for all v1, . . . , vk ∈ V and α1, . . . , αk ∈ V ∗. Such bilinear map induces a
linear map

(23.7)
∧
k

V ∗ 3 ω 7−→ 〈·, ω〉 ∈
(∧

k

V
)∗

which is easily shown to be an isomorphism using bases of the form (23.5).
We will use (23.7) to identify

∧
k V
∗ with the dual space of

∧
k V . This yields
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an identification of
∧
k V
∗ with the space of alternating k-linear forms on V

that associates

α1 ∧ . . . ∧ αk ∈
∧
k

V ∗

to the alternating k-linear form given by

(α1 ∧ . . . ∧ αk)(v1, . . . , vk) = det
(
αi(vj)

)
k×k, v1, . . . , vk ∈ V,

for all α1, . . . , αk ∈ V ∗. Similarly,
∧
k V
∼=
∧
k V
∗∗ is identified with the

space of alternating k-linear forms on V ∗ by associating v1∧ . . .∧vk ∈
∧
k V

to the alternating k-linear form given by

(v1 ∧ . . . ∧ vk)(α1, . . . , αk) = det
(
αi(vj)

)
k×k, α1, . . . , αk ∈ V ∗

for all v1, . . . , vk ∈ V .
Given vector spaces V and W and a linear transformation T : V → W ,

there exists a unique linear transformation∧
k

T :
∧
k

V −→
∧
k

W

satisfying (∧
k

T
)

(v1 ∧ . . . ∧ vk) = T (v1) ∧ . . . ∧ T (vk)

for all v1, . . . , vk ∈ V . We call
∧
k T the k-th exterior power of T . For

simplicity, we write simply T∗ instead of
∧
k T when there is no risk of

confusion. Using the identification between the exterior power and the space
of alternating multilinear forms, the map T∗ is given by

(T∗λ)(α1, . . . , αk) = λ
(
T ∗(α1), . . . , T ∗(αk)

)
,

for all α1, . . . , αk ∈ W ∗ and every alternating k-linear form λ on V ∗. The
map ∧

k

T ∗ :
∧
k

W ∗ −→
∧
k

V ∗

given by the k-th exterior power of the adjoint of T will be simply denoted
by T ∗ when there is no risk of confusion. Again, using the identification
between the exterior power and the space of alternating multilinear forms,
we have

(T ∗ω)(v1, . . . , vk) = ω
(
T (v1), . . . , T (vk)

)
,

for all v1, . . . , vk ∈ V and every alternating k-linear form ω on W . The map
T ∗ :

∧
kW

∗ →
∧
k V
∗ is usually known as the pull-back map of alternating

k-linear forms and T ∗ω is the pull-back of ω under T .
For λ ∈

∧
k V , ω ∈

∧
kW

∗ and a linear map T : V → W we have the
equality

〈T∗(λ), ω〉 = 〈λ, T ∗(ω)〉
which means that T ∗ :

∧
kW

∗ →
∧
k V
∗ is identified with the adjoint of

T∗ :
∧
k V →

∧
kW .
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If B : V × V → R is a bilinear form, which we identify with a linear map
from V to V ∗, then ∧

k

B :
∧
k

V −→
∧
k

V ∗ ∼=
(∧

k

V
)∗

is identified with a bilinear form on
∧
k V that is characterized by the equality(∧

k

B
)

(v1 ∧ . . . ∧ vk, w1 ∧ . . . ∧ wk) = det
(
B(vi, wj)

)
k×k,

for all v1, . . . , vk, w1, . . . , wk ∈ V . Clearly, if B is symmetric then
∧
k B

is symmetric. Moreover, if B is nondegenerate then B : V → V ∗ is an
isomorphism, so that

∧
k B :

∧
k V →

∧
k V
∗ is also an isomorphism and∧

k B is nondegenerate. Finally, if B is symmetric and positive definite (i.e.,
B is an inner product) then

∧
k B is also symmetric and positive definite.

This can be seen by observing that if (ei)
n
i=1 is a B-orthonormal basis for V

then (23.5) is a
∧
k B-orthonormal basis for

∧
k V .

23.3. Determinant of a linear transformation. If we identify
∧
k V
∗

with the space of alternating k-linear forms on V then a basis for the one-
dimensional space

∧
n(Rn)∗ is given by the determinant map

det : (Rn)n −→ R

where det(v1, . . . , vn) is understood as the determinant of the matrix having
v1, . . . , vn ∈ Rn in its columns (or rows). Moreover, if (αi)

n
i=1 is dual to the

canonical basis of Rn then:

det = α1 ∧ . . . ∧ αn.

If T : Rn → Rn is a linear transformation then the pull-back T ∗ det is
simply the product of det by the scalar det(T ), which is the determinant of
T , i.e., the determinant of the matrix that represents T with respect to the
canonical basis. More generally, if V is any n-dimensional vector space and
T : V → V is a linear transformation then

∧
n V
∗ is a one-dimensional space

and thus the linear map T ∗ :
∧
n V
∗ →

∧
n V
∗ is given by multiplication by

a scalar. Such scalar is the determinant of T , i.e., the determinant of the
matrix that represents T with respect to an arbitrary basis of V . Here it is
crucial that one uses the same basis for the domain and counterdomain of
T , otherwise the determinant will depend on the choices of bases.

If V and W are vector spaces having the same dimension n, one cannot
in general define a determinant for a linear transformation T : V → W .
Namely, in this context it doesn’t make sense to have “the same basis” on
V and W and T ∗ :

∧
nW

∗ →
∧
n V
∗ is a linear transformation between

distinct one-dimensional spaces and thus it is not multiplication by a scalar.
Yet, a determinant becomes well-defined once more structure is added to
the vector spaces.
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Definition 23.2. If V is a vector space, then a volume form on V is a
nonzero element ω of

∧
n V
∗, where n denotes the dimension of V . If (V, ω)

is a vector space endowed with a volume form then a unit volume positive
basis of V is a basis (ei)

n
i=1 of V such that ω(e1, . . . , en) = 1.

Clearly, if ω is a volume form on V then {ω} is a basis of
∧
n V
∗ and any

other volume form on V is of the form c ω, for some c 6= 0. For every basis
(ei)

n
i=1 of V there exists a unique volume form on V such that (ei)

n
i=1 is a

unit volume positive basis of V ; such volume form is given by α1 ∧ . . .∧αn,
with (αi)

n
i=1 the basis dual to (ei)

n
i=1. The volume form on Rn that makes

the canonical basis a unit volume positive basis is the determinant, which is
called the canonical volume form of Rn.

We can now define determinants for linear transformations between vector
spaces of the same dimension endowed with volume forms.

Definition 23.3. Let (V, ω) and (W,ω′) be vector spaces having the same
dimension and endowed with volume forms. Given a linear transformation
T : V →W , its determinant is defined as the real number det(T ) such that

T ∗ω′ = det(T )ω,

i.e., det(T ) is the unique entry of the 1× 1 matrix that represents the linear
map T ∗ :

∧
nW

∗ →
∧
n V
∗ with respect to the bases {ω′} and {ω}, where

n = dim(V ) = dim(W ).

Note that if (ei)
n
i=1 is a unit volume positive basis for V and (e′i)

n
i=1 is a

unit volume positive basis for W then

det(T ) = (T ∗ω′)(e1, . . . , en) = (α′1 ∧ . . . ∧ α′n)
(
T (e1), . . . , T (en)

)
,

where (α′i)
n
i=1 denotes the basis dual to (e′i)

n
i=1. Thus det(T ) is simply the

determinant of a matrix that represents T with respect to unit volume pos-
itive bases of V and W .

Clearly, if (V, ω), (W,ω′) and (Z, ω′′) are vector spaces having the same
dimension endowed with volume forms and if T : V → W and S : W → Z
are linear transformations then

det(S ◦ T ) = det(S) det(T ).

Definition 23.4. If ω is a volume form on a vector space V then the volume
form ω∗ induced on the dual space V ∗ is defined by requiring that {ω} be
the dual basis of {ω∗} when

∧
n V
∗ is identified with the dual space of∧

n V
∗∗ ∼=

∧
n V through the isomorphism (23.7) induced by the bilinear

pairing (23.6).

Thus, the induced volume form ω∗ ∈
∧
n V on the dual space of V is

characterized by

〈ω∗, ω〉 = 1,

with 〈·, ·〉 defined as in (23.6). It follows that if (ei)
n
i=1 is a unit volume

positive basis for (V, ω) then the dual basis (αi)
n
i=1 is a unit volume positive
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basis for (V ∗, ω∗), i.e., ω∗ = e1 ∧ . . .∧ en if ω = α1 ∧ . . .∧αn. Note also that

(23.8) (c ω)∗ =
1

c
ω∗,

for any c 6= 0.
If V and W have the same dimension and are endowed with volume forms

and if their dual spaces V ∗ and W ∗ are endowed with the induced volume
forms then

det(T ∗) = det(T ),

for any linear transformation T : V →W , where T ∗ : W ∗ → V ∗ denotes its
adjoint. Namely, the pull-back map T ∗ :

∧
nW

∗ →
∧
n V
∗ associated to T is

identified with the adjoint of the pull-back map (T ∗)∗ = T∗ :
∧
n V →

∧
nW

associated to T ∗.

23.4. Volume forms and Lebesgue measure. Unlike the space Rn, an
abstract n-dimensional vector space V does not have a canonical translation
invariant locally finite measure. If we identify V with Rn using a linear
isomorphism then such identification can be used to carry the Lebesgue
measure m of Rn to V , but the measure obtained on V will depend on the
chosen isomorphism. Two measures obtained by this procedure will be a
scalar multiple of each other (which follows from (23.10) below) and we will
call anyone of them a Lebesgue measure on V . Here we will show that a
specific Lebesgue measure on V is determined by the choice of a volume
form on V , which justifies the name “volume form”.

We start by recalling that if T : Rn → Rn is a linear transformation then

(23.9) m
(
T [B]

)
= |det(T )|m(B),

for any Lebesgue measurable subset B of Rn. Equality (23.9) can be ob-
tained from the change of variables theorem for Lebesgue integration (The-
orem 20.1), though in fact it is often proven as a lemma which is used in
the proof of Theorem 20.1. If T is a linear isomorphism, equality (23.9) is
equivalent to:

(23.10) T∗m =
1

|det(T )|
m.

Since a linear isomorphism of Rn maps Lebesgue measurable sets to
Lebesgue measurable sets, we can define the Lebesgue σ-algebra of an arbi-
trary n-dimensional vector space V as the σ-algebra consisting of the images
of the Lebesgue measurable subsets ofRn under any linear isomorphism from
Rn to V . We are now ready to define the Lebesgue measure associated to a
volume form.

Definition 23.5. Let V be a vector space and ω be a volume form on V . The
Lebesgue measure on V associated to ω is the measure mω on the Lebesgue
σ-algebra of V defined by T∗m, where m denotes the Lebesgue measure
of Rn and T : Rn → V is any linear isomorphism such that T ∗ω = det
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(equivalently, T : Rn → V is any linear isomorphism that maps the canonical
basis of Rn to a unit volume positive basis of (V, ω)).

Using equality (23.10) we show that the Lebesgue measure mω is indeed
well-defined, i.e., it does not depend on the choice of the linear isomorphism
T . Namely, if S : Rn → V is another linear isomorphism with S∗ω = det
then S = T ◦ L, with L : Rn → Rn a linear isomorphism with L∗ det = det,
i.e., det(L) = 1. We then have L∗m = m and thus T∗m = S∗m.

Clearly, the Lebesgue σ-algebra of V is the completion of the Borel σ-
algebra of V with respect to any Lebesgue measure mω (as it is the case in
Rn). Note also that the Lebesgue measure of Rn is the Lebesgue measure
mdet associated to the canonical volume form of Rn.

The fact that the Lebesgue measure of Rn is invariant under translations
yields that any Lebesgue measure mω on a vector space V is also invariant
under translations, as shown below.

Proposition 23.6. If V is a vector space endowed with a volume form ω
then the Lebesgue measure mω is invariant under translations, i.e.,

mω(B + v) = mω(B),

for any v ∈ V and any Lebesgue measurable subset B of V , where:

B + v =
{
x+ v : x ∈ B

}
.

Proof. If T : Rn → V is a linear isomorphism with T ∗ω = det then:

mω(B+v) = m
(
T−1[B+v]

)
= m

(
T−1[B]+T−1(v)

)
= m

(
T−1[B]

)
= mω[B],

since the Lebesgue measure m of Rn is invariant under translations. �

We can now generalize (23.9) to a linear map between arbitrary vector
spaces having the same dimension and endowed with volume forms.

Proposition 23.7. Let (V, ω) and (W,ω′) be vector spaces having the same
dimension endowed with volume forms ω and ω′. If T : V → W is a linear
transformation, then

mω′
(
T [B]

)
= |det(T )|mω(B),

for any Lebesgue measurable subset B of V . In particular, if T is an iso-
morphism then:

T∗mω =
1

|det(T )|
mω′ .

Proof. Let L1 : Rn → V , L2 : Rn →W be linear isomorphisms with

L∗1 ω = det, L∗2 ω
′ = det,

so that

mω = (L1)∗m, mω′ = (L2)∗m
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and det(L1) = det(L2) = 1 if Rn is endowed with its canonical volume
form det. Setting T ′ = L−1

2 ◦ T ◦ L1 : Rn → Rn and B′ = L−1
1 [B] then

L−1
2

[
T [B]

]
= T ′[B′] and

mω′
(
T [B]

)
= m

(
T ′[B′]

)
= |det(T ′)|m(B′) = |det(T ′)|mω(B),

where det(T ′) = det(L2)−1 det(T ) det(L1) = det(T ). �

Corollary 23.8. If V is a vector space endowed with a volume form ω then

mc ω = |c|mω,

for any c 6= 0.

Proof. Use Proposition 23.7 with W = V , ω′ = c ω and T the identity map
of V . �

Corollary 23.9. If V is a vector space and ω and ω′ are volume forms on
V then mω = mω′ if and only if ω = ω′ or ω = −ω′. �

Example 23.10. Let B : V × V → R be a symmetric bilinear form. If ω
is a volume form on V and ω∗ is the volume form induced on V ∗, we can
consider the determinant det(B) of the linear transformation B : V → V ∗

that is identified with B with respect to ω and ω∗. If ω is replaced with c ω
for some c 6= 0 then ω∗ is replaced with 1

c ω
∗ (see (23.8)) and therefore the

determinant of B gets multiplied by 1
c2

. If B is nondegenerate, this implies
that there exists a volume form ωB on V which makes the absolute value of
the determinant of B with respect to ωB and ω∗B equal to 1; moreover, the
volume form ωB is unique up to a sign. More explicitly, we have

ωB = ±
√
| det(B)|ω,

where ω is an arbitrary volume form on V and det(B) is the determinant
of B with respect to ω and ω∗. Given a basis (ei)

n
i=1 of V with dual basis

(αi)
n
i=1, by setting ω = α1 ∧ . . . ∧ αn we obtain

ωB = ±
√
|det(B)| α1 ∧ . . . ∧ αn,

where det(B) is the determinant of B with respect to ω and ω∗, i.e., the
determinant of the matrix that represents the bilinear form B with respect
to the basis (ei)

n
i=1. In particular, if the basis (ei)

n
i=1 is B-orthogonal and

|B(ei, ei)| = 1 for all i = 1, . . . , n then ωB = ±α1∧ . . .∧αn. Note that if B is
positive definite (i.e., B is an inner product) then det(B) is actually positive
for any choice of ω, as the sign of det(B) is independent of the volume form
ω and det(B) = 1 if ω = α1 ∧ . . .∧αn with (αi)

n
i=1 dual to a B-orthonormal

basis (ei)
n
i=1 of V .

In order to fix a sign for ωB one could choose an orientation of V and
demand that ωB take a positive value on positive bases of V . However, the
Lebesgue measure associated to ωB does not depend on the sign of ωB and
therefore we have a Lebesgue measure mB associated to any nondegenerate
symmetric bilinear form B : V × V → R. In particular, there is a Lebesgue



A BASIC INTRODUCTION TO PROBABILITY AND STATISTICS 84

measure associated to any choice of inner product. For example, in Rn the
usual Lebesgue measure is associated to the canonical inner product.

24. The multivariate normal distribution

After the conclusion of our review of linear and multilinear algebra we are
ready to generalize the normal distribution to vector spaces. A convenient
way to define normal distributions on vector spaces is by relating them
to normal distributions on the real line by means of linear functionals. A
normal distribution on a vector space is also known as a Gaussian measure.
Though the theory of Gaussian measures on infinite-dimensional topological
vector spaces has been widely studied, we will here focus only on the much
simpler finite-dimensional case.

Definition 24.1. Let V be a real finite-dimensional vector space. A V -
valued random vector X is said to have a normal distribution (alternatively,
X is a normal random vector or PX is a normal distribution on V ) if the
random variable α(X) has a normal distribution for all α ∈ V ∗.

Since the product of a normal random variable by a real number is normal
(Proposition 21.3) it follows that a normal random variable is the same
thing as a normal R-valued random vector in the sense of Definition 24.1.
Moreover, since a normal random variable always has a finite variance, we
have that a normal random vector is always square integrable and therefore
it has a well-defined expected value E(X) ∈ V and a well-defined variance
Var(X) ∈ V ⊗ V .

As in the univariate case, the expected value and the variance completely
determine a normal distribution.

Proposition 24.2. If V is a real finite-dimensional vector space then two
V -valued normal random vectors with the same expected value and the same
variance have the same distribution.

Proof. Follows directly from Propositions 14.2 and 21.5. �

Proposition 24.2 motivates the notation introduced below.

Definition 24.3. Given a real finite-dimensional vector space V , a vector
µ ∈ V and a positive semi-definite symmetric bilinear form Σ ∈ V ⊗ V on
V ∗, we write

(24.1) X ∼ N(µ,Σ)

if X is a V -valued random vector with E(X) = µ and Var(X) = Σ. In this
case we also say that the probability measure PX is a normal distribution
with mean µ and variance Σ.

We will prove later in this section (Proposition 24.11) that for every µ ∈ V
and every positive semi-definite symmetric bilinear form Σ ∈ V ⊗ V there
exists a V -valued random vector X with X ∼ N(µ,Σ). It will then follow
that the normal distribution on V can be thought as a family of probability
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measures on the Borel σ-algebra of V indexed (in a one-to-one manner) by
the parameters µ ∈ V and Σ ∈ V ⊗ V , with Σ positive semi-definite and
symmetric. As in the univariate case, it is more common here to call µ
the mean instead of expected value. Note that Σ corresponds to what we
denoted by σ2 in the univariate case, not to σ.

The following result is a trivial consequence of Definition 24.1 and of the
fact that the sum of a normal random variable with a constant is again
normal (Proposition 21.3).

Proposition 24.4. Let V and W be real finite-dimensional vector spaces
and X be a V -valued normal random vector. If T : V →W is a linear map
and w ∈W then T (X) + w is a W -valued normal random vector. �

Remark 24.5. If V is a real finite-dimensional vector space and X is a normal
V -valued random vector such that P(X ∈W ) = 1 for some subspace W of V
then we can regard X as a W -valued random vector, possibly by modifying
X on a set of probability zero. Clearly, X remains normal when regarded as
a W -valued random vector as every linear functional on W admits a linear
extension to V .

It would be nice to have a concrete description of the distribution of a
normal V -valued random vector X in terms of a probability density function
with respect to a Lebesgue measure, like in the univariate case. However,
if the variance Var(X) is degenerate then the support of PX is contained
in a proper affine subspace of V (Corollary 11.6). Since a proper affine
subspace has null Lebesgue measure, in this case PX will not be absolutely
continuous with respect to a Lebesgue measure. We will then work first with
the case in which X is nondegenerate, meaning that the variance Var(X) is
nondegenerate (and thus positive definite).

A good place to begin searching for probability density functions is with
exponentials of (multivariate) polynomials of degree two. In coordinate-free
language, a (real-valued) polynomial with degree less than or equal to 2 on
a real finite-dimensional vector space V is a map p : V → R of the form

p(x) = B(x, x) + γ(x) + c, x ∈ V,

with B : V × V → R a symmetric bilinear form, γ ∈ V ∗ and c ∈ R. The
coefficients B, γ and c of the polynomial p are determined from the map
p, which can be seen by noting that, for any x ∈ V , the coefficients of
the polynomial R 3 t 7→ p(tx) ∈ R are B(x, x), γ(x) and c. Using a B-
orthogonal basis of V one can easily show (as in the proof of Lemma 24.6
below) that the exponential of p will have an infinite integral with respect to
a Lebesgue measure on V unless B is negative definite. Therefore we only
consider exponentials of second degree polynomials with a negative definite
leading coefficient.

Lemma 24.6. Let V be a real finite-dimensional vector space, ω be a volume
form on V and denote by mω the corresponding Lebesgue measure on V . If
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B : V × V → R is a positive definite symmetric bilinear form then the
integral ∫

V
e−B(x,x) dmω(x)

is a (finite) positive number and therefore

fX(x) = c e−B(x,x), x ∈ V

is the probability density function of some V -valued random vector X with
respect to mω for a unique c > 0. Moreover, a V -valued random vector X
with probability density function fX with respect to mω is normal.

Proof. Let T : V → Rn be a linear map that sends a B-orthonormal basis
of V to the canonical basis of Rn, so that

(24.2) 〈T (x), T (y)〉 = B(x, y),

for all x, y ∈ V , where 〈·, ·〉 denotes the canonical inner product of Rn. By
Proposition 23.7 we have

(24.3) T∗mω =
1

|det(T )|
m,

where m denotes the Lebesgue measure of Rn and det(T ) is the determinant
of T with respect to the volume forms ω and det.

Denoting by f : V → R the map given by f(x) = e−B(x,x), for all x in
V , the abstract “change of variables” theorem for push-forward measures
(Proposition 9.1) gives:∫

V
f dmω =

1

|det(T )|

∫
Rn

f ◦ T−1 dm.

By (24.2), for all z = (z1, . . . , zn) ∈ Rn we have

(f ◦ T−1)(z) = e−〈z,z〉 =

n∏
i=1

e−z
2
i

and then an application of Fubini–Tonelli’s Theorem yields that the integral
of f ◦ T−1 with respect to m is finite. This concludes the proof of the first
part of the lemma.

Now let c > 0 be such that fX = cf has integral with respect to mω

equal to 1 and let us prove that a V -valued random vector X having fX as
a probability density function with respect to mω is normal. To this aim, it
suffices to prove that α(X) is normal for all α ∈ V ∗ with B−1(α, α) = 1, as
the product of a normal random variable by a real number is normal. We
can then assume that α = α1, with (αi)

n
i=1 a B−1-orthonormal basis of V ∗.

Let (ei)
n
i=1 be the basis of V given by ei = B−1(αi), i = 1, . . . , n, so

that (ei)
n
i=1 is B-orthonormal, (αi)

n
i=1 is dual to (ei)

n
i=1 and the linear map

T : V → Rn that sends (ei)
n
i=1 to the canonical basis of Rn has (αi)

n
i=1 as its

coordinate functionals. Using (24.3) and the results discussed in Example 8.7
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we get that a probability density function for T (X) with respect to m is given
by

fT (X) =
1

|det(T )|
fX ◦ T−1 =

c

|det(T )|
f ◦ T−1,

so that

fT (X)(z) =
c

|det(T )|

n∏
i=1

e−z
2
i ,

for all z = (z1, . . . , zn) ∈ Rn. It now follows from Proposition 18.10 that a
probability density function for α(X) = α1(X) is given by

fα(X)(z1) = c1e
−z21 , z1 ∈ R,

for some positive constant c1 and hence α(X) is normal. �

Let Z1, . . . , Zn be independent standard normal random variables and
consider the Rn-valued random vector Z = (Z1, . . . , Zn). From (21.2) and
Proposition 18.10 we see that a probability density function fZ : Rn → R

for Z with respect to the Lebesgue measure m is given by

(24.4) fZ(z) =
1

(2π)
n
2

e−
1
2
〈z,z〉,

for all z ∈ Rn, where 〈·, ·〉 denotes the canonical inner product of Rn. Ap-
plying Lemma 24.6 with V = Rn, ω = det and B(z, z) = 1

2〈z, z〉 we obtain
that Z is normal. Clearly E(Z) = 0 and the covariance matrix of Z is the
identity matrix, as the covariance of independent random variables is zero
(Corollary 15.11). Thus, Var(Z) ∈ Rn ⊗Rn is the canonical inner product
of Rn∗ (i.e., the inner product that makes the dual of the canonical basis of
Rn orthonormal).

Definition 24.7. An Rn-valued random vector Z is said to have a standard
normal distribution (alternatively, Z is a standard normal random vector
or PZ is the standard normal distribution on Rn) if (24.4) is a probability
density function for Z with respect to Lebesgue measure.

We can now use (24.4) to obtain an explicit formula for a probability
density function for any nondegenerate normal random vector. Let then
V be a real-finite dimensional vector space, µ ∈ V and Σ ∈ V ⊗ V be a
positive definite symmetric bilinear form on V ∗. If T : Rn → V is a linear
isomorphism that maps the canonical basis of Rn to a Σ−1-orthonormal
basis of V then

(24.5) Σ−1
(
T (z), T (w)

)
= 〈z, w〉,

for all z, w ∈ Rn and

(24.6) 〈T ∗(α), T ∗(β)〉 = Σ(α, β),

for all α, β ∈ V ∗, where 〈·, ·〉 denotes both the canonical inner product of
Rn and of Rn∗. Equality (24.6) says that T ⊗ T : Rn ⊗Rn → V ⊗ V maps
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the canonical inner product of Rn∗ to Σ and therefore, if Z is a standard
normal Rn-valued random vector we have (Corollary 11.9):

Var
(
T (Z)

)
= Σ.

Setting X = T (Z) +µ, we then conclude using Proposition 24.4 that X is a
V -valued normal random vector with E(X) = µ and Var(X) = Σ.

Let us now write down a explicit formula for a probability density function
for X. Let ω be a volume form on V , ω∗ be the induced volume form on
the dual space V ∗ and mω denote the Lebesgue measure on V associated to
ω. By Proposition 23.7 we have

(24.7) T∗m =
1

|det(T )|
mω,

where m denotes the Lebesgue measure on Rn and det(T ) denotes the de-
terminant of T with respect to the volume forms det and ω. Using (24.7),
the translation invariance of mω and the results discussed in Example 8.7
we obtain that a probability density function for X = T (Z)+µ with respect
to mω is given by

fX(x) =
1

|det(T )|
fZ
(
T−1(x− µ)

)
,

for all x ∈ V . Now (24.4) and (24.5) yield:

(24.8) fX(x) =
1

(2π)
n
2 |det(T )|

e−
1
2

Σ−1(x−µ,x−µ), x ∈ V.

The formula for fX should involve only µ and Σ, so we must get rid of det(T )
somehow. To this aim, note that equality (24.6) can be rewritten as

(24.9) T ◦ η ◦ T ∗ = Σ,

where η : Rn∗ → Rn is the linear map identified with the canonical inner
product of Rn∗. Now endowing Rn∗ with the volume form induced on the
dual space by det we have det(η) = 1 and therefore taking determinants on
both sides of the equality (24.9) we obtain:

(24.10)
(
det(T )

)2
= det(Σ).

Taking (24.8) and (24.10) together and keeping Proposition 24.2 in mind we
establish the following result.

Proposition 24.8. Let V be a real finite-dimensional vector space, µ ∈ V
and Σ ∈ V ⊗ V be a positive definite symmetric bilinear form on V ∗. A V -
valued random vector X satisfying X ∼ N(µ,Σ) exists. Moreover, if ω is a
volume form on V then a V -valued random vector X satisfies X ∼ N(µ,Σ)
if and only if the map fX : V → R defined by

(24.11) fX(x) =
1√

(2π)n det(Σ)
e−

1
2

Σ−1(x−µ,x−µ), x ∈ V

is a probability density function for X with respect to the Lebesgue measure
mω on V associated to ω, where det(Σ) denotes the determinant of the linear
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map Σ : V ∗ → V with respect to the volume forms ω∗ and ω (as usual, ω∗

denotes the volume form on the dual space V ∗ induced by ω). �

Corollary 24.9. Let V be a real finite-dimensional vector space and X be
a V -valued random vector. We have that X is normal with nondegenerate
variance if and only if X admits a probability density function with respect
to a Lebesgue measure on V that is equal to the exponential of a second
degree polynomial p : V → R with a negative definite leading coefficient.

Proof. If X ∼ N(µ,Σ) with µ ∈ V and nondegenerate Σ ∈ V ⊗ V then
fX defined by (24.11) is a probability density function for X with respect
to a Lebesgue measure mω and fX is the exponential of a second degree
polynomial whose leading coefficient −1

2Σ−1 is negative definite. Conversely,
let

p(x) = −B(x, x) + γ(x) + c, x ∈ V
be a second degree polynomial with B : V × V → R bilinear symmetric
positive definite, γ ∈ V ∗ and c ∈ R. Assume that

(24.12) V 3 x 7−→ ep(x) ∈ R
is a probability density function for X with respect to a Lebesgue measure
mω, where ω is a volume form on V . Setting

Σ =
1

2
B−1 ∈ V ⊗ V, µ = Σ(γ) =

1

2
B−1(γ) ∈ V

we obtain that p and the polynomial in the exponent in (24.11) are equal up
to the independent term. As both (24.12) and (24.11) have integral equal to
1 with respect to mω, it must be the case that the maps (24.12) and (24.11)
are equal and hence X ∼ N(µ,Σ). �

Remark 24.10. Recall from Proposition 11.5 that if a V -valued square inte-
grable random vector X has a degenerate variance Var(X) then the support
of PX is contained in a proper affine subspace of V which is a translation of
the vector subspace W of V annihilated by the kernel of the positive semi-
definite symmetric bilinear form Var(X) : V ∗ × V ∗ → R. Moreover, such
translation of W is the smallest affine subspace of V containing the support
of PX . Since an affine subspace of V containing the support of PX must con-
tain the expected value E(X) (Remark 11.2) we have that if E(X) = 0 then
the support of PX is actually contained in the vector subspace W . When
X is regarded as a W -valued random vector (possibly by modifying X on
a set of probability zero), the variance of X becomes nondegenerate as the
support of the distribution of X is not contained in a proper affine subspace
of W .

The remark above gives us the hint of how to construct a normal V -valued
random vector with prescribed degenerate variance.

Proposition 24.11. Let V be a real finite-dimensional vector space, µ ∈ V
and Σ ∈ V ⊗ V be a positive semi-definite symmetric bilinear form on V ∗.
There exists a V -valued random vector X with X ∼ N(µ,Σ).
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Proof. We can assume without loss of generality that µ = 0, as the general
case is obtained from this particular case by replacing X with X + µ. The
nondegenerate case was already handled in Proposition 24.8. If Σ is degen-
erate, let W be the subspace of V annihilated by the kernel of Σ, so that
Ker(Σ) = W o is the annihilator of W . If i : W → V denotes the inclu-
sion map and Y is a normal W -valued random vector with E(Y ) = 0 then
X = i(Y ) is a normal V -valued random vector with E(X) = 0 and:

Var(X) = (i⊗ i)
(
Var(Y )

)
.

More concretely, the map i⊗ i is given by

(i⊗ i)(B)(α, β) = B(α|W , β|W ),

for all α, β ∈ V ∗ and any bilinear form B : W ∗ × W ∗ → R. Since the
restriction map

(24.13) V ∗ 3 α 7−→ α|W ∈W ∗

is a surjective linear map whose kernel is W o = Ker(Σ), we have that the
positive semi-definite symmetric bilinear form Σ : V ∗×V ∗ → R passes to the
quotient through (24.13) and defines a positive definite symmetric bilinear
form Σ1 : W ∗ ×W ∗ → R such that

Σ1(α|W , β|W ) = Σ(α, β),

for all α, β ∈ V ∗. The latter equality means that (i ⊗ i)(Σ1) = Σ and the
conclusion is now obtained by using Proposition 24.8 to get Y ∼ N(0,Σ1)
and by setting X = i(Y ). �

We need a lemma for the proof of our next result.

Lemma 24.12. If (Xi)
n
i=1 is a finite independent family of normal ran-

dom variables then any linear combination
∑n

i=1 ciXi is a normal random
variable, where c1, . . . , cn ∈ R.

Proof. We can assume without loss of generality that all Xi are nondegen-
erate, as a degenerate normal random variable is almost surely constant
and the sum of a normal random variable with a random variable that is
almost surely constant is normal. If Xi ∼ N(µi, σ

2
i ) with µi ∈ R, σi > 0,

i = 1, . . . , n, then Propositions 21.5 and 18.10 yield a probability density
function

fX(x) =
1

(2π)
n
2 σ

ep(x), x ∈ Rn

for theRn-valued random vectorX = (X1, . . . , Xn) with respect to Lebesgue
measure, where

p(x) = −
n∑
i=1

(xi − µi)2

2σ2
i

, x ∈ Rn

and σ = σ1 · · ·σn. Since p is a second degree polynomial with a negative
definite leading coefficient, Corollary 24.9 implies that the random vector X



A BASIC INTRODUCTION TO PROBABILITY AND STATISTICS 91

is normal. The conclusion now follows by noting that
∑n

i=1 ciXi = α(X) for
a linear functional α ∈ Rn∗. �

Given a finite family (Vi)i∈I of vector spaces, we denote by
⊕

i∈I Vi its
external direct sum, which is the cartesian product

∏
i∈I Vi endowed with

the operations defined coordinatewise. Let us show now that by combining
independent Vi-valued normal random vectors into a

⊕
i∈I Vi-valued random

vector we obtain again a normal random vector.

Proposition 24.13. Let (Ω,A,P) be a probability space and for i = 1, . . . , n,
let Vi be a real finite-dimensional vector space and Xi : Ω→ Vi be a normal
random vector. If the family (Xi)

n
i=1 is independent and V =

⊕n
i=1 Vi then

the random vector X = (Xi)
n
i=1 : Ω→ V is normal.

Proof. We have to check that α(X) is normal for any α ∈ V ∗. A linear
functional α ∈ V ∗ is of the form

(24.14) α(x1, . . . , xn) =
n∑
i=1

αi(xi), x1 ∈ V1, . . . , xn ∈ Vn,

with αi ∈ V ∗i for i = 1, . . . , n. We have α(X) =
∑n

i=1 αi(Xi) and the

conclusion follows from Lemma 24.12 keeping in mind that
(
αi(Xi)

)n
i=1

is
an independent family of normal random variables (Proposition 18.6). �

Recall that two independent (square integrable) random variables have
zero covariance (Corollary 15.11) and that, in general, the condition of hav-
ing zero covariance is much weaker than independence (Example 19.3). It
turns out that for a finite family of random variables that constitute the
coordinates of a normal random vector the condition of pairwise zero co-
variance is equivalent to independency.

Proposition 24.14. Let (Ω,A,P) be a probability space and for i = 1, . . . , n,
let Vi be a real finite-dimensional vector space and Xi : Ω→ Vi be a random
vector. If the random vector X = (Xi)

n
i=1 : Ω →

⊕n
i=1 Vi is normal and if

Cov(Xi, Xj) = 0 for all i, j = 1, . . . , n with i 6= j then the family (Xi)
n
i=1 is

independent.

Proof. By replacing Xi with Xi−E(Xi) we can assume without loss of gen-
erality that E(Xi) = 0, for all i = 1, . . . , n (keep in mind Proposition 18.6).
Moreover, replacing Vi with the smallest subspace of Vi containing the sup-
port of PXi (which is the subspace annihilated by the kernel of Var(Xi)) we
can assume without loss of generality that Var(Xi) is nondegenerate, for all
i = 1, . . . , n (see Remarks 24.5 and 24.10).

The dual space of V =
⊕n

i=1 Vi can be identified with
⊕n

i=1 V
∗
i by as-

sociating α ∈ V ∗ with the sequence (αi)
n
i=1 ∈

⊕n
i=1 V

∗
i such that (24.14)

holds. The fact that Cov(Xi, Xj) = 0 for all i 6= j implies that the variance
Σ = Var(X) : V ∗ × V ∗ → R of X is given by

Σ
(
(α1, . . . , αn), (β1, . . . , βn)

)
=

n∑
i=1

Σi(αi, βi),
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for all αi, βi ∈ V ∗i , i = 1, . . . , n, where Σi = Var(Xi) for i = 1, . . . , n.
Since each Σi is nondegenerate we have that also Σ is nondegenerate and
thus Proposition 24.8 yields that a probability density function of X with
respect to a Lebesgue measure of V is of the form

fX(x) = c
n∏
i=1

e−
1
2

Σ−1
i (xi,xi), x = (x1, . . . , xn) ∈ V,

for some c > 0. Since the product of Lebesgue measures on the spaces Vi is a
Lebesgue measure on V , Proposition 18.10 applies and allows us to conclude
that the family (Xi)

n
i=1 is independent. �

Corollary 24.15. Let V be a real finite-dimensional vector space and let
Ti : V → Wi, i = 1, . . . , n, be linear maps, where each Wi is a real finite-
dimensional vector space. If X is a normal V -valued random vector and if
Cov

(
Ti(X), Tj(X)

)
= 0 for all i, j = 1, . . . , n with i 6= j then the family(

Ti(X)
)n
i=1

is independent.

Proof. Set W =
⊕n

i=1Wi and let T : V → W be the linear map whose i-th
coordinate is Ti, for all i = 1, . . . , n. The conclusion follows from Proposi-
tion 24.14 noting that T (X) is normal. �

Corollary 24.16. Let V be a real finite-dimensional vector space and X be
a V -valued normal random vector with nondegenerate variance Σ ∈ V ⊗ V .
If V =

⊕n
i=1 Vi is a Σ−1-orthogonal direct sum decomposition and Pi is the

Σ−1-orthogonal projection onto Vi, i = 1, . . . , n, then the family
(
Pi(X)

)n
i=1

is independent.

Proof. Given i, j = 1, . . . , n with i 6= j we check that

Cov
(
Pi(X), Pj(X)

)
= 0.

For all α ∈ V ∗i and β ∈ V ∗j , we have:

Cov
(
Pi(X), Pj(X)

)
(α, β) = Σ(α ◦ Pi, β ◦ Pj) = (β ◦ Pj)

(
Σ(α ◦ Pi)

)
.

Now note that for any γ ∈ V ∗ the vector Σ(γ) ∈ V is Σ−1-orthogonal to
the kernel of γ as Σ−1

(
Σ(γ), v

)
= γ(v) = 0 for every v ∈ Ker(γ). Then

Σ(α ◦Pi) is Σ−1-orthogonal to the kernel of Pi and therefore Σ(α ◦Pi) ∈ Vi.
The proof is concluded by noting that Pj annihilates Vi. �

25. Expected value of quadratic forms

If X is an integrable random vector then the expected value of a linear
function of X can be easily calculated by applying the same linear function
to the expected value of X (see (11.1)). The next natural question is how
to determine the expected value of a quadratic form in X. Recall that a
quadratic form on a vector space V is a map of the form

V 3 x 7−→ B(x, x) ∈ R,
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where B : V × V → R is a bilinear form. It can be assumed without loss of
generality that B is symmetric, but we won’t do that as the formula that
we will obtain holds also if B is not symmetric.

Let V be a real finite-dimensional vector space, X be a square integrable
V -valued random vector, B : V ×V → R be a bilinear form and let us derive
a formula for the expected value of B(X,X). We consider first the case in
which E(X) = 0.

Let (ei)
n
i=1 be a basis of V and let V ∗ be endowed with its dual basis

(αi)
n
i=1. The matrix (Bij)n×n that represents the linear map B : V → V ∗

that is identified with the bilinear form B is given by

Bij = B(ej , ei), i, j = 1, . . . , n.

Writing X =
∑n

i=1 αi(X)ei, we obtain

B(X,X) =
n∑
i=1

n∑
j=1

Bjiαi(X)αj(X);

taking expected values on both sides of the equality and using E(X) = 0 we
get

E
(
B(X,X)

)
=

n∑
i=1

n∑
j=1

BjiΣ(αi, αj),

where Σ = Var(X) denotes the variance of X. Let (Σij)n×n denote the
matrix that represents the linear map Σ : V ∗ → V , so that

Σij = Σ(αj , αi) = Σ(αi, αj), i, j = 1, . . . , n

and:

(25.1) E
(
B(X,X)

)
=

n∑
j=1

n∑
i=1

BjiΣij =

n∑
j=1

(B ◦ Σ)jj =

n∑
i=1

(Σ ◦B)ii.

Recall that the trace of a linear transformation T from a finite-dimensional
vector space to itself, denoted by tr(T ), is defined as the trace (i.e., the sum
of the main diagonal elements) of the matrix that represents T with respect
to any basis (with the same basis being used in the domain and counter-
domain of T ). It is easy to prove that the trace of the representing matrix
does not depend on the choice of basis.

In (25.1) we have concluded the proof of the following result.

Proposition 25.1. Let V be a real finite-dimensional vector space and X
be a V -valued square integrable random vector with variance Σ ∈ V ⊗ V . If
E(X) = 0 then for any bilinear form B : V × V → R we have:

E
(
B(X,X)

)
= tr(B ◦ Σ) = tr(Σ ◦B). �

In order to obtain a matrix representation of Σ ◦B to compute the trace
we should multiply the matrices that represent Σ : V ∗ → V and B : V → V ∗

when regarded as linear transformations. Recall that the matrix represent-
ing a bilinear form is the transpose of the matrix representing the linear
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transformation it is identified with. In the case of Σ the distinction between
the two matrices is irrelevant as its matrix is symmetric. In the case of B, if
it is not symmetric, the distinction is not irrelevant for obtaining the correct
matrix representation of Σ ◦B but it is irrelevant for the value of the trace
since Σ is symmetric.

Corollary 25.2. Let V be a real finite-dimensional vector space and X be
a V -valued square integrable random vector with variance Σ ∈ V ⊗ V . For
any bilinear form B : V × V → R we have:

E
(
B(X,X)

)
= tr(Σ ◦B) +B

(
E(X), E(X)

)
.

Proof. Apply Proposition 25.1 to X−E(X) and compute the expected value
of B

(
X,E(X)

)
by noting that the map B

(
· , E(X)

)
is linear. �

The following is an interesting particular case of Corollary 25.2.

Corollary 25.3. Let V be a real finite-dimensional vector space and X
be a square integrable V -valued random vector with nondegenerate variance
Σ ∈ V ⊗ V . If ‖ · ‖ denotes the norm associated to the inner product Σ−1

then:

E
(
‖X‖2

)
= dim(V ) + ‖E(X)‖2.

Moreover, if P : V → W is the Σ−1-orthogonal projection onto a subspace
W of V then:

E
(
‖P (X)‖2

)
= dim(W ) +

∥∥P (E(X)
)∥∥2

.

Proof. The first equality follows directly from Corollary 25.2 by letting B
be the inner product Σ−1. For the second, we let B be the bilinear form

B = Σ−1(P · , P · )
which is identified with the linear transformation

(25.2) B = P ∗ ◦ Σ−1 ◦ P,
where P is regarded as a map from V to V . We have that the Σ−1-orthogonal
projection P : V → V is self-adjoint with respect to the inner product Σ−1,
i.e.

Σ−1(P · , · ) = Σ−1( · , P · )
which is equivalent to:

(25.3) Σ−1 ◦ P = P ∗ ◦ Σ−1.

From (25.2) and (25.3) we obtain

B = Σ−1 ◦ P 2 = Σ−1 ◦ P
and therefore Corollary 25.2 yields:

E
(
‖P (X)‖2

)
= E

(
B(X,X)

)
= tr(Σ ◦B) +B

(
E(X), E(X)

)
= tr(P ) +

∥∥P (E(X)
)∥∥2

= dim(W ) +
∥∥P (E(X)

)∥∥2
. �
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26. The basic set up of statistical modelling

Imagine we want to answer a question that can be studied through empir-
ical research. To do this, we gather relevant data for the question at hand.
These data can be obtained through a planned experiment or by collecting
observations retrospectively. If we wish to study these data using statistical
methods, we will regard it as being generated by some random experiment
or random process. This implies that the set M of all theoretically possible
values for such data should be endowed with a probability measure defined
on some σ-algebra B of subsets of M . It is convenient to regard the data as
an (M,B)-valued random object X, i.e., we assume that X : Ω → M is a
measurable map with (Ω,A,P) a probability space and that the probability
measure defined on B is the distribution PX of X.

Remark 26.1. The choice of probability space (Ω,A,P) is irrelevant and
one could simply take, for instance, (Ω,A) = (M,B) and let X be the
identity map. One might feel that it would be better to simply get rid
of the probability space (Ω,A,P) altogether, but the language of random
variables and random objects is really convenient for statistics and it requires
a common domain for all of them.

The probability measure PX is usually unknown and the goal of statisti-
cal inference is precisely to use the observed value of the data X to learn
something about PX . If we really knew absolutely nothing about PX it
wouldn’t be possible to draw interesting conclusions from the data, but it
is often the case that we do have some prior information on PX which gives
us some justification to assert that PX — or some approximation of PX —
belongs to a certain given subset of the set Prob(M,B) of all probability
measures on (M,B). This subset is usually conveniently described in para-
metric form, i.e., we write it as

{
PϑX : ϑ ∈ Θ

}
, with (PϑX)ϑ∈Θ a family of

probability measures on (M,B). The goal of statistical inference can then
be rephrased as learning something about the unknown parameter ϑ ∈ Θ
using the observed random data X whose probability distribution depends
on ϑ in a known way. The family (PϑX)ϑ∈Θ is called a stochastic model for
the data X and the set Θ is called the parameter space of the model. One
typically assumes that the mapping Θ 3 ϑ 7→ PϑX ∈ Prob(M,B) is injec-
tive, since it would obviously be impossible to use the data to distinguish
between two distinct values of the parameter that correspond to the exact
same probability distribution for the data.

We can assume without loss of generality that the measurable space (Ω,A)
and the measurable map X : Ω → M are defined in such a way that PϑX is

the push-forward of some probability measure Pϑ on (Ω,A) under the map
X for every ϑ ∈ Θ since, as mentioned in Remark 26.1, we can for instance
simple let (M,B) = (Ω,A) and X be the identity map.

Let us look at a few simple concrete examples of stochastic models.
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Example 26.2. Suppose we want to test if a coin is biased3, i.e., if it tends
to yield more heads than tails or the other way around. To this aim, we
toss it a certain number n of times and we take note of the outcomes. For
the sake of shortness, let us denote the two possible outcomes by 0 and 1
instead of heads and tails. The set of all possible outcomes for this random
experiment is thus the finite set M = {0, 1}n, which we endow with the σ-
algebra B = ℘(M), as there is no reason to use a smaller σ-algebra in a finite
or countable set. The (M,B)-valued random object X representing the data
is thus identified with an n-tuple (Xi)

n
i=1 of random objects taking values

in {0, 1} (endowed with the σ-algebra of all its subsets), with Xi being the
i-th coordinate of the map X. The random object Xi gives the outcome
of the i-th toss of the coin, for all i = 1, . . . , n. The distribution of Xi is
a probability measure on {0, 1} and it is obviously completely determined
by the value of P(Xi = 1) ∈ [0, 1]. It seems very reasonable to assume —
at least if there is no big variation in the method used for tossing the coin
during the experiment — that all the random objects Xi have the same
distribution. This amounts to saying that there exists p ∈ [0, 1] such that

(26.1) P(Xi = 1) = p,

for all i = 1, . . . , n. It seems also very reasonable to assume that the family
(Xi)

n
i=1 is independent, so that:

(26.2) PX =

n⊗
i=1

PXi .

Equalities (26.1) and (26.2) completely determine the distribution of X and
thus for each p ∈ [0, 1] we have a probability measure PpX =

⊗n
i=1 P

p
Xi

on

(M,B) where PpXi(1) = p, for all i = 1, . . . , n. We have therefore described

a stochastic model (PpX)p∈[0,1] for the data X with parameter space [0, 1].
In the context of this model, the bias of the coin is related to how far away
from 1

2 the unknown value of the parameter p is.

Example 26.3. Suppose that we have a question with r possible (mutually
exclusive) answers that we could ask to any person of a given population of
N individuals (such as “in what candidate do you intend to vote for in the
next election?”). Let us label the r possible answers as 1, 2, . . . , r and the
individuals in that population as 1, 2, . . . , N . Denote by

A : {1, . . . , N} −→ {1, . . . , r}

the map such that A(i) is the answer that the i-th individual of the pop-
ulation would give to the question. For each j = 1, . . . , r, let Nj be the
number of elements of A−1(j), i.e., the number of people in the population

that would give the j-th answer to the question and let pj =
Nj
N be the

3This is a common example in probability and statistics textbooks, though it is likely
the case that biased coins do not exist in the real world. See [3] for a discussion.
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proportion of people in the population that would give that answer. We
would like to obtain information about the value of pj , for all j = 1, . . . , r.

Suppose that N is large, so that it is impractical and expensive to simply
ask the question to all individuals of the population. Instead, we will conduct
an opinion poll by selecting some random sample of n individuals from
the population. The process of selecting this sample can be regarded as a
random experiment and the selected sample can thus be modelled in terms
of a random object U = (Uk)

n
k=1 taking values in {1, . . . , N}n, where Uk (the

k-th coordinate of U) denotes the label of the k-th individual selected for the
sample. The relevant data for obtaining information about the proportions
pj is given by the random object X = (Xk)

n
k=1 where Xk = A(Uk), i.e., Xk

is the answer given by the k-th individual in the sample.
We have that the distribution of X is determined by the distribution

of U and the (unknown) map A, while the distribution of U depends on
the method used for selecting the sample. The sample selection method
which makes the statistical theory simpler — though it is rarely ever used
in practice — is to select the k-th individual in a way that is independent
from previous selections and such that all N individuals in the population
have the same probability of being selected, for all k = 1, . . . , n. Note
that, in particular, the same individual might end up being selected more
than once, i.e., this is an instance of sampling with replacement. Using this
sampling method we have that the family (Uk)

n
k=1 is independent and that

P(Uk = i) = 1
N for all k = 1, . . . , n and all i = 1, . . . , N . It then follows that

(Xk)
n
k=1 is also independent and that P(Xk = j) = pj , for all k = 1, . . . , n

and all j = 1, . . . , r. The distribution PX =
⊗n

k=1 PXk of the data X is thus
determined by the unknown parameter p = (pj)

r
j=1, which is an r-tuple of

nonnegative numbers adding to 1. The stochastic model for the data X is
then a family (PpX)p∈Θ with parameter space Θ given by:

Θ =
{
p ∈ [0, 1]r :

∑r
j=1 pj = 1

}
.

The examples above illustrate the relevance of the following definition.

Definition 26.4. Let (M,B) be a measurable space. A family (Xi)i∈I of
(M,B)-valued random objects on the same probability space is said to be
independent identically distributed (abbreviated, i.i.d.) if the family (Xi)i∈I
is independent and PXi = PXj , for all i, j ∈ I. An i.i.d. family (Xi)

n
i=1 of

size n is also called a simple random sample with replacement (or just simple
random sample) of size n of the probability measure on (M,B) given by the
common distribution of all Xi.

Example 26.5. Suppose that we want to test a new drug for reducing blood
pressure and to this aim we are conducting a clinical trial. For simplicity of
exposition we will consider a clinical trial that is not placebo controlled, i.e.,
we are going to enroll a certain number n of patients for the trial and all
patients will receive the drug. We will compare the systolic blood pressure
Xb
i of the i-th patient at some moment before that patient takes the drug
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with the systolic blood pressure Xa
i of the i-th patient at some moment after

that patient takes the drug, for all i = 1, . . . , n. We regard Xb
i and Xa

i as
random variables, so that Xi = (Xb

i , X
a
i ) is an R2-valued random vector

and X = (X1, . . . , Xn) is a random vector taking values in (R2)n ∼= R2n.
What is a suitable model for the data X? The situation here is not as

simple as it was in Examples 26.2 and 26.3. Clearly, it is not reasonable
to assume that the random variables Xb

i and Xa
i are independent, as they

correspond to data obtained from the same patient. On the other hand, it
seems reasonable to assume that the family (Xi)

n
i=1 is independent and even

that all the Xi have the same distribution, though neither assumption is as
clearly justified as in the previous examples. We will discuss the reasonabil-
ity of these assumptions in a moment, but for now let us just assume that
the family (Xi)

n
i=1 is independent identically distributed.

What distribution should we use for Xi? One possibility is to assume
nothing about such distribution. We let the parameter space Θ be the set of
all probability measures on the Borel σ-algebra of R2 and for every P ∈ Θ
we set PPX =

⊗n
i=1 PPXi with PPXi = P for all i = 1, . . . , n. This yields a

stochastic model (PPX)P∈Θ for the data X with a complicated parameter
space Θ. Alternatively, one could assume that a normal distribution for Xi

is a reasonable approximation. This assumption leads to a model with a
simpler parameter space which is the set of pairs ϑ = (µ,Σ), with µ ∈ R2

and Σ ∈ R2⊗R2 symmetric and positive semi-definite. For each ϑ = (µ,Σ)
we would then set PϑX =

⊗n
i=1 PϑXi , with PϑXi a normal distribution in R2

with mean µ and variance Σ.
Let us now do a more in depth discussion of how realistic is the assump-

tion that (Xi)
n
i=1 is independent identically distributed. We start with the

assumption that all Xi have the same distribution. Both the baseline value
of systolic blood pressure Xb

i and the difference Xb
i −Xa

i (which is related to
the effect of the drug) are influenced by certain characteristics of the patient
(such as age, genetics, other clinical conditions that the patient might have,
etc). When we say that all Xi have the same distribution we do not mean
that all patients have the same characteristics, of course, as this will al-
ways be false. What we do mean is that we are sampling from a hypothetic
population of possible patients characteristics using the same probability
distribution, for all i. More precisely, if Ui is a random object representing
the relevant set of characteristics for the i-th patient, we are assuming that
all the Ui have the same distribution. Thus, for example, the probability
that the i-th patient is more than 40 years old should be the same as the
probability that the j-th patient is more than 40 years old.

If Xi is completely determined from Ui, i.e., if there exists a fixed measur-
able function f such that Xi = f(Ui), it will then follow that all Xi have the
same distribution if all Ui have the same distribution. More realistically, we
could have that Xi is not determined by Ui, but there is some residual ran-
dom noise. Such random noise can be represented by a kernel K such that
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if Ui attains a certain value u then we get a certain probability distribution
P(Xi ∈ · |Ui = u) = K(u) for Xi conditioned on Ui = u. If the random noise
K is the same for all patients and if all Ui have the same distribution, it will
again be the case that all Xi have the same distribution, as the distribution
of the pair (Ui, Xi) is PUi ? K.

Is it reasonable to assume that all the Ui have the same distribution? The
answer is definitely yes if we were picking patients by random sampling from
some population using a fixed probability distribution as in Example 26.3.
However, that is not how clinical research is conducted, i.e., we don’t go
out there drawing random people from the population. In practice, patients
which are actively looking for medical treatment for a certain condition will
get enrolled for the study based on satisfying certain inclusion criteria and
signing a consent form. It could happen, for instance, that patients with
different characteristics are more likely to look for treatment during different
times of the year, for example, and this would make the assumption that all
Ui have the same distribution not valid.

What about independence of (Xi)
n
i=1? This seems like a reasonable as-

sumption, but here is an example where it fails: imagine that we have many
different hospitals enrolling patients and that patients from different hospi-
tals tend to have different characteristics. Thus, if Hi is a random object cor-
responding to the hospital that enrolled the i-th patient, we have that Xi and
Hi are not independent, i.e., the conditional distribution P(Xi ∈ · |Hi = h)
depends on the hospital h. Note that this is not incompatible with all Xi

having the same distribution, since this will hold if all Hi have the same
distribution and the conditional distributions P(Xi ∈ · |Hi = h) are the
same for all i. Now imagine that each hospital have limited resources, so
that if one hospital enrolls too many patients at the beginning, it will enroll
less patients later on. This will make the family (Hi)

n
i=1 not independent

and this could lead to the family (Xi)
n
i=1 not being independent as well. For

example, if only one hospital tends to enroll older patients and lots of older
patients got enrolled at the beginning of the trial then probably there won’t
be many older patients being enrolled after that.

27. The parameters of a stochastic model

As discussed in Section 26, a stochastic model consists of a family of prob-
ability measures (PϑX)ϑ∈Θ on a measurable space (M,B), where Θ is the so
called parameter space and X is an (M,B)-valued random object represent-
ing the data. In some examples, the parameter ϑ ∈ Θ is characterized by
a list of real numbers of fixed finite size satisfying some condition, so that
we can regard Θ as a subset of some Rn. For instance, in Example 26.2 the
parameter is just a real number between 0 and 1, so that Θ = [0, 1] and
in Example 26.3 the parameter is an r-tuple of nonnegative real numbers
adding to 1, so that Θ is a subset of Rr (which is contained in an affine
subspace of dimension r − 1).
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In Example 26.5, in the simplified model in which the data Xi for the
i-th patient are assumed to be normal, the parameter is a pair ϑ = (µ,Σ),
with µ ∈ R2 and Σ ∈ R2 ⊗R2 symmetric and positive semi-definite, so the
parameter space can be identified with a subset of R5 (as a symmetric 2× 2
matrix is characterized by 3 real numbers). On the other hand, in the more
complicated model in which nothing is assumed about the distribution of
Xi, the parameter space is the set of all probability measures on the Borel
σ-algebra of R2, which is a subset of the infinite-dimensional Banach space
of finite countably additive signed measures on that σ-algebra. Such subset
spans the entire Banach space.

A model in which the parameter space Θ can be naturally regarded as a
subset of some Rn is usually called a parametric model. Thus, the models
in Examples 26.2, 26.3 and the simplified model in Example 26.5 are para-
metric models, while the more complicated model in Example 26.5 is not
parametric. This terminology might sound weird as also in the nonpara-
metric case we’re talking about a parameter, but it probably comes from
old times where people wouldn’t think about more abstract objects as being
legitimate parameters.

Remark 27.1. Note that, since the σ-algebra B is usually countably gen-
erated, the set Prob(M,B) of all probability measures on (M,B) has the
cardinality of the continuum and therefore we can always parameterize an
arbitrary subset of Prob(M,B) using a single real number. Thus, strictly
speaking, any model could be regarded as a parametric model. However,
in real-world applications people only care about parametric models given
by mappings ϑ 7→ PϑX ∈ Prob(M,B) that are nice and have some intuitive
clear meaning, which are typically mappings in which a probability density
function for X can be written as a nice (say, smooth) function of ϑ. Pa-
rameterizing the set of all probability measures in the Borel σ-algebra of
R2 using a single real number (or an n-tuple of real numbers) would in-
volve some bizarre useless mapping which will not satisfy the assumptions
of typical theorems of the theory of parametric models.

If the parameter space Θ is (identified with) a subset of Rn, so that each
ϑ ∈ Θ is an n-tuple of real numbers, one will usually call the n coordinates of
ϑ the various parameters of the model. Expressions constructed combining
the coordinates of ϑ are usually also called parameters. This idea is made
precise in the following definition.

Definition 27.2. If (PϑX)ϑ∈Θ is a stochastic model with parameter space Θ
then a parameter for this model is any map θ whose domain is Θ.

A parameter θ is often real-valued, i.e., it is a map θ : Θ → R taking
values in R. Definition 27.2 has the same spirit as the definition of random
variable or random object (but without the randomness). Thus, one talks
about a function f(θ) of a parameter θ meaning the composition f ◦ θ. The
identity mapping θ : Θ→ Θ is the full parameter and every other parameter
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is a function of such parameter. Let us illustrate Definition 27.2 with a few
examples.

Example 27.3. In Example 26.3, the coordinates pj of p ∈ Θ are parame-
ters of the model in the sense of Definition 27.2 when we identify them with
the projection maps:

Rr ⊃ Θ 3 p 7−→ pj ∈ [0, 1], j = 1, . . . , r.

The difference p1 − p2 (or any function combining the various pj) is also an
example of a parameter for that model.

Example 27.4. In the simplified model in Example 26.5, we regard µ and
Σ as parameters by identifying them with the projection maps:

R2 × (R2 ⊗R2) ⊃ Θ 3 (µ,Σ) 7−→ µ ∈ R2,

R2 × (R2 ⊗R2) ⊃ Θ 3 (µ,Σ) 7−→ Σ ∈ R2 ⊗R2.

In this example, the parameter which one is most likely to care about is
the difference µ1 − µ2, where µ1 and µ2 are the coordinates of µ. Namely,
such difference is one possible way of expressing the effect size of the drug
being tested. In the more complicated model in Example 26.5, in which
the parameter space Θ is the set of all probability measures on the Borel
σ-algebra of R2, the corresponding parameter of interest which expresses
the effect size of the drug is given by

Θ 3 P 7−→
∫
R2

(xb − xa) dP(xb, xa) ∈ R.

Note that the value of this parameter coincides with the expected value
(under the probability measure PP) of Xb

i −Xa
i , for all i = 1, . . . , n.

Going back to the simplified model in Example 26.5, since µ1 − µ2 is the
parameter of interest, one might choose to reparameterize the model using
the bijective map

(27.1) Θ 3 (µ1, µ2,Σ) 7−→ (µ1, µ1 − µ2,Σ) ∈ Θ;

this means that the map Θ 3 ϑ 7→ PϑX will be replaced with its composition
with the inverse of the map (27.1). This yields a new parameterization of the
same set of probability measures. The advantage of this new parameteriza-
tion is that the parameter of interest now appears more explicitly as one of
the coordinates of the full parameter. Such coordinates can now be divided
into the parameter of interest, which is µ1 − µ2, and the other parameters
µ1 and Σ which we don’t really care about, but are forced to include in the
model as the probability distribution of the data depends on them. Param-
eters which we must include in the model but are not of interest are called
nuissance parameters.

Let us give a formal definition of reparameterization of a model.
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Definition 27.5. If (PϑX)ϑ∈Θ is a stochastic model with parameter space Θ
and ϕ : Θ′ → Θ is a bijective map defined on some set Θ′ then the family

(Pϕ(ϑ′)
X )ϑ′∈Θ′

obtained by taking the composition of Θ 3 ϑ 7→ PϑX with ϕ is called a

reparameterization of the model (PϑX)ϑ∈Θ.

For practical purposes, a reparameterization of a model is really the same
model in the sense that both ways of modelling the data involve the same
assumptions and approximations; we are only relabeling the parameters in
a possibly more convenient way.

28. The fundamental ideas of statistical inference

Consider a stochastic model (PϑX)ϑ∈Θ for some data X. We use the
following mathematical set up: (Ω,A) and (M,B) are measurable spaces,
X : Ω → M is a measurable map, (Pϑ)ϑ∈Θ is a family of probability mea-
sures on (Ω,A) and PϑX is the push-forward of Pϑ under X, i.e., PϑX is the
distribution of the random object X when its domain is endowed with the
probability measure Pϑ. As mentioned in Remark 26.1, the choice of (Ω,A)
is not important.

As discussed in Section 26, the goal of statistical inference is to obtain
information about the true value of the unknown parameter ϑ ∈ Θ using
the observed known value of the data X. In many situations, we are not
interested in ϑ itself, but only on the value of θ(ϑ) for some map θ de-
fined on Θ. Recall that such a map θ is called a parameter of the model
(Definition 27.2). Clearly, there cannot be a procedure that allows one to
determine the exact true value of θ with certainty using the data X and the
information about θ that one is going to obtain will involve error margins
and probabilities.

The type of question that most normal people — that is, people who don’t
have formal training in statistics — tend to ask in the context of problems
involving statistical inference are questions regarding probabilities for the
value of a parameter θ. For instance, consider Example 26.3 and assume
that we are dealing with electoral polling. Most people would typically
ask a question like “what is the probability that this candidate would win
the election if it happened today?”. That is equivalent to asking for the
probability that p1 > pj for all j = 2, . . . , r, where 1 is the number associated
to the candidate in which one is interested. Regarding Example 26.5, most
people would like to know “the probability that the drug works” or maybe
the probability that the effect size of the drug is larger than some number.
In both cases, the questions being asked involve probabilities for the values
of parameters.

Unfortunately, within the mathematical set up that we are considering,
probabilities involving parameters are simply meaningless, as parameters
are not random objects. The parameter space Θ in which parameters are
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defined is simply a set, it is not endowed with a probability measure. Within
the domain of so called classical or frequentist statistics, probabilities about
parameters are indeed regarded as meaningless and only probabilities about
outcomes of random experiments are meaningful. Recall that such probabil-
ities are interpreted as limits of frequencies (see the discussion in Section 2).
Answers to questions regarding probabilities about parameters are the sub-
ject of Bayesian statistics which we will discuss at the end of the section.

Frequentist statistics presents us with a peculiar situation: once the data
X is observed, we are interested is saying something about the value of some
unknown parameter θ. As we cannot determine the value of θ with certainty,
the only type of statement that we could possibly be able to make about θ
are probabilistic statements and yet probabilities about the value of θ are
meaningless. On the other hand, probabilities about X are meaningful but,
since X is known, what is the purpose of making probabilistic statements
about X?

Let us explain how this conundrum is resolved. Briefly speaking, classical
frequentist statistics tell us how often we will make a mistake if we behave
in a certain way after we look at the data. More specifically, it says how
often we will make a mistake (i.e., what is the probability that we will make
a mistake) if we use a certain procedure to make statements about θ based
on the observed value of X. Since the statement we will make about θ
is a function of X, it inherits the randomness from X and it becomes a
random statement, so that it makes sense to ask for the probability that
such statement about θ will be wrong even though θ is not itself random.

This is the picture that a practitioner of classical frequentist statistics
should have in mind: the situation you are going through right now (ob-
serving X and saying something about θ) is one of a potential large number
of similar instances in which some data X is generated. The frequencies for
the values of X are given by the probability measure PϑX for some unknown
ϑ ∈ Θ that is fixed throughout the various repetitions of the process that
generates X. If we make a statement about θ(ϑ) using some procedure that
is based on the data X, then such statement will vary across iterations of
the process because the data X varies. As our statement varies and the
value of θ is kept fixed, there will be lucky iterations in which our statement
is correct and unlucky iterations in which our statement is wrong. What we
want is to calculate the probability (i.e., the frequency) with which we will
make wrong statements and we want to use this ability to calculate such
probabilities to calibrate the statement-generating procedures in such a way
that we will rarely make wrong statements. The notion of “rarely” is of
course vague: depending on the issue at hand, you might be happy to be
wrong at most 10% of the time, while for other issues you might think that
being wrong 0.5% of the time is the maximum error rate that is tolerable.

What kinds of statements can be made about the value of θ? Since
probabilistic statements are meaningless, the only type of statement that
can be made is of the form “the value of θ belongs to C”, where C is some
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subset of the counterdomain of the map θ. Such set C is obtained from the
data X (i.e., it is a function of X) and thus it is a random set. One can then
try to design a set C that depends on X in such a way that, no matter what
the true value of θ is, there is some upper bound on how often C will not
contain the value of θ (i.e., how often the statement θ(ϑ) ∈ C will be wrong).
This leads to the notion of confidence set which we discuss in more detail
in Section 29. Such sets are typically intervals and that is why they are
more usually known as confidence intervals. One might also be interested
in upper bounds on error rates that are dependent on the value of θ. For
instance, you might have a certain upper bound for the error rate when the
value of θ satisfies a certain hypothesis and another upper bound for the
error rate when the value of θ satisfies a different hypothesis. This leads to
the idea of hypothesis testing which we discuss in detail in Section 31.

28.1. Bayesian statistics. As discussed above, Bayesian inference yields
answers to questions regarding probabilities for the parameters of a model.
Thus, in order to do Bayesian inference we need to adapt our mathematical
formalism in such a way that parameters become random objects, i.e., we
need to add to our formalism a probability measure defined on some σ-
algebra of subsets of the parameter space Θ. How should such probability
measure be interpreted?

In Bayesian statistics, probabilities are not necessarily related to frequen-
cies of occurrences of events when some experiment is repeated. Most often,
probabilities are interpreted as a quantitative expression of (usually imper-
fect) knowledge regarding the state of the world. The Dirac delta probability
measure is the extreme case which corresponds to perfect knowledge about
a certain quantity and probability measures that are highly concentrated
in small sets express a high amount of knowledge about the value of that
quantity. On the other hand, probability measures that are very spread out
express the idea of very little knowledge about the value of the quantity.

The fundamental structure of Bayesian inference is the following: one
starts with a prior distribution on the parameter space Θ, which is a proba-
bility measure in which we try to encode what is known about the parameters
before the recently gathered data X is observed. We then use the data X
to update the prior distribution obtaining a posterior distribution on the
parameter space. In mathematical terms, we endow the parameter space
Θ with a σ-algebra AΘ and a probability measure PΘ defined on that σ-
algebra. Such probability measure is the prior distribution. The σ-algebra
AΘ should be such that the stochastic model (PϑX)ϑ∈Θ becomes a kernel

Θ 3 ϑ 7−→ PϑX ∈ Prob(M,B)

with source (Θ,AΘ) and target (M,B). In other words, for every B ∈ B,
the map ϑ 7→ PϑX(B) should be measurable with respect to AΘ. Without
loss of generality, we can assume that

(28.1) Θ 3 ϑ 7−→ Pϑ ∈ Prob(Ω,A)
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is a kernel with source (Θ,AΘ) and target (Ω,A). Taking the star product
of the prior distribution PΘ with the kernel (28.1) we obtain a probability
measure on the σ-algebra AΘ⊗A of subsets of the cartesian product Θ×Ω.
We can now regard all random objects defined on (Ω,A) as random objects
defined on (Θ × Ω,AΘ ⊗ A) by identifying them with their compositions
with the second projection of Θ × Ω. Moreover, whenever θ : Θ → Θ′ is a
parameter and the set Θ′ is endowed with a σ-algebra for which the map θ is
measurable, we can regard θ as a random object defined on (Θ×Ω,AΘ⊗A)
by taking its composition with the first projection.

Once the constructions above are performed, everything that used to be
a random object in the frequentist (prior free) setting remains a random
object. In addition, every (measurable) parameter is now also a random
object and all these random objects are defined on the same probability
space. The posterior distribution for a parameter θ is now obtained by
conditioning θ on the observed data X. More precisely, we consider a regular
conditional distribution

(28.2) P(θ ∈ · |X = x)

of θ given X and we replace x ∈ M with the data that was observed.
The posterior distribution for θ should be interpreted as an update of our
knowledge about the value of θ after the data was observed. Such posterior
distribution can now be used to answer questions about the probability
of the value of θ belonging to a certain (measurable) set. Thus, one can
give an answer for the probability that a certain candidate would win the
election today after an electoral pool is conducted and one can tell what is
the probability that a certain drug works after performing a clinical trial.

There is a small technical problem that we have to handle. Recall that the
regular conditional distribution of θ given X is only defined up to PX -almost
everywhere equality and thus, unless the observed data x ∈M is such that
P(X = x) > 0, the value of (28.2) is meaningless. This problem is solved by
adding some natural requirement for the regular conditional probability in
order for it to have a canonical representative. In Subsection 28.2 we have
discussed the uniqueness problem for regular conditional distributions and
we have shown that, under mild conditions, the value of (28.2) is uniquely
defined if x belongs to the support of PX and the regular conditional distri-
bution of θ given X is required to be continuous with respect to the weak
topology at the point x. In concrete problems, a continuous regular condi-
tional probability usually exists and thus there is no real difficulty here.

Critics of Bayesian methods usually complain about the fact that the
choice of prior distribution on the parameter space is arbitrary and cannot
be justified. Such criticism does have some merit and choosing an appropri-
ate prior and giving a justification for it might be a hard problem. Though
we often do have some prior information on parameters, it is hard to trans-
late such information into a concrete probability measure. So although
Bayesian statistics gives answers that are more natural and understandable
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to normal people, the difficulty with choosing the prior is a price to pay. As
a reply to critics of Bayesian methods, it could be pointed out that often
frequentist methods do suffer from similar difficulties as usually there are
lots of somewhat arbitrary choices that are hard to justify involving model
and inference method selection.

29. Confidence sets

The motivation for confidence sets was discussed in Section 28 and now we
proceed to the technical details. We start by defining the notion of a random
set. Generally speaking, in probability theory, a random “something” is a
measurable map defined on a probability space taking values in the set
where “something” belongs. In particular, a random set is a measurable
map defined on a probability space taking values in a set of sets. In order
for the notion of measurability to make sense in this context, we need to
endow the set ℘(Θ) of all subsets of a set Θ with a σ-algebra.

Definition 29.1. Given a set Θ, the canonical σ-algebra of subsets of ℘(Θ)
is the σ-algebra induced by the family of maps

δθ : ℘(Θ) 3 A 7−→ 1A(θ) ∈ {0, 1}, θ ∈ Θ,

where {0, 1} is endowed with the σ-algebra ℘
(
{0, 1}

)
.

Recall that the set ℘(Θ) of all subsets of Θ is naturally identified with
the cartesian product {0, 1}Θ =

∏
θ∈Θ{0, 1} by associating each subset A of

Θ with its indicator function 1A : Θ → {0, 1}. Under such identification,
the map δθ is identified with the projection onto the θ-th coordinate and
thus the canonical σ-algebra of subsets of ℘(Θ) is identified with the product
σ-algebra on {0, 1}Θ, where each factor {0, 1} is endowed with the σ-algebra
of all its subsets.

From now on, the set ℘(Θ) will always be assumed to be endowed with
its canonical σ-algebra, unless explicitly stated otherwise.

Definition 29.2. Given a set Θ, by a random subset of Θ we mean a
measurable map C defined on some probability space taking values in ℘(Θ).
By a random set we mean a random subset of Θ for some set Θ.

The following is a straightforward consequence of the fundamental prop-
erty of the σ-algebra induced by a family of maps.

Proposition 29.3. Let (M,B) be a measurable space and Θ be a set. We
have that a map C : M → ℘(Θ) is measurable if and only if the set

(29.1)
{
x ∈M : θ ∈ C(x)

}
is in B, for all θ ∈ Θ. �

Using the measurability criteria given in Proposition 29.3 one immediately
sees that replacing Θ with a different set that contains C(x) for all x ∈ M
does not affect the measurability of C.
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Corollary 29.4. Let (M,B) be a measurable space, Θ be a set and Θ′ be a
set containing Θ. We have that a map C : M → ℘(Θ) is measurable if and
only if it is measurable when regarded as a ℘(Θ′)-valued map. �

In previous sections we used to write P(X ∈ B) for the probability that
(the value of) a random objectX belongs to a fixed (nonrandom) set B. Now
that we have defined random sets we can turn things around and consider
the probability that a fixed (nonrandom) object belongs to a random set.

Definition 29.5. Let (M,B,P) be a probability space, Θ be a set and let
C : M → ℘(Θ) be a random set. We write

P(θ ∈ C) = P
({
x ∈M : θ ∈ C(x)

})
,

for every θ ∈ Θ.

The fact that the probability P(θ ∈ C) is well-defined follows from the
measurability of the set (29.1).

A convenient way to visualize a map C : M → ℘(Θ) is to identify it
with the subset

⋃
x∈M

(
C(x) × {x}

)
of the cartesian product Θ ×M and

to imagine such product as a rectangle with Θ in the horizontal axis and
M in the vertical axis. Having this in mind, we introduce the following
terminology.

Definition 29.6. Let M and Θ be sets and let C be a subset of Θ ×M .
For every θ ∈ Θ we define the θ-th column of C by

Cθ =
{
x ∈M : (θ, x) ∈ C

}
and for every x ∈M we define the x-th row of C by:

Cx =
{
θ ∈ Θ : (θ, x) ∈ C

}
.

The map

M 3 x 7−→ Cx ∈ ℘(Θ)

is called the row map of C and

Θ 3 θ 7−→ Cθ ∈ ℘(M)

is called the column map of C.

Clearly:

x ∈ Cθ ⇐⇒ (θ, x) ∈ C ⇐⇒ θ ∈ Cx,
for all θ ∈ Θ and all x ∈M . The equalities

C =
⋃
θ∈Θ

(
{θ} × Cθ

)
=
⋃
x∈M

(
Cx × {x}

)
show that a subset C of Θ ×M is uniquely determined by either its row
map or by its column map.

The following is a restatement of Proposition 29.3 in terms of subsets of
Θ×M .
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Proposition 29.7. Let (M,B) be a measurable space, Θ be a set and let C
be a subset of Θ×M . We have that the row map of C is measurable if and
only if every column of C is measurable (i.e., Cθ ∈ B for all θ ∈ Θ). �

We now have all the requisites for the definition of a confidence set. We
consider the same mathematical set up as in Section 28.

Definition 29.8. Let (PϑX)ϑ∈Θ be a stochastic model, with the data X tak-
ing values in a measurable space (M,B), and let θ : Θ→ Θ′ be a parameter
for the model. Given γ ∈ [0, 1], by a γ-confidence set for the parameter θ
we mean a measurable map C : M → ℘(Θ′) such that the random set C(X)
satisfies

Pϑ
(
θ(ϑ) ∈ C(X)

)
≥ γ,

for all ϑ ∈ Θ. We say that C is a γ-confidence set for the parameter θ in
the strict sense if the equality

Pϑ
(
θ(ϑ) ∈ C(X)

)
= γ

holds for all ϑ ∈ Θ.

The number γ is usually called the confidence level. The value γ = 0.95
is a very popular choice of confidence level in scientific papers, but of course
this is an arbitrary convention.

Recall that the probability measure PϑX is the push-forward of Pϑ under
the map X and therefore:

(29.2) Pϑ
(
θ(ϑ) ∈ C(X)

)
= PϑX

(
θ(ϑ) ∈ C

)
.

The following result is an immediate consequence of (29.2), Proposition 29.7
and the definition of confidence set.

Proposition 29.9. Let (PϑX)ϑ∈Θ be a stochastic model, with the data X tak-
ing values in a measurable space (M,B), and let θ : Θ→ Θ′ be a parameter
for the model. Given γ ∈ [0, 1], we have that a γ-confidence set for the pa-
rameter θ (resp., a γ-confidence set for the parameter θ in the strict sense)
is the same thing as the row map of a subset C of Θ′ ×M such that every
column of C is measurable and such that, for all ϑ ∈ Θ, the probability of
the θ(ϑ)-th column of C with respect to the probability measure PϑX is greater
than or equal to γ (resp., equal to γ). �

Proposition 29.9 gives us the following recipe for constructing all possible
γ-confidence sets (resp., all possible γ-condifence sets in the strict sense)
for a parameter θ : Θ → Θ′: for each ϑ′ ∈ Θ′ in the image of θ, choose a
measurable subset Cϑ′ of M such that the probability PϑX(Cϑ′) is greater
than or equal to γ (resp., equal to γ) for every ϑ ∈ θ−1(ϑ′). If there are any
ϑ′ ∈ Θ′ outside the image of θ, simply let Cϑ′ be an arbitrary measurable
subset of M . The desired γ-confidence set is then the row map of the subset
C of Θ′ ×M whose ϑ′-th column is the chosen set Cϑ′ , for all ϑ′ ∈ Θ′. In
particular, if θ : Θ→ Θ is the identity map (what we call the full parameter
of the model) then specifying a γ-confidence set (resp., a γ-confidence set in
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the strict sense) for θ is equivalent to choosing for every ϑ ∈ Θ a measurable
subset Cϑ of M such that PϑX(Cϑ) is greater than or equal to γ (resp., equal
to γ).

Do γ-confidence sets always exist? Trivially, if we set C(x) = Θ′ for all
x ∈ M then C : M → ℘(Θ′) will be a γ-confidence set for every γ ∈ [0, 1]
and every parameter θ : Θ → Θ′. However, for a given confidence level γ,
one would normally prefer to define a confidence set that is, in some sense, as
small as possible and therefore a γ-confidence set in the strict sense is usually
preferred over a γ-confidence set C for which the probability PϑX

(
θ(ϑ) ∈ C

)
can be greater than γ.

There are two obstructions for the existence of γ-confidence sets in the
strict sense. First, it may happen that for some ϑ ∈ Θ there are no subsets
of M whose probability with respect to PϑX is equal to γ. For example,
if M is finite then the image of any probability measure on (M,B) is also
finite and therefore subsets of probability γ will not exist for most γ. Even
when there is no difficulty with the existence of subsets of probability γ,
there is another obstruction if the parameter θ is not injective. Namely,
obtaining a γ-confidence set for θ in the strict sense requires that we find a set
whose probability is equal to γ with respect to multiple distinct probability
measures. More specifically, for every ϑ′ ∈ Θ′ in the image of θ, we need
a measurable subset Cϑ′ of M such that PϑX(Cϑ′) is equal to γ for every
ϑ in θ−1(ϑ′) and such subset might not exist even if for each individual
probability measure PϑX there exists a subset with probability γ.

In addition to purely mathematical issues, there are other challenges re-
lated to confidence sets. As illustrated in Example 29.11 below, some confi-
dence sets are not useful for practical purposes. Furthermore, when it comes
to real-world applications, there are also computational hurdles to overcome.
Simply providing an abstract definition of a confidence set is not sufficient;
we must be able to write code that enables a computer to efficiently compute
a reliable approximation of the set within a reasonable timeframe.

Example 29.10. Consider the stochastic model which states that X is a
normal random variable with some unknown mean µ ∈ R and some fixed
known variance σ2 > 0. More precisely, we let (M,B) be the real line
endowed with its Borel σ-algebra and (PµX)µ∈R be the family such that PµX
is a normal distribution with mean µ and variance σ2. Note that if Z is a
standard normal random variable defined on some probability space then

Pµ
(X − µ

σ
∈ B

)
= P(Z ∈ B),

for every Borel subset B of R. For each α ∈ ]0, 1[, denote by zα ∈ R the
unique real number such that P(Z > zα) = P(Z < −zα) = α. We have

P(−z 1−γ
2
≤ Z ≤ z 1−γ

2
) = γ,
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for every γ ∈ ]0, 1[ and thus

Pµ(µ− σz 1−γ
2
≤ X ≤ µ+ σz 1−γ

2
) = γ,

for every µ ∈ R. In other words, the interval

(29.3) [µ− σz 1−γ
2
, µ+ σz 1−γ

2
]

has probability γ with respect to the probability measure PµX for all µ ∈ R.
Let C be the subset of R2 whose µ-th column is (29.3) for every µ ∈ R. The
row map of C is given by

(29.4) R 3 x 7−→ Cx = [x− σz 1−γ
2
, x+ σz 1−γ

2
] ∈ ℘(R)

and therefore (29.4) is a γ-confidence set for the parameter µ in the strict
sense.

Example 29.11. Let (PϑX)ϑ∈Θ be a stochastic model, with the data X tak-
ing values in a measurable space (M,B), and let θ : Θ→ Θ′ be a parameter
for the model. If C : M → ℘(Θ′) is a γ-confidence set for θ in the strict
sense for a certain γ ∈ [0, 1] then

M 3 x 7−→ Θ′ \ C(x) ∈ ℘(Θ′)

is a (1−γ)-confidence set for θ in the strict sense. In particular, considering
the model in Example 29.10, we have that

(29.5) R 3 x 7−→ R \ [x− σz γ
2
, x+ σz γ

2
] ∈ ℘(R)

is a γ-confidence set in the strict sense for µ for every γ ∈ ]0, 1[. This is a
correct, yet horrible confidence set for µ for most practical applications. For
example, assume that the known standard deviation σ > 0 is very small. In
this case, the value of X is likely to fall near µ and thus if we observe X = x
we should regard x as an estimate of µ and have some level of confidence that
the unknown value of µ belongs to a small interval centered at x. That is the
kind of confidence set we want for µ and that is precisely what (29.4) is. The
set (29.5), on the other hand, is the complement of a tiny neighborhood of
x. While it is true that we will be correct with frequency γ if we assert that
µ is outside such tiny neighborhood of x whenever we observe X = x, this
is typically not very useful information about µ. For example, a research
paper could say that the average height of the adult female in the United
States is between 1.62m and 1.64m (with 95% confidence) and that is an
interesting useful conclusion, but no one would care about a paper which
states that the average height of the adult female in the United States is
not between 1.62968m and 1.63032m (with 95% confidence). This serves to
illustrate the fact that merely satisfying the mathematical requirements for
a confidence set is usually not all that we want.

Example 29.12. The assumption in Example 29.10 that the variance of
X be known is good for illustrative simple examples in statistics textbooks,
but never valid in practice. So consider the stochastic model (PϑX)ϑ∈Θ in



A BASIC INTRODUCTION TO PROBABILITY AND STATISTICS 111

which Θ = R × ]0,+∞[ and for every ϑ = (µ, σ) ∈ Θ we have that PϑX
is a normal distribution on R with mean µ and variance σ2. Specifying a
γ-confidence set for µ in the strict sense is equivalent to choosing, for each
µ ∈ R, a Borel subset Cµ of R such that P(µ,σ)(X ∈ Cµ) = γ for all σ > 0.

Except for trivial uninteresting cases4, the probability P(µ,σ)(X ∈ Cµ) is
highly dependent on σ and thus there is no γ-confidence set for µ in the
strict sense. This shouldn’t be surprising: if we sample a single element
X from N(µ, σ2) then there is just no data that could possibly be used to
estimate the unknown variance σ2 and without some information about the
variance we can’t estimate how far from µ the value of X might be. Note
that a γ-confidence set in the strict sense for the full parameter (µ, σ) can
be obtained. Namely, if γ ∈ ]0, 1[ then for each (µ, σ) ∈ Θ the interval (29.3)

has probability γ with respect to the probability measure P(µ,σ)
X and thus

the desired confidence set is obtained as the row map of the subset C of
Θ×R whose (µ, σ)-th column is (29.3), for all (µ, σ) ∈ Θ. Such confidence
set is given by:

R 3 x 7−→ Cx =
{

(µ, σ) ∈ Θ : |µ− x| ≤ σz 1−γ
2

}
∈ ℘(Θ).

We have that Cx is an unbounded triangular region on the half-plane Θ
which is symmetrical around the axis {x} × ]0,+∞[. Moreover, the confi-
dence level γ determines the slope of the sides of the region.

29.1. Functions of parameters. Let (PϑX)ϑ∈Θ be a stochastic model, with
the data X taking values in a measurable space (M,B), and let θ : Θ→ Θ′

be a parameter for the model. Let f : Θ′ → Λ be a map taking values in
some set Λ and assume that we have a γ-confidence set C : M → ℘(Θ′) for
the parameter θ. An obvious strategy for defining a γ-confidence set for the
parameter f(θ) = f ◦ θ is to consider the map f [C] : M → ℘(Λ) defined by:

M 3 x 7−→ f [C(x)] ∈ ℘(Λ).

Surely if we are γ-confident that the value of θ belongs to C then we should
be γ-confident that the value of f(θ) belongs to f [C], right? The short
answer is “yes”, but there are some difficulties, the first being very technical
and the second related to practical applications.

The technical difficulty is related to measurability. The statement that
f [C] be a γ-confidence set for f(θ) is equivalent to the requirement that for
all λ ∈ Λ, the set

(29.6)
{
x ∈M : λ ∈ f [C(x)]

}
4One such trivial uninteresting case is Cµ = [µ,+∞[, which satisfies the equality

P(µ,σ)(X ∈ Cµ) = γ for all σ > 0 if γ = 1
2
. This yields that Cx = ]−∞, x] is a 1

2
-

confidence set for µ in the strict sense. It can actually be proven that a γ-confidence set
for µ in the strict sense exists if and only if γ ∈

{
0, 1

2
, 1
}

.
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be measurable and that its probability with respect to PϑX be greater than
or equal to γ, for every ϑ ∈ θ−1

(
f−1(λ)

)
. The set (29.6) can be written as

(29.7)
{
x ∈M : λ ∈ f [C(x)]

}
=

⋃
ϑ′∈f−1(λ)

{
x ∈M : ϑ′ ∈ C(x)

}
,

for all λ ∈ Λ. The fact that C is a γ-confidence set for θ says that

(29.8)
{
x ∈M : ϑ′ ∈ C(x)

}
is measurable for all ϑ′ ∈ Θ′ and that the probability of (29.8) with respect
to PϑX is greater than or equal to γ, for all ϑ ∈ θ−1(ϑ′). Since the union in
(29.7) might be uncountable, there is no guarantee that the set (29.6) will
be measurable, even though each term in the union is measurable.

Although artificial examples in which (29.6) fails to be measurable can be
easily constructed, they do not seem to occur in practice. Moreover, under
mild assumptions it can be shown that (29.6) is close to being measurable
in the sense that it becomes measurable when we consider the completion
of the probability measures (see Remark 29.13 below).

As it is to be expected, if (29.6) is measurable for all λ ∈ Λ then f [C]
is indeed a γ-confidence set for f(θ). Namely, for all ϑ ∈ θ−1

(
f−1(λ)

)
the

set (29.6) contains (29.8) for ϑ′ = θ(ϑ) and the probability of (29.8) with
respect to PϑX is greater than or equal to γ.

The second difficulty that arises when one uses the confidence set f [C] for
f(θ) is that in some cases it might be too large, so large that it is completely
useless. For instance, in Example 29.12 we obtained a confidence set C for
the full parameter (µ, σ) of the model. The parameters µ and σ are then
functions of (µ, σ), namely, µ and σ are obtained from (µ, σ) by applying
the projections. However, for all x ∈ R, the first projection of Cx is equal to
the entire real line R and the second projection of Cx is equal to the entire
half line ]0,+∞[, so that such confidence sets yield no information at all.

Remark 29.13. A subset of a standard Borel space (M,B) is called analytic
if it is the image of an (M,B)-valued measurable map defined in some stan-
dard Borel space. While it is not true in general that an analytic set is
measurable (meaning that it might not belong to B), it follows from Cho-
quet Capacitability Theorem (see [6, Theorem 4.10.12]) that every analytic
set is universally measurable in the sense that it is measurable with respect
to the completion of any finite countably additive measure defined on B (see
also [2, Theorem 2.2.12] for a proof that does not mention capacities). Now
consider a stochastic model (PϑX)ϑ∈Θ in which X takes values in a standard
Borel space (M,B), a parameter θ : Θ → Θ′ for the model and a map
f : Θ′ → Λ. Assume that:

• Θ′ is endowed with a σ-algebra AΘ′ and Λ is endowed with a σ-
algebra AΛ such that (Θ′,AΘ′) and (Λ,AΛ) are standard Borel
spaces and f is measurable;
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• C is a confidence set for θ which is the row map of a subset of Θ′×M
(also denoted by C) that belongs to the product σ-algebra AΘ′ ⊗B.

Under these assumptions, we have that the set (29.6) is analytic and thus
universally measurable for every λ ∈ Λ. Namely, the set (29.6) is the λ-th
column of the image of C ⊂ Θ′ ×M under the map:

f × Id : Θ′ ×M 3 (ϑ′, x) 7−→
(
f(ϑ′), x

)
∈ Λ×M.

Since f×Id is measurable, we have that (f×Id)[C] is analytic. As the inverse
image of an analytic set by a measurable map is analytic, it follows that the
columns of an analytic set are analytic and the conclusion is obtained.

30. Estimators

We consider again the mathematical set up of Section 28. Given a pa-
rameter θ : Θ → Θ′ for the model (PϑX)ϑ∈Θ one would typically like to find
an estimate for the unknown value of θ using the observed value of the data
X. So, for example, after conducting an opinion poll we would like to have
an estimate of the proportion of people in the population that would give
a certain answer to the question asked in the poll and after conducting a
clinical trial we would like to have an estimate of the effect size of the drug.

An estimate for the value of θ should be a specific point of Θ′, computed
using the data X, that is in some sense likely to be close to the true unknown
value of θ. An estimate for the value of θ of this type is called a point
estimate. A point estimate should be distinguished from a set estimate,
which is just another name for what we call a confidence set.

Usually a research paper using statistical methods to answer a question
will present in its conclusion both a point estimate for some parameter and
a confidence set for that parameter, which is typically an interval around the
point estimate (or some other type of connected neighborhood of the point
estimate in case the parameter space is multidimensional). As mentioned
in Section 28, when the confidence set is an interval it is called a confidence
interval. A confidence interval is also popularly refereed to as an error
margin for the point estimate.

As alluded to above, a point estimate for the value of θ should be some
function of the observed data X. This makes the following standard defini-
tion relevant now.

Definition 30.1. A statistic for a stochastic model (PϑX)ϑ∈Θ is any mea-
surable function of the data X.

An estimator for a parameter θ : Θ→ Θ′ of a stochastic model (PϑX)ϑ∈Θ is
a statistic for the model taking values in Θ′. The set Θ′ should be endowed
with a σ-algebra, so that the measurability requirement of a Θ′-valued func-
tion makes sense. There is no precise mathematical definition for the notion
of an estimator. When we say that a certain Θ′-valued statistic is an esti-
mator for θ we are simply expressing an intention to use it for estimating
the value of θ. An estimator for θ is typically denoted by θ̂.
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Though the notion of estimator itself is not precisely defined, there are
various desirable conditions that an estimator θ̂ for θ should satisfy that
are amenable to precise mathematical formulation. One such condition is
that the random object θ̂ should be, in a sense to be specified, close to the
constant θ(ϑ), where ϑ is the true value of the full parameter of the model.

In what follows, we assume for simplicity that the parameter θ is real-
valued (i.e., Θ′ = R, endowed with its Borel σ-algebra), though it would be
easy to generalize the following considerations to a parameter taking values
in a real finite-dimensional vector space. In the context of estimation, one
popular and convenient notion of closeness between θ̂ and θ(ϑ) is the distance
in the Hilbert space L2(Ω,A,Pϑ). This leads us to the following definition.

Definition 30.2. Given ϑ ∈ Θ, the corresponding mean squared error for
an estimator θ̂ of a real-valued parameter θ is defined by

MSEϑ(θ̂, θ) = Eϑ
[(
θ̂ − θ(ϑ)

)2 ] ∈ [0,+∞],

where Eϑ denotes the expected value of a random variable with respect
to the probability measure Pϑ. In other words, MSEϑ(θ̂, θ) is the squared

L2(Ω,A,Pϑ)-distance between θ̂ and the constant θ(ϑ) (or +∞ if θ̂ is not
Pϑ-square integrable).

Note that the mean squared error of θ̂ depends on the true value ϑ of
the full parameter and thus one would typically want an estimator to have a
small mean squared error for every ϑ ∈ Θ, as the true value of ϑ is unknown.

The mean squared error of an estimator is closely related to its variance.
More explicitly, let ϑ ∈ Θ be fixed and assume that the estimator θ̂ is
Pϑ-square integrable, so that its corresponding mean squared error is finite.
Since Eϑ(θ̂) is the L2(Ω,A,Pϑ)-orthogonal projection of θ̂ onto the subspace
of almost surely constant maps, we have that the two terms appearing in
the sum on the righthand side of the equality

θ̂ − θ(ϑ) = [θ̂ − Eϑ(θ̂)] + [Eϑ(θ̂)− θ(ϑ)]

are L2(Ω,A,Pϑ)-orthogonal and therefore the mean squared error of θ̂ can
be written as:

(30.1)
MSEϑ(θ̂, θ) = Eϑ

[(
θ̂ − Eϑ(θ̂)

)2 ]
+
(
Eϑ(θ̂)− θ(ϑ)

)2
= Varϑ(θ̂) +

(
Eϑ(θ̂)− θ(ϑ)

)2
,

where Varϑ denotes the variance of a random variable with respect to the
probability measure Pϑ.

Definition 30.3. Given ϑ ∈ Θ, the corresponding bias of a Pϑ-integrable
estimator θ̂ for a parameter θ is the difference

Eϑ(θ̂)− θ(ϑ)

between the expected value of the estimator and the true value of the pa-
rameter. An estimator which has zero bias for all ϑ ∈ Θ is called unbiased.
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Using this terminology, formula (30.1) can be nicely stated as follows.

Proposition 30.4. Let the value ϑ of the full parameter of a stochastic
model be fixed. If an estimator θ̂ for some real-valued parameter θ is inte-
grable then the mean squared error of θ̂ is equal to the sum of the variance
of θ̂ with the square of the bias of θ̂.

Proof. If θ̂ is square integrable then this is just (30.1). Otherwise, both the

variance and the mean squared error of θ̂ are infinite. �

Absence of bias is usually considered a desirable property for an estimator,
but bias is not always as bad as it sounds. Note that if an estimator is
unbiased then its mean squared error is equal to its variance and thus an
unbiased estimator with a small variance is a good estimator. However, in
some situations we might have an estimator that is biased but has a smaller
mean squared error than some other estimator that is unbiased. In this
case, the biased estimator might be preferable. Note also that if f : R→ R

is a continuous function then the equality Eϑ
(
f(θ̂)

)
= f

(
Eϑ(θ̂)

)
typically

does not hold, except for somewhat trivial cases (like the case in which f

is affine). Thus, if θ̂ is an unbiased estimator for θ it will typically be false

that f(θ̂) is an unbiased estimator for f(θ), although f(θ̂) is often used as

an estimate for f(θ) when θ̂ is used as an estimate for θ.

Another relevant property of an estimator θ̂ is that it should have a small
probability of assuming a value that is far away from the value of the param-
eter θ. The following simple inequality shows that this property will hold if
θ̂ has a small mean squared error.

Proposition 30.5. If X is a random variable and c ∈ R is a real number
then for every ε > 0 the following inequality holds:

P(|X − c| ≥ ε) ≤ 1

ε2
E
(
(X − c)2

)
.

Proof. Simply note that:

E
(
(X − c)2

)
≥
∫

[|X−c|≥ε]
(X − c)2 dP ≥ ε2 P(|X − c| ≥ ε). �

Corollary 30.6 (Chebyshev inequality). If X is a random variable with
finite expectation then for every ε > 0 the following inequality holds:

P
(
|X − E(X)| ≥ ε

)
≤ 1

ε2
Var(X).

Proof. Apply Proposition 30.5 with c = E(X). �

Corollary 30.7. Let (PϑX)ϑ∈Θ be a stochastic model and θ : Θ → R be a

real-valued parameter. If θ̂ is an estimator for θ then for every ε > 0 the
following inequality holds

Pϑ
(
|θ̂ − θ(ϑ)| ≥ ε

)
≤ 1

ε2
MSEϑ(θ̂, θ),
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for every ϑ ∈ Θ. �

Example 30.8. Let (PϑX)ϑ∈Θ be a stochastic model such that X = (Xi)
n
i=1

is an Rn-valued random vector. Moreover, assume that for every ϑ ∈ Θ the
family (Xi)

n
i=1 is i.i.d. and each Xi has finite expected value with respect

to Pϑ. Let µ : Θ → R be the parameter defined by µ(ϑ) = Eϑ(Xi), for all
ϑ ∈ Θ and any i = 1, . . . , n. The parameter µ is called the population mean.
The most commonly used estimator for µ is the sample mean defined by

X̄ =
1

n

n∑
i=1

Xi.

We have

Eϑ(X̄) =
1

n

n∑
i=1

Eϑ(Xi) = µ(ϑ),

for all ϑ ∈ Θ and therefore the estimator X̄ is unbiased. Now assume that
the variance Varϑ(Xi) = σ2(ϑ) is finite for every ϑ ∈ Θ. The variance of X̄
is then easily computed as

Varϑ(X̄) =
1

n2

n∑
i=1

Varϑ(Xi) =
σ2(ϑ)

n
,

since the covariance between Xi and Xj is zero for i 6= j. Note that the vari-
ance of X̄ coincides with its mean squared error as X̄ is unbiased. Moreover,
the mean squared error of X̄ tends to zero as n→ +∞ for every ϑ ∈ Θ.

The situation considered in Example 30.8 can be seen as a particular
case of the following more general set up: the data X = (Xi)

n
i=1 is a simple

random sample of some probability measure and the parameter that we want
to estimate is a function of that probability measure. The strategy that we
used to obtain an estimator for the parameter in Example 30.8 could be
shortly described as “do to the sample the same thing that one does to
the population to calculate the value of the parameter”. By “population”
we mean the probability measure PϑXi from which the sample is taken. In
Example 30.8 what is done to the population to obtain the value of the
parameter µ is computing the mean (i.e., the expected value of a random
variable whose distribution is the probability measure from which the sample
is taken). The estimator of µ is then obtained by doing the same thing to
the sample, i.e., we compute the mean of the sample. In general, it is not
clear what the recipe “do the same thing to the sample as what was done
to the population” means, as the population is a probability measure and
the observed value of the sample is an n-tuple. We now clarify the recipe
by showing how to associate a probability measure to an n-tuple.

Definition 30.9. Let (M,B) be a measurable space and x = (xi)
n
i=1 be

an n-tuple of elements of M . The empirical distribution associated to the
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n-tuple x is the probability measure Pemp
x : B → [0, 1] defined by

Pemp
x =

1

n

n∑
i=1

δxi ,

where δxi : B → [0, 1] denotes the Dirac delta probability measure corre-
sponding to the point xi ∈M .

Note that Pemp
x can be alternatively described as the push-forward under

the map {1, . . . , n} 3 i 7→ xi ∈ M of the discrete uniform distribution
on {1, . . . , n}. We can thus think of Pemp

x as the probability measure that
models the experiment of choosing a term from the sequence (xi)

n
i=1 in such a

way that every term (more precisely, every index i) has the same probability
of being chosen.

Clearly, if f : M → R is a measurable function then:∫
M
f dPemp

x =
1

n

n∑
i=1

f(xi).

In particular, if (M,B) is the real line endowed with the Borel σ-algebra then
the expected value of a random variable with distribution Pemp

x is simply
the mean 1

n

∑n
i=1 xi. The recipe “do to the sample the same thing that one

does to the population to calculate the value of the parameter” can then
be precisely formulated as follows: do to the empirical distribution Pemp

x

the same thing that one does to the probability measure PϑXi to calculate
the value of the parameter, where x = (xi)

n
i=1 is the observed value of the

random sample (Xi)
n
i=1.

Let us see what happens if we apply this recipe to the variance of the
population instead of the mean.

Example 30.10. Let (PϑX)ϑ∈Θ be a stochastic model such that X = (Xi)
n
i=1

is an Rn-valued random vector. Moreover, assume that for every ϑ ∈ Θ the
family (Xi)

n
i=1 is i.i.d. and each Xi has finite variance with respect to Pϑ.

Let σ : Θ → R be the parameter defined by σ(ϑ) = [Varϑ(Xi)]
1
2 , for all

ϑ ∈ Θ and any i = 1, . . . , n. The parameter σ2 is called the population
variance. Given a sequence x = (xi)

n
i=1 ∈ Rn, the variance of a random

variable whose distribution is the empirical distribution Pemp
x is given by:

1

n

n∑
i=1

(xi − x̄)2 =
( 1

n

n∑
i=1

x2
i

)
− x̄2,

where x̄ = 1
n

∑n
i=1 xi. The “do to the sample what you do to the population”

recipe says then that we should use

(30.2)
1

n

n∑
i=1

(Xi − X̄)2

as an estimator of σ2, where X̄ = 1
n

∑n
i=1Xi as in Example 30.8. Let us

compute the expected value of the estimator (30.2). This can be easily done
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by brute force, but better insights are obtained if we use instead the results
of Section 25.

Let Rn be endowed with its canonical inner product and denote by ‖·‖ the
corresponding norm. Note that (x̄, . . . , x̄) ∈ Rn is the orthogonal projection
of x ∈ Rn onto the one-dimensional subspace of Rn consisting of constant
n-tuples. Thus, if P : Rn → Rn denotes the orthogonal projection onto the
orthogonal complement of that one-dimensional subspace we have

n∑
i=1

(xi − x̄)2 = ‖P (x)‖2

and therefore (30.2) is equal to 1
n‖P (X)‖2. Let us compute the expected

value of ‖P (X)‖2 using Corollary 25.3. The variance Σ of the random vector
X with respect to the probability measure Pϑ is equal to σ2(ϑ) times the
canonical inner product of Rn∗ and, assuming that σ(ϑ) 6= 0, we have that
Σ−1 is equal to 1

σ2(ϑ)
times the canonical inner product of Rn. Of course, P

is also an orthogonal projection with respect to the inner product Σ−1 and
the norm associated to Σ−1 is 1

σ(ϑ)‖ · ‖. Since all coordinates of X have the

same expected value we have P
(
Eϑ(X)

)
= 0 and therefore Corollary 25.3

yields:

(30.3)
1

σ2(ϑ)
Eϑ
(
‖P (X)‖2

)
= n− 1.

We conclude that the expected value of (30.2) is equal to

(30.4) Eϑ
( 1

n

n∑
i=1

(Xi − X̄)2
)

=
1

n
Eϑ
(
‖P (X)‖2

)
=
n− 1

n
σ2(ϑ).

Note that formula (30.4) holds trivially if σ(ϑ) = 0 as in that case Xi−X̄ = 0
almost surely.

We have established that the estimator (30.2) obtained by using the “do
to the sample what you do to the population” recipe is biased! From (30.3)
we readily see that an unbiased estimator for σ2 is given by

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2,

if n ≥ 2. The estimator S2 is known as the sample variance. Thus, what we
call “sample variance” does not coincide with the variance of the sample,
i.e., the variance of the empirical distribution associated to the observed
value of the sample. The reason why we do not define the sample variance
as simply the variance of the sample is because the variance of the sample
is a biased estimator of the variance of the population.

We now wish to compute the variance of the estimators S2 and (30.2).
We make a digression to develop a little theory in order to avoid doing the
computation by brute force.
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Definition 30.11. Let V and W be real finite-dimensional vector spaces
endowed with inner products 〈·, ·〉V and 〈·, ·〉W , respectively. The Hilbert–
Schmidt inner product on the space of linear transformations from V to W
is defined by

〈T, S〉HS = tr(T t ◦ S),

for every pair of linear transformations T : V → W and S : V → W , where
T t : W → V denotes the transpose of T with respect to the given inner
products, i.e., T t is characterized by the equality

〈T (v), w〉W = 〈v, T t(w)〉V ,

for all v ∈ V and w ∈W . The norm ‖·‖HS associated to the Hilbert–Schmidt
inner product is called the Hilbert–Schmidt norm.

Clearly, if T and S are represented by matrices (Tij)n×m and (Sij)n×m
with respect to orthonormal bases we have 〈T, S〉HS =

∑n
i=1

∑m
j=1 TijSij .

Moreover, if P : V → V is an orthogonal projection onto some subspace of
V then ‖P‖2HS = 〈P, P 〉HS is equal to the dimension of the image of P .

Definition 30.12. Let X be a random variable whose fourth power X4 is
integrable and assume that X is not almost surely constant. The kurtosis
of X is defined by

Kurt(X) = E
[(X − µ

σ

)4]
,

where µ = E(X) and σ = Var(X)
1
2 .

The expression X−µ
σ is called the standardized version of X and it remains

unchanged if we add a constant to X or multiply X by a nonzero constant.
In particular, the kurtosis of X is invariant by such operations. Note that
using the equality

E(Y 2) = Var(Y ) + E(Y )2

with Y =
(X−µ

σ

)2
we obtain

Kurt(X) = Var
[(X − µ

σ

)2 ]
+ 1

and in particular Kurt(X) ≥ 1. The minimum Kurt(X) = 1 is attained if
and only if (X − µ)2 is almost surely constant and it is not hard to check
that this happens if and only if

P(X = x0) = P(X = x1) =
1

2
,

for two distinct real numbers x0 and x1.
If X is a nondegenerate normal random variable then the kurtosis of X is

equal to the kurtosis of a standard normal random variable and is therefore
given by:

Kurt(X) =
1√
2π

∫
R

x4e−
x2

2 dm(x) = 3;
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namely, the integral in the formula above is easily computed by writing

the integrand as x3(xe−
x2

2 ) and using integration by parts to show that
the integral is equal to 3 times the variance of a standard normal random
variable. The difference

Kurt(X)− 3

between the kurtosis of X and the kurtosis of a nondegenerate normal ran-
dom variable is known as the excess kurtosis of X. A random variable with
a high kurtosis can be informally described as a random variable whose
distribution has heavy tails.

We now use kurtosis to obtain a formula for the expected value of the
square of a quadratic form of an i.i.d. finite family of random variables with
null expected values.

Lemma 30.13. Let (Xi)
n
i=1 be an independent n-tuple of random variables

and assume that E(Xi) = 0, Var(Xi) = σ2 and Kurt(Xi) = κ, for all
i = 1, . . . , n, for certain σ > 0 and κ ≥ 1. If T : Rn → Rn is a linear
transformation represented with respect to the canonical basis by a matrix
(aij)n×n and if 〈·, ·〉 denotes the canonical inner product of Rn then:

E
(
〈T (X), X〉2

)
= σ4

(
[tr(T )]2 +

1

2
‖T + T t‖2HS + (κ− 3)

n∑
i=1

(aii)
2
)
.

Proof. We have 〈T (X), X〉 =
∑n

i=1

∑n
j=1 aijXiXj and:

(30.5) 〈T (X), X〉2 =

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

aijaklXiXjXkXl.

Note that if i 6∈ {j, k, l} then E(XiXjXkXl) = E(Xi)E(XjXkXl) = 0.
Similarly, if any element of {1, . . . , n} occurs exactly once in the sequence
(i, j, k, l) then E(XiXjXkXl) = 0. It follows that the expected value of the
sum in (30.5) is given by:

n∑
i,j=1
i 6=j

aiiajjσ
4 +

n∑
i,j=1
i 6=j

(aij)
2σ4 +

n∑
i,j=1
i 6=j

aijajiσ
4 +

n∑
i=1

(aii)
2κσ4.

To conclude the proof note that

n∑
i,j=1
i 6=j

(aij)
2 +

n∑
i,j=1
i 6=j

aijaji =
1

2

n∑
i,j=1
i 6=j

(aij + aji)
2 =

1

2
‖T + T t‖2HS − 2

n∑
i=1

(aii)
2

and:
n∑

i,j=1
i 6=j

aiiajj = [tr(T )]2 −
n∑
i=1

(aii)
2. �
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Corollary 30.14. Let (Xi)
n
i=1 be an independent n-tuple of random vari-

ables and assume that E(Xi) = µ, Var(Xi) = σ2 and Kurt(Xi) = κ, for all
i = 1, . . . , n, for certain µ ∈ R, σ > 0 and κ ≥ 1. We have:

E
[( n∑

i=1

(Xi − X̄)2
)2 ]

= σ4(n− 1)
[
n+ 1 + (κ− 3)

(
1− 1

n

)]
,

where X̄ = 1
n

∑n
i=1Xi. In particular:

Var
( n∑
i=1

(Xi − X̄)2
)

= σ4(n− 1)
[
2 + (κ− 3)

(
1− 1

n

)]
.

Proof. By replacing Xi with Xi−µ we can assume without loss of generality
that E(Xi) = 0, for all i = 1, . . . , n. If P : Rn → Rn denotes the orthogonal
projection onto the orthogonal complement of (1, . . . , 1) then:

(30.6) 〈P (X), X〉 = 〈P (X), P (X)〉 =
n∑
i=1

(Xi − X̄)2.

The formula for the expected value of the square of (30.6) follows from
Lemma 30.13 by noting that tr(P ) = n − 1, P = P t, ‖P‖2HS = n − 1 and
that the diagonal elements of the matrix that represents P with respect to
the canonical basis of Rn are all equal to 1− 1

n . The formula for the variance
of (30.6) then follows from the fact that the expected value of (30.6) is equal
to (n− 1)σ2 (recall (30.3)). �

Example 30.15. Going back to the set up of Example 30.10, assume in
addition that every Xi has an integrable fourth power and that it is not
almost surely constant. Denoting by κ(ϑ) the kurtosis of Xi with respect to
Pϑ, Corollary 30.14 gives us:

Var(S2) =
σ4(ϑ)

n− 1

[
2 +

(
κ(ϑ)− 3

)(
1− 1

n

)]
=
σ4(ϑ)

n

( 2n

n− 1
+ κ(ϑ)− 3

)
.

Note that the variance of S2 tends to zero for fixed ϑ as n tends to +∞ and
that, since the estimator S2 is unbiased, its variance coincides with its mean
squared error. Let us now compute the mean squared error of the biased
estimator 1

n

∑n
i=1(Xi − X̄)2 and, more generally, the mean squared error of

an estimator for σ2 of the form

1

α

n∑
i=1

(Xi − X̄)2 =
n− 1

α
S2,

where α is a positive constant. Since the mean squared error is the sum of
the variance with the square of the bias and since the bias of n−1

α S2 is equal

to
(
n−1
α − 1

)
σ2(ϑ), we obtain

MSEϑ
(n− 1

α
S2, σ2

)
=

(n− 1)2

α2
Var(S2) +

(n− 1

α
− 1
)2
σ4(ϑ)
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and a straightforward computation yields:

MSEϑ
( 1

α

n∑
i=1

(Xi − X̄)2, σ2
)

=
n− 1

α2
σ4(ϑ)

(
n+ 1 +

n− 1

n

(
κ(ϑ)− 3

))
− 2σ4(ϑ)

n− 1

α
+ σ4(ϑ).

This expression is a second degree polynomial in 1
α and using the fact that

κ(ϑ) ≥ 1 we see that its leading coefficient is positive. One then easily
verifies that the minimum value of the mean squared error is attained at:

α = n+ 1 +
n− 1

n

(
κ(ϑ)− 3

)
.

This is always larger than n−1 and therefore the unbiased estimator S2 never
coincides with the estimator of the form 1

α

∑n
i=1(Xi − X̄)2 that minimizes

the mean squared error. In general, we cannot determine the optimal value
of α as it depends on the kurtosis κ(ϑ) which depends on the unknown
parameter ϑ. However, if the variables Xi are normal then κ(ϑ) = 3 for all
ϑ ∈ Θ and the optimum value is α = n+ 1.

30.1. Asymptotic theory of estimators. Now let us study the behaviour
of an estimator when the sample size goes to infinity. Strictly speaking, the
previous sentence is not correctly formulated since a estimator is a specific
function of a specific set of data X and therefore it is associated to a specific
sample size. So, for example, the sample mean X̄ discussed in Example 30.8
is defined as X̄ = 1

n

∑n
i=1Xi and it is the mean of a sample of size n. If we

change the value of n, we get a new estimator. Thus, the rigorous formu-
lation of what we intend to do in this subsection is to study the behaviour
of a sequence of estimators (indexed by sample size) when the sample size
goes to infinity.

In order to formulate certain limit properties of a sequence of estimators,
we need all of them to be defined on the same probability space and to
achieve that goal we have to consider a model in which the data X is an
infinite sample. For example, consider a stochastic model (PϑX)ϑ∈Θ such that
X takes values in the space of infinite sequences of real numbers (endowed
with the product of the Borel σ-algebras) and X = (Xi)i≥1 is an infinite
sequence of random variables which is i.i.d. with respect to Pϑ, for all ϑ ∈ Θ.
Moreover, assume that µ(ϑ) = Eϑ(Xi) is finite, for all ϑ ∈ Θ. For each
n ≥ 1, we consider the random variable

X̄n =
1

n

n∑
i=1

Xi,

which we call the sample mean for a sample of size n. The distribution of X̄n

only depends on the distribution of the finite sequence (Xi)
n
i=1 and therefore

the expected value and variance of X̄n are the same as those computed in
Example 30.8, i.e., the fact that the data X contains more than just (Xi)

n
i=1
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does not alter the results of what we have already computed. In particular,
X̄n is an unbiased estimator of µ and, if Xi has finite variance, then the
variance of X̄n tends to zero as n tends to infinity. What is different from
Example 30.8 is that now all of the random variables X̄n are defined on the
same probability space, which is a more suitable set up for studying limit
properties of (X̄n)n≥1 as n tends to infinity.

Definition 30.16. Let (PϑX)ϑ∈Θ be a stochastic model and let θ : Θ → Θ′

be a parameter for the model such that the set Θ′ is endowed with a separa-
ble5 metric and the corresponding Borel σ-algebra. A sequence of estimators
(θ̂n)n≥1 for θ is said to be consistent (sometimes also called weakly consis-

tent) if for every ϑ ∈ Θ the sequence of random objects (θ̂n)n≥1 converges
in probability to the constant random object θ(ϑ) with respect to the prob-

ability measure Pϑ. The sequence (θ̂n)n≥1 is said to be strongly consistent

if for every ϑ ∈ Θ the sequence of random objects (θ̂n)n≥1 converges almost
surely to the constant θ(ϑ) with respect to the probability measure Pϑ.

Informally, people will usually say that “a certain estimator is consistent”
or that “a certain estimator is strongly consistent”, instead of attributing
the property of consistency to a sequence of estimators. That is because we
normally think of an estimator as corresponding to a certain strategy for
computing an estimate of the parameter and such strategy can be naturally
adapted to arbitrary sample sizes. However, as discussed at the beginning
of the subsection, a single estimator corresponds to a single sample size, so
the formally correct way of talking about consistency requires a sequence of
estimators.

A simple way of establishing the (weak) consistency of a sequence of
estimators is to show that the limit of their mean squared errors is zero.

Proposition 30.17. Let (PϑX)ϑ∈Θ be a stochastic model, θ : Θ → R be a

real-valued parameter for the model and (θ̂n)n≥1 be a sequence of estimators
for θ. If

(30.7) lim
n→+∞

MSEϑ(θ̂n, θ) = 0,

for all ϑ ∈ Θ then the sequence (θ̂n)n≥1 is consistent.

Proof. Condition (30.7) simply says that the sequence (θ̂n)n≥1 converges in
L2(Ω,A,Pϑ) to the constant θ(ϑ) and thus the result is simply a restate-
ment of the simple fact that a sequence that converges in L2 converges in
probability. It is also a direct consequence of Corollary 30.7. �

We observe that both the notion of mean squared error and Proposi-
tion 30.17 can be readily generalized to the case when θ takes values in an
arbitrary separable metric space.

5See Section 12 for an explanation of why we only study convergence in probability for
sequences of random objects taking values in a separable metric space.
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Corollary 30.18. Let (PϑX)ϑ∈Θ be a stochastic model such that X takes
values in the space of infinite sequences of real numbers. Moreover, assume
that for every ϑ ∈ Θ, (Xi)i≥1 is an infinite sequence of random variables
which is i.i.d. with respect to Pϑ and such that Eϑ(X2

i ) is finite. If

µ(ϑ) = Eϑ(Xi)

denotes the population mean and X̄n = 1
n

∑n
i=1Xi then (X̄n)n≥1 is a con-

sistent sequence of estimators for µ.

Proof. Follows from Proposition 30.17 using the results presented in Exam-
ple 30.8. �

Corollary 30.19. Let (PϑX)ϑ∈Θ be a stochastic model such that X takes
values in the space of infinite sequences of real numbers. Moreover, assume
that for every ϑ ∈ Θ, (Xi)i≥1 is an infinite sequence of random variables
which is i.i.d. with respect to Pϑ and such that Eϑ(X4

i ) is finite. If

σ2(ϑ) = Varϑ(Xi)

denotes the population variance and S2
n = 1

n−1

∑n
i=1(Xi−X̄n)2 then (S2

n)n≥2

is a consistent sequence of estimators for σ2.

Proof. Follows from Proposition 30.17 using the results presented in Exam-
ples 30.10 and 30.15. �

Note that the sequence 1
n

∑n
i=1(Xi − X̄n)2 = n−1

n S2
n of biased estimators

of σ2 is also consistent since limn→+∞
n−1
n = 1.

Remark 30.20. The celebrated strong law of large numbers (see [1, 6.2.5])
states that if (Xi)i≥1 is an infinite i.i.d. sequence of random variables with fi-
nite expected value E(Xi) = µ then the sequence X̄n = 1

n

∑n
i=1Xi converges

almost surely to µ. This means that in Corollary 30.18 one can actually ob-
tain the stronger thesis that (X̄n)n≥1 is a strongly consistent estimator of µ
under the weaker assumption that Xi has finite expected value with respect
to Pϑ, for all ϑ ∈ Θ. Moreover, noting that

S2
n =

n

n− 1

( 1

n

n∑
i=1

X2
i − X̄2

n

)
and applying the strong law of large numbers to the sequence (X2

i )i≥1 we
conclude that in Corollary 30.19 we can obtain the stronger thesis that
(S2
n)n≥2 is a strongly consistent estimator for σ2 under the weaker assump-

tion that Xi is square integrable with respect to Pϑ, for all ϑ ∈ Θ.

30.2. Maximum likelihood estimation. Let (PϑX)ϑ∈Θ be a stochastic
model with the data X taking values in a measurable space (M,B). As-
sume that there exists a σ-finite nonnegative countably additive measure
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µ on B such that PϑX is absolutely continuous with respect to µ for every
ϑ ∈ Θ. We can then define a map L : M ×Θ→ [0,+∞[ such that

(30.8) L(·, ϑ) =
dPϑX
dµ

for all ϑ ∈ Θ, i.e., such that M 3 x 7→ L(x, ϑ) ∈ [0,+∞[ is a Radon–
Nikodym derivative of PϑX with respect to µ for every ϑ ∈ Θ. In other
words, L(·, ϑ) is a probability density function for X with respect to µ when
the domain of X is endowed with the probability measure Pϑ. If x ∈ M is
the observed value of the data X in some experiment then the function

Θ 3 ϑ 7−→ L(x, ϑ) ∈ [0,+∞[

is known as the likelihood function associated to x. If such function attains
its maximum at some point ϑ ∈ Θ then such value of the full parameter
can be seen as the value that is most compatible with the observed data x
since, in some sense, it makes the value X = x “more probable” than other
values of the parameter. We note that in many important examples the
actual probability Pϑ(X = x) of observing X = x under ϑ will be zero for
all x ∈ M and all ϑ ∈ Θ and that is why we have to work with probability
densities instead of actual probabilities.

The value of ϑ that maximizes the likelihood function for a certain value
x ∈M of the data is known as the maximum likelihood estimate of the full
parameter corresponding to x. Let us write this as a formal definition.

Definition 30.21. Let (PϑX)ϑ∈Θ be a stochastic model with the data X
taking values in a measurable space (M,B). Assume that µ is a σ-finite
nonnegative countably additive measure µ on B such that PϑX is absolutely
continuous with respect to µ for every ϑ ∈ Θ and let L : M×Θ→ [0,+∞[ be
a function such that (30.8) holds. Assume that for every x ∈M the function
L(x, ·) attains its maximum at some point of Θ and let f : M → Θ be a
map such that f(x) is a point of maximum of L(x, ·), for every x ∈ M . If

Θ is endowed with a σ-algebra and the map f is measurable then θ̂ = f(X)
is called a maximum likelihood estimator of the full parameter θ : Θ → Θ
corresponding to the map L.

There is a rich asymptotic theory for maximum likelihood estimators [5,
7.3.2—7.3.5] which we will not develop here. We will finish the section
with a few technical comments and a simple concrete example of maximum
likelihood estimators.

There are two worries that immediately arise when considering maximum
likelihood estimation. First of all, Radon–Nikodym derivatives are only
unique up to µ-almost everywhere equality and thus evaluating the prob-
ability density function at a specific point x ∈ M is meaningless, unless
x happens to be a point with positive measure. However, as in Subsec-
tion 28.1, this uniqueness problem can be solved by adding a continuity
requirement. More explicitly, if M is endowed with a topology and B is the
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Borel σ-algebra, then a continuous probability density function with respect
to the measure µ (if it exists) is uniquely defined at the points in the support
of µ. A second concern is related to the dependence of maximum likelihood
estimators on the choice of the measure µ. The following result deals with
that.

Proposition 30.22. Let (PϑX)ϑ∈Θ be a stochastic model with the data X
taking values in a measurable space (M,B). Let µ and ν be σ-finite nonneg-
ative countably additive measures on B such that PϑX is absolutely continuous
with respect to both µ and ν, for all ϑ ∈ Θ. If L : M × Θ → [0,+∞[ is a
function such that

(30.9) L(·, ϑ) =
dPϑX
dµ

holds for all ϑ ∈ Θ then there exists a measurable function g : M → [0,+∞[
such that

L(·, ϑ)g =
dPϑX
dν

holds, for all ϑ ∈ Θ.

Proof. By Lebesgue’s Decomposition Theorem we can write µ = µac + µs,
with µac and µs σ-finite nonnegative countably additive measures on B such
that µac is absolutely continuous with respect to ν and µs and ν are mutually
singular, i.e., M can be written as a disjoint union of M1 ∈ B and M2 ∈ B
in such a way that µs(M2) = 0 and ν(M1) = 0. For every ϑ ∈ Θ we have

0 ≤
∫
M
L(x, ϑ) dµs(x) =

∫
M1

L(x, ϑ) dµs(x)

≤
∫
M1

L(x, ϑ) dµ(x) = PϑX(M1) = 0,

because PϑX is absolutely continuous with respect to ν. Thus L(x, ϑ) = 0 for

µs-almost every x ∈ M and this implies that PϑX is absolutely continuous
with respect to µac and

L(·, ϑ) =
dPϑX
dµac

,

for all ϑ ∈ Θ. Hence the desired map g : M → [0,+∞[ can be taken as a
Radon–Nikodym derivative of µac with respect to ν. �

According to Proposition 30.22, if we replace the measure µ with another
measure ν such that all PϑX are absolutely continuous with respect to ν
then the map L satisfying (30.9) can be replaced with (x, ϑ) 7→ L(x, ϑ)g(x),
for some nonnegative measurable function g. If the observed data x ∈ M
satisfies g(x) > 0, then both likelihoods L(x, ·) and L(x, ·)g(x) have the
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same maximum points. Moreover, the set g−1(0) of bad data points has
probability zero with respect to all PϑX , since

PϑX
(
g−1(0)

)
=

∫
g−1(0)

L(x, ϑ)g(x) dν = 0,

for all ϑ ∈ Θ.
Let us now discuss an elementary concrete example of maximum likeli-

hood estimation involving a simple random sample from a normal distribu-
tion.

Example 30.23. Let (PϑX)ϑ∈Θ be a stochastic model such that X is an Rn-
valued random vector with X = (Xi)

n
i=1 i.i.d., Xi ∼ N(µ, σ2) with respect to

Pϑ for all ϑ = (µ, σ) ∈ Θ, where Θ = R× ]0,+∞[. Let L : R×Θ→ [0,+∞[
be such that L(·, ϑ) is a continuous Radon–Nikodym derivative of PϑX with
respect to Lebesgue measure for all ϑ ∈ Θ, so that L is given by

L(x, µ, σ) =
1

(2π)
n
2 σn

n∏
i=1

e−
(xi−µ)

2

2σ2 ,

for all x ∈ Rn, µ ∈ R and σ > 0. For each x ∈ Rn we wish to determine the
maximum points of the likelihood (µ, σ) 7→ L(x, µ, σ). It is a little easier
to work with the logarithm of L (which of course has the same maximum
points):

`(x, µ, σ) = ln[L(x, µ, σ)] = −n
2

ln(2π)− n ln(σ)−
n∑
i=1

(xi − µ)2

2σ2
.

The function (µ, σ) 7→ `(x, µ, σ) is known as the log-likelihood. For fixed
σ > 0, `(x, µ, σ) attains its unique global maximum when µ ∈ R is such
that (µ, . . . , µ) is closest to x with respect to standard Euclidean distance.
Therefore, such maximum is attained at µ = x̄ = 1

n

∑n
i=1 xi, which is the

value of µ that makes (µ, . . . , µ) equal to the orthogonal projection of x
onto the subspace generated by (1, . . . , 1). Now we must find σ > 0 that
maximizes `(x, x̄, σ). By studying the sign of the derivative of `(x, x̄, σ) with
respect to σ we see that `(x, x̄, σ) attains its unique global maximum at

σ =
( 1

n

n∑
i=1

(xi − x̄)2
)1

2
,

provided that x1, . . . , xn are not all equal, i.e., provided that x does not
belong to the subspace generated by (1, . . . , 1). Hence, assuming n ≥ 2 and
removing the subspace generated by (1, . . . , 1) from the counter-domain of
X (which has probability zero with respect to PϑX , for all ϑ), we obtain that(

X̄,
( 1

n

n∑
i=1

(Xi − X̄)2
)1

2
)
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is a maximum likelihood estimator for (µ, σ), where X̄ = 1
n

∑n
i=1Xi. Note

that the estimator that we have obtained for µ is just the unbiased estima-
tor X̄ discussed in Example 30.8, while the estimator for σ2 is the biased
estimator 1

n

∑n
i=1(Xi− X̄)2 and not the unbiased estimator S2 discussed in

Example 30.10.

31. Hypothesis testing

References
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