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1. Quick review of affine spaces

By an affine space (over some field of scalars K) we mean a nonempty set
P endowed with an action

V × P 3 (v, p) 7−→ v + p ∈ P

of the additive group of a vector space V (over the field of scalars K) which
is transitive and has no fixed points. For p ∈ P and v ∈ V, we take p+ v to
mean the same as v+p. Given p, q ∈ P, we denote by p−q the unique v ∈ V
such that p = q + v. The dimension of P is, by definition, the dimension
of V. We call V the vector space parallel to P. For each v ∈ V, the map
P 3 p 7→ p+ v ∈ P is called a translation of P.

Given affine spaces P1 and P2 parallel, respectively, to vector spaces V1

and V2, then a map Ω : P1 → P2 is called affine if there exists a (automati-
cally unique) linear map Ω0 : V1 → V2 such that

Ω(p+ v) = Ω(p) + Ω0(v),

for all p ∈ P1, v ∈ V1. We call Ω0 the underlying linear map of Ω. An affine
isomorphism is a bijective affine map. Its inverse is automatically affine.

Every vector space V can be regarded as an affine space parallel to itself
by considering the action V × V → V given by the addition of V. An affine
map between vector spaces (regarded as affine spaces) is the same as the
composition of a linear map with a translation. For an arbitrary affine
space P, parallel to a vector space V, we have for each point O ∈ P an affine
isomorphism P → V given by

(1.1) P 3 p 7−→ p−O ∈ V.

This is the unique affine map from P to V that sends O to the origin of V
and whose underlying linear map is the identity of V.

For the following subsections, we consider a fixed affine space P parallel
to a vector space V.

Date: January 27th, 2018.

1



NOTES ON MECHANICS AND RIGID BODIES 2

1.1. Subspaces and quotients. Given a vector subspace W of V, we con-
sider the action of W on P given by the restriction of the action of V. The
orbits

p+W =
{
p+ w : w ∈ W

}
of this action are called the affine subspaces of P parallel to W. Obviously,
p+W is an affine space parallel to W and the inclusion map of p+W in P
is an affine map whose underlying linear map is the inclusion map of W in
V. The orbit space

P/W =
{
p+W : p ∈ P

}
has a natural structure of an affine space parallel to the quotient V/W, with
action given by

V/W ×P/W 3 (v +W) + (p+W) 7−→ (v + p) +W ∈ P/W.

The quotient map P → P/W is an affine map whose underlying linear map
is the quotient map V → V/W.

Given an arbitrary nonempty subset S of P, then intersection of all affine
subspaces of P containing S is an affine subspace of P and it is obviously
the smallest affine subspace of P containing S. We call it the affine subspace
spanned by S.

1.2. Linear combinations and geometric dependence. Let (pλ)λ∈Λ be
a family of points of P and let (aλ)λ∈Λ be a family of scalars. Assume that
(aλ)λ∈Λ is almost null, i.e., the set

{
λ ∈ Λ : aλ 6= 0

}
is finite. If

∑
λ∈Λ aλ = 1,

we define the linear combination
∑

λ∈Λ aλpλ to be the point of P given by

(1.2)
∑
λ∈Λ

aλpλ = O +
∑
λ∈Λ

aλ(pλ −O) ∈ P,

where O ∈ P is arbitrarily chosen. The righthand side of (1.2) is easily seen
to be independent of the choice of O ∈ P. If

∑
λ∈Λ aλ = 0, we define the

linear combination
∑

λ∈Λ aλpλ to be the element of the vector space V given
by

(1.3)
∑
λ∈Λ

aλpλ =
∑
λ∈Λ

aλ(pλ −O) ∈ V,

where O ∈ P is arbitrarily chosen. Again, the righthand side of (1.3) is
independent of the choice of O ∈ P. If Λ is nonempty, the set

(1.4)

{∑
λ∈Λ

aλpλ : (aλ)λ∈Λ almost null family of scalars with
∑
λ∈Λ

aλ = 1

}
is an affine subspace of P parallel to the vector subspace of V given by:

(1.5)

{∑
λ∈Λ

aλpλ : (aλ)λ∈Λ almost null family of scalars with
∑
λ∈Λ

aλ = 0

}
.
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Moreover, (1.4) is precisely the affine subspace spanned by
{
pλ : λ ∈ Λ

}
.

Note that (1.5) coincides with the vector subspace of V spanned by{
pλ − pµ : λ, µ ∈ Λ

}
.

The family (pλ)λ∈Λ is said to be geometrically independent if for every al-
most null family of scalars (aλ)λ∈Λ with

∑
λ∈Λ aλ = 0, if

∑
λ∈Λ aλpλ = 0,

then aλ = 0, for all λ ∈ Λ. If the family (pλ)λ∈Λ is geometrically inde-
pendent, then every point of the affine subspace spanned by

{
pλ : λ ∈ Λ

}
can be written in a unique way as a linear combination

∑
λ∈Λ aλpλ, with

(aλ)λ∈Λ an almost null family of scalars with
∑

λ∈Λ aλ = 1. If the family
(pλ)λ∈Λ is not geometrically independent, it is called geometrically depen-
dent. Given an arbitrary index λ0 ∈ Λ, we have that the family (pλ)λ∈Λ

is geometrically independent if and only if the family (pλ − pλ0)λ∈Λ\{λ0} is
linearly independent.

1.3. Products and spaces of maps. If (Pλ)λ∈Λ is a family of affine spaces,
with Vλ the parallel vector space to Pλ, then the product

∏
λ∈Λ Pλ has a nat-

ural structure of affine space parallel to the product vector space
∏
λ∈Λ Vλ;

the action is given by:∏
λ∈Λ

Vλ ×
∏
λ∈Λ

Pλ 3
(
(vλ)λ∈Λ, (pλ)λ∈Λ

)
7−→ (vλ + pλ)λ∈Λ ∈

∏
λ∈Λ

Pλ.

In particular, for an arbitrary set Λ, the set PΛ of all maps form Λ to P
has a natural structure of affine space parallel to VΛ. If P1 and P2 are
affine spaces parallel, respectively, to vector spaces V1 and V2, then the set
Aff(P1,P2) of all affine maps from P1 to P2 is an affine subspace of PP1

2 and
its parallel vector space is Aff(P1,V2).

1.4. Manifold structure. If P is real and of finite dimension n, then P
has a natural structure of a differentiable manifold of dimension n given by
the maximal atlas containing the affine isomorphisms from P to Rn. For
each p ∈ P, we identify the tangent space TpP with the parallel vector
space V using the differential at p of the map (1.1). This identification is
independent of the choice of the point O ∈ P.

2. Spacetime and units

For simplicity, we will consider units of mass, length and times to be
fixed, so that masses, lengths and intervals of time will be identified with
real numbers1. Let n be a fixed nonnegative integer. By a Galilean spacetime
with n space dimensions we mean a real affine space E with n+1 dimensions
parallel to a vector space E0 endowed with:

• a nonzero linear functional t : E0 → R (the time functional);

1Otherwise, the appropriate mathematical formalism would be to consider separate
abstract one-dimensional vector spaces for masses, lengths and times, which would make
the presentation a bit cumbersome. We observe that our simplified presentation also
entails a choice of time-orientation.
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• a (positive definite) inner product 〈·, ·〉 on the kernel of t.

Points of E are events and, for any pair of events e1, e2 ∈ E , the number
t(e2 − e1) is the elapsed time between e1 and e2. We write

V = Ker(t);

this is the vector space consisting of ordinary physical vectors connecting
simultaneous events. Since V is endowed with an inner product, we obtain a
notion of distance between simultaneous events. For physics, of course, the
interesting case is n = 3, but we will be working with arbitrary n and make
occasional remarks about the case n = 3.

The quotient T = E/V is a one-dimensional affine space parallel to E0/V
and we call it the space of instants of time. We identify E0/V with R
through t, so that T becomes an affine space parallel to R. The quotient
map E → T is a fibration and the smooth sections q : T → E of this fibration
are particle trajectories. Since the tangent space TtT of T at each point t ∈ T
is identified with R, we can consider the vector field d

dt on T that is constant
and equal to 1 ∈ R. We can use this vector field to define time derivatives

of particle trajectories, obtaining a velocity dq
dt (t) and an acceleration d2q

dt2
(t),

for each instant t ∈ T . Note that (absolute!) velocities are elements of the
affine space t−1(1) (which is parallel to V) and accelerations are elements
of the vector space V, while differences of velocities (relative velocities) are
elements of V.

Physical space has no (absolute) meaning in a Galilean spacetime: we
have one different physical space for each instant of time (the various physical
spaces are the fibers of E → T ). In order to obtain one single physical space,
we make use of an inertial frame, i.e., a one-dimensional vector subspace Z
of E0 not contained in V. The quotient P = E/Z is then an n-dimensional
affine space parallel to E0/Z and we call it physical space for the given
inertial frame Z. Since E0 = V ⊕ Z, we can naturally identify the quotient
E0/Z with V, so that P becomes an affine space parallel to V. We have an
affine isomorphism

E 3 e 7−→
(
e+ V, e+ Z

)
∈ T × P

which allows us to identify particle trajectories with smooth maps from T
to P. Velocities and accelerations are then both identified with elements
of V. More generally, one could use a noninertial frame to obtain a single
physical space: that is, one considers an affine space P parallel to V and
an isomorphism between E → T and T × P → T regarded as fiber bundles
whose fibers are metric affine spaces. More explicitly, one considers a smooth
map

ϕ : E −→ P
whose restriction to every fiber of E → T is an affine bijection whose under-
lying linear map V → V is a (linear) isometry. We then obtain a diffeomor-
phism

E 3 e 7−→
(
e+ V, ϕ(e)

)
∈ T × P
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which again allows us to identify particle trajectories with smooth maps
T → P. When dealing with a concrete physics problem using noninertial
frames one has to add fictional forces to the dynamics, i.e., forces that
appear because of the choice of frame and are not due to some real physical
interaction.

3. Basic definitions

Throughout the rest of the text we consider a fixed n-dimensional real
affine space P with corresponding vector space V, where n is a nonnegative
integer. The vector space V is endowed with an inner product 〈·, ·〉. We
think of P as physical space (see Section 2). We also consider a fixed finite
set Λ which we think of as the set of all particles.

Definition 3.1. We consider the following objects:

• a particle configuration, i.e., a family (qλ)λ∈Λ of elements of P;
• a family of velocities, i.e., a family (q̇λ)λ∈Λ of elements of V;
• a family of forces, i.e., a family (Fλ)λ∈Λ of elements of V;
• a family of masses, i.e., a family (mλ)λ∈Λ os positive real numbers.

With these objects we make the following definitions.

• the total mass is the positive real number given by:

M =
∑
λ∈Λ

mλ > 0;

• the center of mass is the point given by:

C =
∑
λ∈Λ

mλ

M
qλ ∈ P;

• the velocity of the center of mass is the vector given by:

Ċ =
∑
λ∈Λ

mλ

M
q̇λ ∈ V;

• the total (linear) momentum with respect to a reference velocity

Ȯ ∈ V is the vector given by:

pȮ =
∑
λ∈Λ

mλ(q̇λ − Ȯ) = M(Ċ − Ȯ) ∈ V;

• the total kinetic energy with respect to a reference velocity Ȯ ∈ V is
the nonnegative real number given by:

TȮ =
1

2

∑
λ∈Λ

mλ‖q̇λ − Ȯ‖2 ≥ 0;

• the total power with respect to a reference velocity Ȯ ∈ V is the real
number given by:

PȮ =
∑
λ∈Λ

〈Fλ, q̇λ − Ȯ〉 ∈ R;
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• the total angular momentum with respect to a reference point O ∈ P
and a reference velocity Ȯ ∈ V is the element of the exterior product
V ∧ V given by:

LO,Ȯ =
∑
λ∈Λ

mλ(qλ −O) ∧ (q̇λ − Ȯ) ∈ V ∧ V;

• the total force is the vector given by:

F =
∑
λ∈Λ

Fλ ∈ V;

• the total torque with respect to a reference point O ∈ P is the
element of the exterior product V ∧ V given by:

τO =
∑
λ∈Λ

(qλ −O) ∧ Fλ ∈ V ∧ V.

Remark 3.2. If n = 3 and V is oriented, we can identify the exterior product
V ∧ V with V itself by identifying the exterior product v ∧ w of two vec-
tors v, w ∈ V with their vector product. With this identification, angular
momentum and torque can be regarded as elements of V.

We state some readily checkable useful formulas that relate quantities de-
fined with respect to different points of reference and velocities of reference.

Theorem 3.3. Consider objects like in Definition 3.1. Let O1, O2 ∈ P be
points of reference and Ȯ1, Ȯ2 ∈ V be velocities of reference. The following
formulas hold:

pȮ2
= pȮ1

+M(Ȯ1 − Ȯ2);

TȮ2
= TȮ1

+M〈Ċ − 1
2(Ȯ1 + Ȯ2), Ȯ1 − Ȯ2〉;

PȮ2
= PȮ1

+ 〈F, Ȯ1 − Ȯ2〉;

LO2,Ȯ2
= LO1,Ȯ1

+M(O1 −O2) ∧ (Ċ − Ȯ1) +M(C −O1) ∧ (Ȯ1 − Ȯ2)

+M(O1 −O2) ∧ (Ȯ1 − Ȯ2);

τO2 = τO1 + (O1 −O2) ∧ F.
Proof. Straightforward computation. �

Corollary 3.4. The total torque is independent of reference point if the
total force is zero. �

Corollary 3.5. The total angular momentum is independent of reference
velocity if the reference point is the center of mass, i.e.:

LC,Ȯ1
= LC,Ȯ2

,

for all Ȯ1, Ȯ2 ∈ V. �

Corollary 3.6. For an arbitrary reference velocity Ȯ ∈ V, we have:

TȮ = TĊ +
1

2
M‖Ċ − Ȯ‖2. �
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4. Inner forces

Definition 4.1. Given a particle configuration (qλ)λ∈Λ, we call the subspace
of V spanned by {

qλ − qµ : λ, µ ∈ Λ
}

the parallel subspace of (qλ)λ∈Λ.

Note that, if Λ is nonempty, this is precisely the parallel subspace to the
affine subspace spanned by

{
qλ : λ ∈ Λ

}
.

Definition 4.2. A system of internal forces for the particle configuration
(qλ)λ∈Λ is a family (Fλµ)λ,µ∈Λ of elements of V such that Fλµ is a scalar
multiple of qλ − qµ, for all λ, µ ∈ Λ, and such that the action and reaction
law

Fλµ = −Fµλ
is satisfied, for all λ, µ ∈ Λ. We think of Fλµ as the force exerted on the
particle λ by the particle µ. The family of forces (Fλ)λ∈Λ defined by

Fλ =
∑
µ∈Λ

Fλµ, λ ∈ Λ

is said to be induced by the system of internal forces (Fλµ)λ,µ∈Λ.

The main goal of this section is to prove the following result.

Proposition 4.3. Let (qλ)λ∈Λ be a particle configuration and (Fλ)λ∈Λ be
a family of forces. Denote by W the parallel subspace of (qλ)λ∈Λ. The
following conditions are equivalent:

(a) (Fλ)λ∈Λ is induced by some system of internal forces;
(b) Fλ ∈ W, for all λ ∈ Λ, and both the total force and the total torque

of (Fλ)λ∈Λ are zero.

We will need some preliminary results. In what follows, we consider the
vector space VΛ endowed with the inner product:

(4.1) 〈(vλ)λ∈Λ, (wλ)λ∈Λ〉 =
∑
λ∈Λ

〈vλ, wλ〉, (vλ)λ∈Λ, (wλ)λ∈Λ ∈ VΛ.

Lemma 4.4. Let (qλ)λ∈Λ be a particle configuration. The set of families of
forces (Fλ)λ∈Λ whose corresponding total force and total torque are zero is
a subspace of VΛ. The orthogonal complement of such subspace is the space
of all families of the form (

Ω(qλ)
)
λ∈Λ

,

with Ω varying over the set of affine maps Ω : P → V whose underlying
linear map Ω0 : V → V is anti-symmetric.

Proof. For a given reference point O ∈ P, the map

(4.2) VΛ 3 (Fλ)λ∈Λ 7−→
(∑
λ∈Λ

Fλ,
∑
λ∈Λ

(qλ −O) ∧ Fλ
)
∈ V × (V ∧ V)
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is linear and its kernel is precisely the set of families of forces whose cor-
responding total force and total torque are zero. The annihilator of the
kernel of (4.2) is equal to the image of the adjoint of (4.2). We will make
the following identifications: the dual space of a finite product of vector
spaces will be identified with the product of the dual spaces, the dual space
V∗ of V will be identified with V itself using the inner product, the dual
space of V ∧ V will be identified in the canonical way with the space of
anti-symmetric bilinear forms in V and an anti-symmetric linear operator
Ω0 : V → V will be identified with the anti-symmetric bilinear form 〈Ω0·, ·〉.
Using such identifications, the adjoint of (4.2) is easily computed and given
by

(4.3) V × Lina(V) 3 (v,Ω0) 7−→
(
Ω0(qλ −O) + v

)
λ∈Λ
∈ VΛ,

where Lina(V) denotes the space of anti-symmetric linear endomorphisms of
V. Since the identification of the dual space of VΛ with VΛ coincides with
the identification given by the inner product of VΛ, we have that the image
of (4.3) is equal to the orthogonal complement of the kernel of (4.2). The
conclusion follows. �

Lemma 4.5. Let (qλ)λ∈Λ be a particle configuration. The set of families
of forces (Fλ)λ∈Λ that are induced by some system of internal forces is a
subspace of VΛ. Its orthogonal complement is given by:{

(Fλ)λ∈Λ ∈ VΛ : 〈Fλ − Fµ, qλ − qµ〉 = 0, for all λ, µ ∈ Λ
}
.

Proof. The systems of internal forces for the particle configuration (qλ)λ∈Λ

are of the form (
aλµ(qλ − qµ)

)
λ,µ∈Λ

,

with (aλµ)λ,µ∈Λ a real symmetric matrix index by Λ × Λ. It follows that
the set of families of forces induced by some system of internal forces is the
image of the linear map

φ : M s
Λ(R) 3 (aλµ)λ,µ∈Λ 7−→

(∑
µ∈Λ

aλµ(qλ − qµ)
)
λ∈Λ
∈ VΛ,

where we have denoted by M s
Λ(R) the space of real symmetric matrices

indexed by Λ × Λ. For ρ, θ ∈ Λ, denote by Aρθ ∈ M s
Λ(R) the symmetric

matrix given by:

(Aρθ)λµ =

{
1, if (λ, µ) = (ρ, θ) or (λ, µ) = (θ, ρ),

0, otherwise.

Since φ(Aρρ) = 0, for all ρ ∈ Λ, it follows that the image of φ is spanned by{
φ(Aρθ) : ρ, θ ∈ Λ, ρ 6= θ

}
.

Moreover, for ρ, θ ∈ Λ, ρ 6= θ, and (Fλ)λ∈Λ ∈ VΛ, we have:

〈(Fλ)λ∈Λ, φ(Aρθ)〉 = 〈Fρ − Fθ, qρ − qθ〉.
The conclusion follows. �
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Lemma 4.6. Let (qλ)λ∈Λ be a particle configuration and denote by W its
parallel subspace. For a family of forces (Fλ)λ∈Λ, the following conditions
are equivalent:

(a) 〈Fλ − Fµ, qλ − qµ〉 = 0, for all λ, µ ∈ Λ;
(b) there exists an affine map Ω : P → V, with underlying linear map

Ω0 : V → V anti-symmetric, such that Fλ − Ω(qλ) ∈ W⊥, for all
λ ∈ Λ.

Proof. Assume (b). Given λ, µ ∈ Λ, we have that Fλ−Fµ and Ω(qλ)−Ω(qµ)

differ by an element of W⊥ and that qλ − qµ ∈ W. Therefore

〈Fλ − Fµ, qλ − qµ〉 = 〈Ω(qλ)− Ω(qµ), qλ − qµ〉 = 〈Ω0(qλ − qµ), qλ − qµ〉 = 0,

proving (a). Now assume (a) and let us prove (b). Obviously we can assume
that Λ is nonempty. Fix λ ∈ Λ and write

eθ = qθ − qλ,
for all θ ∈ Λ. Since

qθ − qρ = eθ − eρ,
for all θ, ρ ∈ Λ, we have that W is spanned by

{
eθ : θ ∈ Λ

}
. Let Θ be

a subset of Λ such that (eθ)θ∈Θ is a basis of W. Let Ω0 : W → V be the
unique linear map such that

Ω0(eθ) = Fθ − Fλ,
for all θ ∈ Θ. We have:

(4.4) 〈Ω0(eθ), eθ〉 = 〈Fθ − Fλ, qθ − qλ〉 = 0,

for all θ ∈ Θ. Moreover:

(4.5) 〈Ω0(eθ)− Ω0(eρ), eθ − eρ〉 = 〈Fθ − Fρ, qθ − qρ〉 = 0,

for all θ, ρ ∈ Θ. From (4.4) and (4.5) we obtain:

〈Ω0(eθ), eρ〉+ 〈Ω0(eρ), eθ〉 = 0,

for all θ, ρ ∈ Θ, from which it follows that:

(4.6) 〈Ω0(w), w′〉+ 〈Ω0(w′), w〉 = 0,

for all w,w′ ∈ W. Equality (4.6) implies2 that Ω0 admits an anti-symmetric
linear extension to V, which we also denote by Ω0. Let Ω : P → V be an
affine map whose underlying linear map is Ω0 and such that Ω(qλ) = Fλ.
We have:

Ω(qθ) = Ω(qλ + eθ) = Ω(qλ) + Ω0(eθ) = Fλ + (Fθ − Fλ) = Fθ,

for all θ ∈ Θ. Set
F ′θ = Fθ − Ω(qθ),

2One way to prove this is to use matrices. Pick an orthonormal basis of V whose
k = dim(W) first vectors form a basis of W. The matrix representation of Ω0 is then an
n×k matrix whose top k×k block is anti-symmetric. Such matrix can then be completed
to an anti-symmetric n× n matrix.
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for all θ ∈ Λ, so that:
F ′θ = 0,

for all θ ∈ Θ and also for θ = λ. We will conclude the proof by showing that
F ′θ is in W⊥, for all θ ∈ Λ. Clearly

〈F ′θ − F ′ρ, qθ − qρ〉 = 〈Fθ − Fρ, qθ − qρ〉 − 〈Ω0(qθ − qρ), qθ − qρ〉 = 0,

for all ρ, θ ∈ Λ. In particular, setting ρ = λ, we obtain

〈F ′θ, qθ − qλ〉 = 〈F ′θ, eθ〉 = 0,

for all θ ∈ Λ. Now, for θ ∈ Λ and ρ ∈ Θ, we have

0 = 〈F ′θ − F ′ρ, qθ − qρ〉 = 〈F ′θ, eθ − eρ〉 = −〈F ′θ, eρ〉,

which shows that F ′θ is in W⊥ and concludes the proof. �

Proof of Proposition 4.3. Denote by I the subspace of VΛ consisting of fam-
ilies of forces that are induced by some system of internal forces and by Z
the subspace of VΛ consisting of families of forces whose total force and total
torque are zero. We have to prove that:

I = Z ∩ (WΛ).

Since VΛ is finite-dimensional, it is sufficient to prove that:

I⊥ =
(
Z ∩ (WΛ)

)⊥
.

Noticing that (
Z ∩ (WΛ)

)⊥
= Z⊥ + (WΛ)⊥ = Z⊥ + (W⊥)Λ,

the conclusion is easily obtained from Lemmas 4.4, 4.5 and 4.6. �

5. Particles in motion

By a particle configuration in motion we mean a family (qλ)λ∈Λ of smooth
maps qλ : T → P, where T is an affine space parallel to R (the space
of instants of time, see Section 2). Obviously, we can identify a particle
configuration in motion with a smooth map q : T → PΛ by setting

q(t) =
(
qλ(t)

)
λ∈Λ

,

for all t ∈ T . We then obtain, for each t ∈ T , a particle velocity

q̇λ(t) =
dqλ
dt

(t) ∈ V

and thus a family of velocities
(
q̇λ(t)

)
λ∈Λ

. Given a family of masses (mλ)λ∈Λ,

we define the family of resultant forces
(
Fλ(t)

)
λ∈Λ

by

(5.1) Fλ(t) = mλ
d2qλ
dt2

(t) ∈ V,

for each t ∈ T ; the family of resultant forces yields then a total resultant
force F (t) ∈ V, for each t ∈ T . The curves Fλ : T → V, λ ∈ Λ, and
F : T → V are obviously smooth. Newton’s law says that Fλ(t) is actually
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the sum of all the forces acting on the particle λ, in case we are using an
inertial frame (appropriate fictitious forces should be included, in the case of
a noninertial frame). For each t ∈ T , the particle configuration

(
qλ(t)

)
λ∈Λ

(with masses (mλ)λ∈Λ) has a center of mass C(t) ∈ P and the family of

velocities
(
q̇λ(t)

)
λ∈Λ

defines a velocity of center of mass Ċ(t) ∈ V. We thus

obtain smooth curves C : T → P and Ċ : T → V and the equality

Ċ(t) =
dC

dt
(t)

holds, for all t ∈ T .
Consider now a moving point, i.e., a smooth curve O : T → P. For each

t ∈ T we then have a reference point O(t) ∈ P and a reference velocity

Ȯ(t) =
dO

dt
(t),

which can be used to define total linear momentum, total kinetic energy,
total power, total angular momentum and total torque, which yield smooth
curves:

T 3 t 7−→ pȮ(t) = pȮ(t) ∈ V, T 3 t 7−→ TȮ(t) = TȮ(t) ∈ R,
T 3 t 7−→ PȮ(t) = PȮ(t) ∈ R, T 3 t 7−→ LO,Ȯ(t) = LO(t),Ȯ(t) ∈ V ∧ V,

T 3 t 7−→ τO(t) = τO(t) ∈ V ∧ V.

Theorem 5.1. Given a particle configuration in motion (qλ)λ∈Λ, a family
of masses (mλ)λ∈Λ, a moving point O and defining all the corresponding
objects as above, then the following formulas hold:

M
d2C

dt2
(t) = F (t),(5.2)

dpȮ
dt

(t) = F (t)−M d2O

dt2
(t),

dTȮ
dt

(t) = PȮ(t)−
〈d2O

dt2
(t), pȮ(t)

〉
,

dLO,Ȯ
dt

(t) = τO(t) +
(
O(t)− C(t)

)
∧
(
M

d2O

dt2
(t)
)
,

for all t ∈ T .

Proof. Straightforward computation. �
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Corollary 5.2. Under the same conditions of Theorem 5.1, if O has con-
stant velocity, then:

dpȮ
dt

(t) = F (t),

dTȮ
dt

(t) = PȮ(t),

dLO,Ȯ
dt

(t) = τO(t),

for all t ∈ T . �

Corollary 5.3. Under the same conditions of Theorem 5.1, we have:

dTĊ
dt

(t) = PĊ(t),

dLC,Ċ
dt

(t) = τC(t),(5.3)

for all t ∈ T .

Proof. For the first equality, note that pĊ = 0. �

5.1. Mechanics with constraints. Let Q be an embedded submanifold
of the affine space PΛ. We consider a configuration in motion q : T → PΛ

that is forced to satisfy the constraint given by Q, i.e., such that the image
of q is in Q. The resultant force (5.1) is decomposed as

(5.4) Fλ(t) = F ext
λ (t) + F cons

λ (t), t ∈ T ,

with F cons
λ (t) the constraint reaction (whatever is forcing the configuration

to remain inside the constraint) and F ext
λ (t) the external forces (forces not

related to the constraint). We combine all the forces Fλ(t) into a single
vector

F̂ (t) =
(
Fλ(t)

)
λ∈Λ
∈ VΛ

and, similarly, we define F̂ ext and F̂ cons. The family of masses (mλ)λ∈Λ are
combined to form a linear operator m̂ : VΛ → VΛ defined by

m̂
(
(q̇λ)λ∈Λ

)
= (mλq̇λ)λ∈Λ, (q̇λ)λ∈Λ ∈ VΛ.

Endowing VΛ with the inner product 〈·, ·〉 defined in (4.1), then m̂ becomes
a positive symmetric operator and

〈·, ·〉m = 〈m̂ ·, ·〉

defines a new inner product on VΛ. This is the unique inner product on VΛ

such that the total kinetic energy is given by

TȮ =
1

2

〈
(q̇λ − Ȯ)λ∈Λ, (q̇λ − Ȯ)λ∈Λ

〉
m
,
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for every family of velocities (q̇λ)λ∈Λ ∈ VΛ and some reference velocity Ȯ.
Using the operator m̂, equation (5.1) can be written as:

(5.5) m̂
(d2q

dt2
(t)
)

= F̂ (t).

We now make the assumption that we have an ideal constraint, namely,
that the constraint reaction F̂ cons(t) belongs to the orthogonal complement
of the tangent space Tq(t)Q with respect to the inner product 〈·, ·〉. With
this assumption, the constraint reaction does no work, i.e., it makes no
contribution to the energy balance. From equations (5.5) and (5.4), we
obtain the following equality of linear functionals on Tq(t)Q:〈

m̂
(d2q

dt2
(t)
)
, ·
〉∣∣∣
Tq(t)Q

= 〈F̂ ext(t), ·〉|Tq(t)Q ∈ (Tq(t)Q)∗, t ∈ T .

We can rewrite this equality using the inner product 〈·, ·〉m:[〈d2q

dt2
(t), ·

〉
m

]∣∣∣
Tq(t)Q

= 〈F̂ ext(t), ·〉|Tq(t)Q ∈ (Tq(t)Q)∗, t ∈ T .

Let g denote the Riemannian metric on Q given by the restriction of 〈·, ·〉m
and consider Q endowed with the corresponding Levi-Civita connection. If
D
dt denotes the covariant derivative in the direction of the vector field d

dt , then
D
dt

dq
dt (t) is simply the 〈·, ·〉m-orthogonal projection of d2q

dt2
(t) onto Tq(t)Q; thus:

(5.6) g
(D

dt

dq

dt
(t), ·

)
= 〈F̂ ext(t), ·〉|Tq(t)Q ∈ (Tq(t)Q)∗, t ∈ T .

Typically, the external forces will be specified as smooth functions of time,
position and velocity, so that (5.6) will become a second-order differential
equation for curves on the manifold Q; such equation has a unique solution
once an initial position and velocity are specified. If q satisfies (5.6), then

(5.5) and (5.4) will be satisfied for some constraint reaction F̂ cons(t) that is

〈·, ·〉-orthogonal to Tq(t)Q. An explicit formula for F̂ cons(t) can be written

in terms of q(t), dq
dt (t) and F̂ ext(t). We obtain this formula below.

For each q ∈ Q, denote by (TqQ)⊥ the orthogonal complement of TqQ in
VΛ with respect to the inner product 〈·, ·〉. The orthogonal complement of
TqQ with respect to 〈·, ·〉m is then equal to m̂−1[(TqQ)⊥]; it follows that

VΛ = TqQ⊕ m̂−1[(TqQ)⊥]

and thus

VΛ = m̂[TqQ]⊕ (TqQ)⊥.

Denote by αq : TqQ× TqQ → m̂−1[(TqQ)⊥] the second fundamental form
of Q in PΛ, where PΛ is endowed with the Riemannian metric that is con-
stant and equal to 〈·, ·〉m. We then have

d2q

dt2
(t) =

D

dt

dq

dt
(t) + αq(t)

(dq

dt
(t),

dq

dt
(t)
)
, t ∈ T ,
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with D
dt

dq
dt (t) in Tq(t)Q and αq(t)

(dq
dt (t),

dq
dt (t)

)
in m̂−1[(Tq(t)Q)⊥]. Thus:

(5.7) m̂
(d2q

dt2
(t)
)

= m̂
(D

dt

dq

dt
(t)
)

+ m̂
(
αq(t)

(dq

dt
(t),

dq

dt
(t)
))
, t ∈ T ,

with m̂
(

D
dt

dq
dt (t)

)
in m̂[Tq(t)Q] and m̂

(
αq(t)

(dq
dt (t),

dq
dt (t)

))
in (Tq(t)Q)⊥. De-

note by π : VΛ → (Tq(t)Q)⊥ the projection determined by the direct sum
decomposition

VΛ = m̂[Tq(t)Q]⊕ (Tq(t)Q)⊥.

From (5.7) and (5.5), we obtain:

π
(
F̂ (t)

)
= m̂

(
αq(t)

(dq

dt
(t),

dq

dt
(t)
))
, t ∈ T .

Using (5.4) and the fact that F̂ cons(t) is in (Tq(t)Q)⊥, we finally conclude
that:

F̂ cons(t) = m̂
(
αq(t)

(dq

dt
(t),

dq

dt
(t)
))
− π

(
F̂ ext(t)

)
, t ∈ T .

6. Some exterior algebra

Consider the canonical embedding∧
k

V −→
⊗
k

V

of the k-th exterior power of V into the k-th tensor power of V defined by

v1 ∧ v2 ∧ · · · ∧ vk 7−→
∑
σ∈Sk

sgn(σ)(vσ(1) ⊗ vσ(2) ⊗ · · · ⊗ vσ(k)),

for all v1, . . . , vk ∈ V, where Sk denotes the group of permutations of
{1, 2, . . . , k} and sgn(σ) denotes the sign of a permutation σ. The inner
product of V induces a contraction map

(6.1)
(⊗
k+1

V
)
× V −→

⊗
k

V

defined by

(v1 ⊗ v2 ⊗ · · · ⊗ vk+1) ⨼ w = 〈v1, w〉(v2 ⊗ · · · ⊗ vk+1),

for all v1, . . . , vk+1, w ∈ V. Through the canonical embedding of the exterior
product into the tensor product, the contraction map (6.1) restricts to a
contraction map

(6.2)
( ∧
k+1

V
)
× V −→

∧
k

V

which is given by

(v1 ∧ v2 ∧ · · · ∧ vk+1) ⨼w =

k+1∑
i=1

(−1)i+1〈vi, w〉(v1 ∧ v2 ∧ · · · ∧ v̂i ∧ · · · ∧ vk+1),
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for all v1, . . . , vk+1, w ∈ V, where the hat indicates that the term has been
omitted. We endow the exterior product

∧
k V with the inner product defined

by

〈v1 ∧ v2 ∧ · · · ∧ vk, w1 ∧ w2 ∧ · · · ∧ wk〉 = det
(
〈vi, wj〉

)
i,j=1,...,k

,

for all v1, . . . , vk, w1, . . . , wk ∈ V. It is easily checked that the following
formula holds:

〈ω ⨼ z, ρ〉 = 〈ω, z ∧ ρ〉,
for all ω ∈

∧
k+1 V, ρ ∈

∧
k V and z ∈ V; in other words, for all z ∈ V, the

linear map

z ∧ · :
∧
k

V −→
∧
k+1

V

is the adjoint of the linear map:

· ⨼ z :
∧
k+1

V −→
∧
k

V.

We are only concerned with the contraction map (6.2) for k = 1, which is a
map

(6.3) (V ∧ V)× V −→ V

given by

(v ∧ w) ⨼ z = 〈v, z〉w − 〈w, z〉v,
for all v, w, z ∈ V. It is easily seen that the map

(6.4) V ∧ V 3 ω 7−→ ω ⨼ · ∈ Lina(V)

is an isomorphism onto the space Lina(V) of anti-symmetric linear endomor-
phisms of V. The space Lina(V) has the structure of a Lie algebra, with Lie
bracket defined by

[Ω0,Ω
′
0] = Ω0 ◦ Ω′0 − Ω′0 ◦ Ω0, Ω0,Ω

′
0 ∈ Lina(V).

We can then endow V ∧ V with a Lie bracket by requiring (6.4) to be a Lie
algebra isomorphism. More explicitly, we set:

(6.5) [ω, ω′] ⨼ · = [ω ⨼ ·, ω′ ⨼ ·], ω, ω′ ∈ V ∧ V.

Remark 6.1. As observed in Remark 3.2, if n = 3 and V is oriented, we can
identify V ∧ V with V using the vector product. It follows from the formula
for the iterated vector product

(v ∧ w) ∧ z = 〈v, z〉w − 〈w, z〉v, v, w, z ∈ V,

that, under the identification of V ∧ V with V, the contraction map (6.3) is
identified with the vector product itself. Moreover, since the vector product
of V turns V into a Lie algebra, we know that the adjoint representation

V 3 ω 7−→ ω ∧ · ∈ Lina(V)
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is a Lie algebra homomorphism (which turns out to be an isomorphism in
this case). Thus, under the identification of V ∧ V with V, the Lie bracket
(6.5) of V ∧ V is also identified with the vector product.

7. Rigid motion

Recall that the set Aff(P,P) of all affine maps from P to P is an affine
space parallel to the vector space Aff(P,V) (see Subsection 1.3). Given an
arbitrary point O ∈ P, we obtain an affine isomorphism

(7.1) Lin(V,V)× V −→ Aff(P,P)

given by (Ω0, v) 7→ Ω, with Ω(p) = O+Ω0(p−O)+v, for all Ω0 ∈ Lin(V,V),
v ∈ V and p ∈ P, where Lin(V,V) denote the space of all linear trans-
formations from V to V. The subset GAff(P) of Aff(P,P) consisting of
affine isomorphisms is a group (under composition) and an open subset of
Aff(P,P); hence it is a Lie group and its Lie algebra is identified, as a vector
space, with Aff(P,V). The affine isomorphism (7.1) restricts to a smooth
diffeomorphism

(7.2) GL(V)× V −→ GAff(P),

where GL(V) denotes the Lie group of linear isomorphisms of V. This dif-
feomorphism becomes a Lie group isomorphism if GL(V) × V is endowed
with the semidirect product structure defined by

(Ω0, v) · (Θ0, w) =
(
Ω0 ◦Θ0,Ω0(w) + v

)
, Ω0,Θ0 ∈ GL(V), v, w ∈ V.

Let Iso(P) denote the subgroup of GAff(P) consisting of affine isometries,
i.e., affine maps whose underlying linear map is a linear isometry of V. We
have that Iso(P) is a closed Lie subgroup of GAff(P) and (7.2) restricts to
a diffeomorphism

(7.3) O(V)× V −→ Iso(P),

where O(V) denotes the orthogonal group of V, i.e., the closed Lie subgroup
of GL(V) consisting of linear isometries. The Lie algebra of O(V) is the
space Lina(V) of anti-symmetric linear endomorphisms of V and the Lie
algebra of Iso(P) is the subspace of Aff(P,V) consisting of affine maps whose
underlying linear map is anti-symmetric.

The connected component of the identity of the Lie group Iso(P) is the
group Iso0(P) consisting of affine maps whose underlying linear map is in
the group SO(V) of orientation-preserving linear isometries of V (which is
the connected component of the identity of the Lie group O(V)). Obviously,
the diffeomorphism (7.3) restricts to a diffeomorphism

SO(V)× V −→ Iso0(P).

We consider the smooth action of Iso(P) on PΛ given by

g · (qλ)λ∈Λ =
(
g(qλ)

)
λ∈Λ

, g ∈ Iso(P), (qλ)λ∈Λ ∈ PΛ.
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Proposition 7.1. The orbits of the action of Iso(P) on PΛ are closed and
thus3 are embedded submanifolds of PΛ.

Proof. Obviously we can assume that Λ is nonempty. Let (qλ)λ∈Λ ∈ PΛ be
given and let us show that the orbit of (qλ)λ∈Λ under Iso(P) is closed. Fix
λ0 ∈ Λ and let W be the subspace of V spanned by{

qλ − qλ0 : λ ∈ Λ \ {λ0}
}
.

Let Θ be a subset of Λ \ {λ0} such that (qλ − qλ0)λ∈Θ is a basis of W. For
each (q′λ)λ∈Λ ∈ PΛ, there exists a unique linear map Ω0 :W → V such that

(7.4) Ω0(qλ − qλ0) = q′λ − q′λ0
,

for all λ ∈ Θ. The affine map Ω : qλ0 +W → P defined by

Ω(q) = q′λ0
+ Ω0(q − qλ0), q ∈ qλ0 +W,

is the unique affine map with Ω(qλ) = q′λ, for all λ ∈ Θ ∪ {λ0}. We have
that (q′λ)λ∈Λ is in the orbit of (qλ)λ∈Λ under Iso(P) if and only if Ω0 is a
linear isometric embedding and (7.4) holds for all λ ∈ Λ. The conclusion is
obtained by observing that the set of linear isometric embeddings from W
to V is a closed subset of the space of all linear maps from W to V and that
the mapping (q′λ)λ∈Λ 7→ Ω0 is continuous. �

Definition 7.2. By a configuration in rigid motion we mean a particle
configuration in motion whose image is contained in an orbit of the action
of Iso(P) on PΛ.

Obviously, the image of a configuration in motion is connected and thus
the image of a configuration in rigid motion is contained in a connected
component of an orbit of Iso(P). Since the connected components4 of the
orbits of Iso(P) are the orbits of Iso0(P), we can replace Iso(P) with Iso0(P)
in Definition 7.2.

Proposition 7.3. If Q is an orbit of the action of Iso(P) (or of Iso0(P))
on PΛ then the tangent space of Q at a point (qλ)λ∈Λ is the space of all
families

(
Ω(qλ)

)
λ∈Λ

with Ω : P → V running over all affine maps whose
underlying linear map is anti-symmetric.

Proof. The tangent space of an orbit Q at (qλ)λ∈Λ is the image of the dif-
ferential at the identity of the map

Iso(P) 3 g 7−→ g · (qλ)λ∈Λ ∈ Q.
Such differential is given by

TId Iso(P) 3 Ω 7−→
(
Ω(qλ)

)
λ∈Λ
∈ T(qλ)λ∈Λ

Q. �

3An orbit of a smooth action of a Lie group is an embedded submanifold if and only if
it is locally closed, i.e., it is the intersection of a closed subset and an open subset.

4If a Lie group G acts continuously and transitively on a manifold M and if G0 is the
connected component of the identity of G, then the orbits of the action of G0 on M are
open, closed and connected. Hence, the orbits of G0 are the connected components of M .
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Corollary 7.4. If Q is an orbit of the action of Iso(P) (or of Iso0(P)) on
PΛ, then the admissible reaction forces of the ideal constraint Q at a particle
configuration (qλ)λ∈Λ ∈ Q (i.e., the orthogonal complement of T(qλ)λ∈Λ

Q in

VΛ) are precisely the families of forces whose total force and total torque are
zero.

Proof. Follows from Lemma 4.4. �

Definition 7.5. Let (qλ)λ∈Λ be a particle configuration. We say that a fam-
ily of velocities (q̇λ)λ∈Λ is admissible for rigid motion (for the given particle
configuration) if (q̇λ)λ∈Λ belongs to the tangent space at (qλ)λ∈Λ of the orbit
of Iso(P) (or of Iso0(P)) passing through (qλ)λ∈Λ. By Proposition 7.3, this is
equivalent to the existence of an affine map Ω : P → V, with anti-symmetric
underlying linear map, such that

q̇λ = Ω(qλ),

for all λ ∈ Λ. If ω ∈ V ∧ V is such that ω ⨼ · is the underlying linear map of
Ω, then we call ω an angular velocity for (q̇λ)λ∈Λ.

Since two anti-symmetric linear maps that agree on a codimension one
subspace are equal, it follows that if the parallel subspace to the particle
configuration (qλ)λ∈Λ has codimension at most one, then there exists exactly
one angular velocity for a family of velocities (q̇λ)λ∈Λ, so we call it the
angular velocity of (q̇λ)λ∈Λ.

8. Tensor of inertia

Definition 8.1. Given a particle configuration (qλ)λ∈Λ, a family of masses
(mλ)λ∈Λ and a reference point O ∈ P, we define the corresponding tensor
of inertia as the linear operator

IO : V ∧ V −→ V ∧ V
defined by

IO(ω) =
∑
λ∈Λ

mλ(qλ −O) ∧
(
ω ⨼ (qλ −O)

)
,

for all ω ∈ V ∧ V.

Note that, since z ∧ · is the adjoint of · ⨼ z, it follows that

(8.1) 〈IO(ω1), ω2〉 =
∑
λ∈Λ

mλ〈ω1 ⨼ (qλ −O), ω2 ⨼ (qλ −O)〉,

for all ω1, ω2 ∈ V ∧V. In particular, IO is a symmetric positive semi-definite
operator whose kernel consists of those ω ∈ V ∧ V such that ω ⨼ · annihilate
the subspace spanned by

{
qλ −O : λ ∈ Λ

}
.

Remark 8.2. Assume that n = 3 and V is oriented. Identifying V ∧ V with
V through the vector product (Remark 3.2), we obtain:

〈IO(ω), ω〉 =
∑
λ∈Λ

mλ‖ω ∧ (qλ −O)‖2,
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for all ω ∈ V. Note that, if ‖ω‖ = 1, then ‖ω ∧ (qλ − O)‖ is equal to the
distance from qλ to the line O +Rω.

Proposition 8.3. Let (qλ)λ∈Λ be a particle configuration, (mλ)λ∈Λ be a
family of masses, (Fλ)λ∈Λ be a family of forces and Ω : P → V be an
affine map whose underlying linear map Ω0 : V → V is anti-symmetric. Let
ω ∈ V ∧ V be such that Ω0 = ω ⨼ ·. Consider the family of velocities

q̇λ = Ω(qλ), λ ∈ Λ.

Pick O ∈ P and set Ȯ = Ω(O). The following formulas hold:

TȮ =
1

2
〈IO(ω), ω〉;(8.2)

PȮ = 〈τO, ω〉;(8.3)

LO,Ȯ = IO(ω).(8.4)

Proof. Note that

q̇λ − Ȯ = Ω0(qλ −O) = ω ⨼ (qλ −O), λ ∈ Λ.

Formula (8.4) then follows directly from the definitions of IO and LO,Ȯ and

formula (8.2) follows directly from (8.1) and the definition of TȮ. Finally,
formula (8.3) follows from the definitions of τO and PȮ and the fact that
(qλ −O) ∧ · is the adjoint of · ⨼ (qλ −O). �

Corollary 8.4. Under the conditions in the statement of Proposition 8.3,
we have:

TĊ =
1

2
〈IC(ω), ω〉;

PĊ = 〈τC , ω〉;
LC,Ċ = IC(ω).

Proof. Simply note that Ω(C) = Ċ. �

Proposition 8.5. Given a particle configuration (qλ)λ∈Λ, a family of masses
(mλ)λ∈Λ and two reference points O1 ∈ P, O2 ∈ P, we have:

IO2(ω) = IO1(ω) +M(O1 −O2) ∧
(
ω ⨼ (C −O1)

)
+M(C −O1) ∧

(
ω ⨼ (O1 −O2)

)
+M(O1 −O2) ∧

(
ω ⨼ (O1 −O2)

)
,

for all ω ∈ V ∧ V.

Proof. Straightforward computation. �

9. Derivative in a moving frame

Let V be a finite dimensional real vector space, G be a Lie group and

ρ : G −→ GL(V)
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be a smooth representation of G on V. Let M be a differentiable manifold
and X be a vector field on M . For any smooth map f : M → V we denote,
as usual, by X(f) the map from M to V given by

X(f)(m) = df(m) ·X(m), m ∈M.

Fix a smooth map g : M → G. We define a map ∇gXf : M → V by setting

(∇gXf)(m) = ρ
(
g(m)

)
·
(
X(f̃)(m)

)
, m ∈M,

where f̃ : M → V is the smooth map defined by

f̃(m) = ρ
(
g(m)

)−1 · f(m), m ∈M.

In other words, ∇g is the connection on the trivial vector bundle M × V
obtained by taking the push-forward of the trivial connection by the vector
bundle isomorphism given by

M × V 3 (m, v) 7−→
(
m, ρ

(
g(m)

)
· v
)
∈M × V.

If M is (an open subset of) an affine vector space T parallel to R then,
as before, we denote by d

dt the (derivative with respect to) the canonical

vector field of M that has value 1 at every point. We then denote by Dg

dt the
covariant derivative with respect to that same vector field, i.e.:

Dg

dt
= ∇gd

dt

.

Let us now write a more explicit formula for ∇gXf . Denote by g the Lie
algebra of G and by ρ̄ the differential of ρ at the identity 1 ∈ G:

ρ̄ = dρ(1) : g −→ Lin(V,V),

which is a representation of the Lie algebra g in V, i.e., a Lie algebra homo-
morphism of g to Lin(V,V). Using that ρ is a homomorphism we obtain:

dρ(h) · (Zh) = ρ̄(Z) ◦ ρ(h), h ∈ G, Z ∈ g,

where Zh ∈ ThG denotes the image of Z by the differential at 1 of the map
given by right translation by h. Let ΩX : M → g be the smooth map such
that

dg(m) ·X(m) = ΩX(m)g(m), m ∈M.

Then:

X(f̃) = −
[
ρ
(
g(m)

)−1 ◦
[(

dρ
(
g(m)

)
◦ dg(m)

)
·X(m)

]
◦ ρ
(
g(m)

)−1] · f(m)

+ ρ
(
g(m)

)−1 ·
(
X(f)(m)

)
= −

[
ρ
(
g(m)

)−1 ◦
[
ρ̄
(
ΩX(m)

)
◦ ρ
(
g(m)

)]
◦ ρ
(
g(m)

)−1] · f(m)

+ ρ
(
g(m)

)−1 ·
(
X(f)(m)

)
= −

[
ρ
(
g(m)

)−1 ◦ ρ̄
(
ΩX(m)

)]
· f(m) + ρ

(
g(m)

)−1 ·
(
X(f)(m)

)
,

for all m ∈M . Hence:

(9.1) (∇gXf)(m) = X(f)(m)− ρ̄
(
ΩX(m)

)
· f(m), m ∈M.
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Definition 9.1. Let V, W be real finite dimensional vector spaces and let
ρV : G → GL(V), ρW : G → GL(W) be smooth representations of the Lie
group G. A map φ : dom(φ) ⊂ V → W is said to be intertwining if dom(φ)
is invariant by ρV and

(9.2) φ
(
ρV(g) · v

)
= ρW(g) · φ(v),

for all g ∈ G and v ∈ dom(φ).

Lemma 9.2. Let V, W be real finite dimensional vector spaces,

ρV : G −→ GL(V), ρW : G −→ GL(W)

be smooth representations of the Lie group G and φ : V → W be an inter-
twining linear map. Consider the Lie algebra representations

ρ̄V : g −→ Lin(V,V), ρ̄W : g −→ Lin(W,W)

given by the differential at 1 ∈ G of ρV and ρW , respectively. We have that
φ is also intertwining for ρ̄V and ρ̄W in the sense that

φ ◦ ρ̄V(Z) = ρ̄W(Z) ◦ φ,
for all Z ∈ g.

Proof. Simply differentiate the equality

φ ◦ ρV(g) = ρW(g) ◦ φ, g ∈ G
with respect to g, at g = 1, in the direction of Z ∈ T1G = g. �

Proposition 9.3. Let V, W be real finite dimensional vector spaces and let
ρV : G → GL(V), ρW : G → GL(W) be smooth representations of the Lie
group G. Let φ : dom(φ) ⊂ V → W be a smooth intertwining map defined
in an open subset dom(φ) of V. If f : M → dom(φ) is a smooth map, then

∇gX(φ ◦ f)(m) = dφ
(
f(m)

)
· (∇gXf)(m), m ∈M.

Proof. If u = φ ◦ f , then

ũ(m) = ρW
(
g(m)−1

)
· u(m) = φ

(
f̃(m)

)
, m ∈M,

so that:

(9.3)
(∇gXu)(m) = ρW

(
g(m)

)
·
(
X(ũ)(m)

)
= ρW

(
g(m)

)
· dφ

(
f̃(m)

)
·
(
X(f̃)(m)

)
, m ∈M.

Differentiating (9.2) with respect to v, we get

dφ
(
ρV(g) · v

)
◦ ρV(g) = ρW(g) ◦ dφ(v),

for all v ∈ dom(φ). It follows that

(9.4)
dφ
(
f̃(m)

)
= dφ

[
ρV
(
g(m)−1

)
· f(m)

]
= ρW

(
g(m)−1

)
◦ dφ

(
f(m)

)
◦ ρV

(
g(m)

)
, m ∈M.

The conclusion follows by substituting (9.4) into (9.3). �
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Corollary 9.4. Let V, W be real finite dimensional vector spaces and let
ρV : G → GL(V), ρW : G → GL(W) be smooth representations of the Lie
group G. Let φ : V → W be a linear intertwining map. If f : M → V is a
smooth map, then

∇gX(φ ◦ f)(m) = φ
(
(∇gXf)(m)

)
, m ∈M. �

Corollary 9.5. Let V, W be real finite dimensional vector spaces and let
ρV : G → GL(V), ρW : G → GL(W) be smooth representations of the Lie
group G. Let V ×W be endowed with the product representation

ρV×W(g) · (v, w) =
(
ρV(g) · v, ρW(g) · w), g ∈ G, v ∈ V, w ∈ W.

If f = (f1, f2) : M → V ×W is a smooth map, then

(∇gXf)(m) =
(
(∇gXf1)(m), (∇gXf2)(m)

)
, m ∈M.

Proof. Apply Corollary 9.4 by taking φ equal to the projection maps of
V ×W. �

Corollary 9.6. Let V, W and Z be real finite dimensional vector spaces and
let ρV : G → GL(V), ρW : G → GL(W) and ρZ : G → GL(Z) be smooth
representations of the Lie group G. Let

V ×W 3 (v, w) 7−→ v ? w ∈ Z

be an intertwining bilinear map, where V ×W is endowed with the product
representation of ρV and ρW . Given smooth maps

f1 : M −→ V and f2 : M −→W,

set

(f1 ? f2)(m) = f1(m) ? f2(m), m ∈M.

We have:(
∇gX(f1?f2)

)
(m) = (∇gXf1)(m)?f2(m)+f1(m)?(∇gXf2)(m), m ∈M. �

9.1. Functors of representations. Consider the category Vec whose ob-
jects are real finite-dimensional vector spaces and the morphisms are linear
isomorphisms. We say that a functor F : Vec→ Vec is smooth if the map

(9.5) GL(V) 3 Ω −→ F(Ω) ∈ GL
(
F(V)

)
is smooth, for any real finite-dimensional vector space V. Examples of
smooth functors are

• F(V) = V∗, F(Ω) = Ω∗−1,

• F(V) =
⊗

k V, F(Ω) =
⊗

k Ω,

• F(V) =
∧
k V, F(Ω) =

∧
k Ω,

• F(V) = Lin(V,V), F(Ω)(Θ) = Ω ◦Θ ◦ Ω−1.
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Since (9.5) is a smooth group homomorphism, it follows that a smooth
representation ρ : G → GL(V) yields a smooth representation of G on
F(V) by considering the composition of ρ with (9.5). We will denote this
representation of G on F(V) by ρ as well.

Denote by Vec′ the category whose objects are real finite-dimensional
vector spaces and morphisms are smooth maps. Given smooth functors

F1 : Vec −→ Vec, F2 : Vec −→ Vec

we can regard them as functors

F1 : Vec −→ Vec′, F2 : Vec −→ Vec′

simply by composing them with the inclusion of Vec in Vec′. Let φ be a
natural transformation from F1 to F2 regarded as functors taking values in
Vec′. This means that, for each real finite-dimensional vector space V, we
have a smooth map

φV : F1(V) −→ F2(V)

and that, given real finite-dimensional vectors spaces V, W and a linear
isomorphism Ω : V → W, the diagram

F1(V)
φV //

F1(Ω)
��

F2(V)

F2(Ω)
��

F1(W)
φW

// F2(W)

commutes. Clearly, given a smooth representation ρ : G → GL(V), then
φV : F1(V)→ F2(V) is a smooth intertwining map.

10. Fundamental equations for rigid motion

Let q : T → Q be a configuration in rigid motion, with Q an orbit of
Iso(P), and let (q0

λ)λ∈Λ be an arbitrary point of Q. Since the map

(10.1) Iso(P) 3 g 7−→ g · (q0
λ)λ∈Λ ∈ Q

is a smooth fibration, the smooth map q : T → Q admits a lifting

g : T −→ Iso(P)

through (10.1), so that

qλ(t) = g(t)(q0
λ), t ∈ T , λ ∈ Λ.

We can write
dg

dt
(t) = Ω(t) ◦ g(t), t ∈ T ,

with Ω a smooth curve in the Lie algebra of Iso(P). For each t ∈ T , let g0(t)
be the underlying linear map of g(t), Ω0(t) be the underlying linear map of
Ω(t) and ω(t) ∈ V ∧ V be such that Ω0(t) = ω(t) ⨼ ·, so that g0 is a smooth
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curve in O(V), Ω0 is a smooth curve in Lina(V) and ω is a smooth curve in
V ∧ V. We have

(10.2)
dg0

dt
(t) = Ω0(t) ◦ g0(t), t ∈ T .

Setting

q̇λ(t) =
dqλ
dt

(t), t ∈ T ,
then

q̇λ(t) = Ω(t)
(
qλ(t)

)
, t ∈ T ,

so that ω(t) is an angular velocity for the family of velocities
(
q̇λ(t)

)
λ∈Λ

.
Pick a moving point O : T → P that follows the same pattern of motion as
the particle configuration in motion, i.e., such that

O(t) = g(t)
(
O0), t ∈ T ,

for some point O0 ∈ P. For instance, the center of mass5 has this property.
Setting

Ȯ(t) =
dO

dt
(t), t ∈ T ,

we have
Ȯ(t) = Ω(t)

(
O(t)

)
, t ∈ T .

We then have:

q̇λ(t) = Ȯ(t) + ω(t) ⨼
(
qλ(t)−O(t)

)
, t ∈ T , λ ∈ Λ.

If IO(t) denotes the tensor of inertia of the particle configuration
(
qλ(t)

)
λ∈Λ

with respect to O(t), then Proposition 8.3 yields

TȮ(t) =
1

2

〈
IO(t)

(
ω(t)

)
, ω(t)

〉
,

PȮ(t) = 〈τO(t), ω(t)〉,

LO(t),Ȯ(t) = IO(t)

(
ω(t)

)
,(10.3)

where we are using the same notation of Section 5.
Consider the Lie group G = Iso(P) and the canonical representation6

ρ : G −→ GL(V)

which carries each element of G to its underlying linear map. We also
denote by ρ any representation obtained from ρ using a smooth functor
(Subsection 9.1) and by ρ̄ the corresponding representation of the Lie algebra
g of G obtained by differentiating ρ at the identity. We will denote by Dg

dt the

5You could also use the center of mass with respect to a different (nonphysical) family
of masses for the given particle configuration. More generally, pick a map f : PΛ → P
that is intertwining in the sense that f ◦gΛ = g◦f for all g ∈ Iso(P), where gΛ : PΛ → PΛ

is the map given by the action of g on PΛ. Then define O(t) by applying f to the particle
configuration

(
qλ(t)

)
λ∈Λ

, for all t ∈ T .
6In what follows, we could, alternatively, take G = O(V), ρ the inclusion of G in GL(V)

and consider the connection defined from the smooth map g0 : T → O(V).
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covariant derivative with respect to the vector field d
dt using the connection

defined from the smooth map g : T → G as in Section 9. We set:

Ωg
0(t) = ρ

(
g(t)

)−1 · Ω0(t), IgO(t) = ρ
(
g(t)

)−1 · IO(t), t ∈ T .

We note that

Ωg
0(t) = g0(t)−1 ◦ Ω0(t) ◦ g0(t),

so that:

(10.4)
dg0

dt
(t) = g0(t) ◦ Ωg

0(t), t ∈ T .

Moreover, IgO(t) is the tensor of inertia of the particle configuration (q0
λ)λ∈Λ

with respect to the reference point O0, so that the map

T 3 t 7−→ IgO(t) ∈ Lin(V ∧ V)

is constant. Thus

(10.5)
DgIO

dt
(t) = 0,

where IO : T → Lin(V ∧ V) is defined by IO(t) = IO(t).
The representation ρ of G = Iso(P) in Lina(V) is simply the composition

of the homomorphism Iso(P) → O(V) that carries an affine map to its
underlying linear map with the adjoint representation of O(V) in its Lie
algebra. Thus, the representation ρ̄ of the Lie algebra g in Lina(V) is simply
the composition of the homomorphism g → Lina(V) that carries an affine
map to its underlying linear map with the adjoint representation of the Lie
algebra Lina(V) in itself. More explicitly:

ρ̄(Θ) · Φ0 = [Θ0,Φ0],

for all Θ ∈ g, Φ0 ∈ Lina(V), where Θ0 denotes the underlying linear map of
Θ. Since the linear isomorphism (6.4) is intertwining for the representations
ρ of G, it is also intertwining for the representations ρ̄ of g (Lemma 9.2).
Thus, the representation ρ̄ of g in V ∧ V is given by

ρ̄(Θ) · φ = [θ, φ],

for all Θ ∈ g, φ ∈ V ∧V, where θ ∈ V ∧V is such that θ ⨼ · is the underlying
linear map of Θ and the Lie bracket of V ∧V is defined in (6.5). Using (9.1)
we obtain:

(10.6)
Dgω

dt
(t) =

dω

dt
(t)− ρ̄

(
Ω(t)

)
· ω(t) =

dω

dt
(t)− [ω(t), ω(t)] =

dω

dt
(t).

Since the bilinear pairing

Lin(V ∧ V,V ∧ V)× (V ∧ V) −→ V ∧ V

given by evaluation is intertwining, we have (Corollary 9.6):

DgIO(ω)

dt
(t) =

DgIO
dt

(t)
(
ω(t)

)
+ IO(t)

(Dgω

dt
(t)
)
,
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where IO(ω) : T → V ∧ V is defined by
(
IO(ω)

)
(t) = IO(t)

(
ω(t)

)
. Using

(10.5) and (10.6) we obtain

DgIO(ω)

dt
(t) = IO(t)

(dω

dt
(t)
)
.

Thus, using again (9.1):

dIO(ω)

dt
(t) =

DgIO(ω)

dt
(t) + ρ̄

(
Ω(t)

)
·
(
IO(t)

(
ω(t)

))
=

DgIO(ω)

dt
(t) +

[
ω(t), IO(t)

(
ω(t)

)]
= IO(t)

(dω

dt
(t)
)

+
[
ω(t), IO(t)

(
ω(t)

)]
.

Using now (10.3), we get:

dLO,Ȯ
dt

= IO(t)

(dω

dt
(t)
)

+
[
ω(t), IO(t)

(
ω(t)

)]
.

We now restrict ourselves to the case where O is the center of mass. Equation
(5.3) then yields:

(10.7) τC(t) = IC(t)

(dω

dt
(t)
)

+
[
ω(t), IC(t)

(
ω(t)

)]
,

where τC(t) denotes the total torque with respect to the center of mass.
Since the torque of the reaction forces is zero, τC(t) is also equal to the total
external torque with respect to the center of mass. Setting

τ gC(t) = ρ
(
g(t)

)−1 · τC(t), ωg(t) = ρ
(
g(t)

)−1 · ω(t), t ∈ T ,

we obtain from (10.7) and (10.6) that:

(10.8) τ gC(t) = IgC(t)

(dωg

dt
(t)
)

+
[
ωg(t), IgC(t)

(
ωg(t)

)]
.

Equation (10.7) is the fundamental equation for rigid motion and equation
(10.8) is the fundamental equation for rigid motion written in the refer-
ence frame that rotates with the object. The advantage of (10.8) is that
IgC(t) is independent of t, since it is just the tensor of inertia of the particle

configuration (q0
λ)λ∈Λ with respect to its center of mass. Equation (10.7)

must be coupled with (10.2), keeping in mind that Ω0(t) = ω(t) ⨼ ·. Sim-
ilarly, equation (10.8) must be coupled with (10.4), keeping in mind that
Ωg

0(t) = ωg(t) ⨼ ·. Moreover, equation (5.2) should be used to determine
the motion of the center of mass, keeping in mind that the total force F (t)
equals the total external force, since reaction forces have zero total force.
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