Gabarito da Prova Substitutiva MAT5798 – Medida e Integração

Prof. Daniel Victor Tausk 19/06/2018

Questão 1. (valor 2,5 pontos) Sejam (X, \mathcal{A}, μ) um espaço de medida e $f: X \to \mathbb{R}$ uma função integrável. Mostre que existe uma sequência $(f_n)_{n\geq 1}$ de funções simples e integráveis $f_n: X \to \mathbb{R}$ tal que:

$$\lim_{n \to +\infty} \int_X |f_n - f| \, \mathrm{d}\mu = 0.$$

Solução. Como f^+ e f^- são mensuráveis e não negativas, existem sequências $(g_n)_{n\geq 1}$ e $(h_n)_{n\geq 1}$ de funções simples, mensuráveis e não negativas tais que:

$$g_n \nearrow f^+$$
 e $h_n \nearrow f^-$.

Tome $f_n = g_n - h_n$, de modo que f_n é simples e mensurável. Além do mais, $(f_n)_{n \geq 1}$ converge pontualmente para f e $|f_n| \leq g_n + h_n \leq f^+ + f^- = |f|$. Daí a sequência de funções mensuráveis $(|f_n - f|)_{n \geq 1}$ converge pontualmente para zero e $|f_n - f| \leq 2|f|$, sendo 2|f| uma função integrável. Segue então do Teorema da Convergência Dominada que:

$$\lim_{n \to +\infty} \int_X |f_n - f| \, \mathrm{d}\mu = \int_X 0 \, \mathrm{d}\mu = 0.$$

Questão 2. (valor 2,5 pontos) Seja $\phi: \mathbb{R} \to \mathbb{R}$ uma função bijetora e crescente de classe C^1 e seja $\mu: \mathcal{B}(\mathbb{R}) \to [0, +\infty]$ a medida definida por

$$\mu(B) = \int_B \phi' \, \mathrm{d}\mathfrak{m},$$

para todo $B \in \mathcal{B}(\mathbb{R})$, em que $\mathcal{B}(\mathbb{R})$ denota a σ -álgebra de Borel de \mathbb{R} , $\mathfrak{m}: \mathcal{B}(\mathbb{R}) \to [0, +\infty]$ denota a medida de Lebesgue e ϕ' denota a derivada de ϕ . Considere a medida push-forward

$$\nu = \phi_* \mu : \mathcal{B}(\mathbb{R}) \longrightarrow [0, +\infty]$$

definida por

$$\nu(B) = \mu(\phi^{-1}[B]),$$

para todo $B \in \mathcal{B}(\mathbb{R})$. Mostre que $\nu = \mathfrak{m}$.

Solução. Note em primeiro lugar que como ϕ é de classe C^1 e crescente, a sua derivada ϕ' é contínua (logo mensurável com respeito à σ -álgebra de Borel) e não negativa, de modo que a medida μ está bem-definida. Além do mais, ϕ é contínua (logo mensurável com respeito à σ -álgebra de Borel), de modo que também a medida ν está bem-definida. Considere a coleção:

$$\mathcal{S} = \{ |a, b| : a, b \in \mathbb{R}, \ a \le b \}.$$

Temos que S é fechada por interseções finitas e que $\mathfrak{m}|_{S}$ é uma medida finita e, em particular, σ -finita. Como $\mathcal{B}(\mathbb{R})$ é o σ -anel gerado por S, para mostrar que $\nu = \mathfrak{m}$ é suficiente mostrar que $\nu = \mathfrak{m}$ coincidem em S. Com esse propósito, sejam dados $a,b \in \mathbb{R}$ com $a \leq b$. Temos que existem $a',b' \in \mathbb{R}$ com $\phi(a') = a$ e $\phi(b') = b$, já que ϕ é sobrejetora. Além do mais, como ϕ é uma bijeção crescente, é fácil ver que $a' \leq b'$ e:

$$\phi^{-1}[\,]a,b]\,\big]=\big]a',b'\big]\,.$$

Daí:

$$\nu([a,b]) = \mu([a',b']) = \int_{a'}^{b'} \phi' d\mathfrak{m} = \phi(b') - \phi(a') = b - a = \mathfrak{m}([a,b]).$$

Questão 3. (valor 2,5 pontos) Sejam (X, \mathcal{A}) e (Y, \mathcal{B}) espaços mensuráveis e seja $(\mu_x)_{x \in X}$ uma família de medidas finitas $\mu_x : \mathcal{B} \to [0, +\infty[$. Suponha que para todo $B \in \mathcal{B}$ a função

$$X \ni x \longmapsto \mu_x(B) \in [0, +\infty[$$

seja mensurável. Mostre que para todo $C \in \mathcal{A} \otimes \mathcal{B}$ vale que a função

$$X \ni x \longmapsto \mu_x(C_x) \in [0, +\infty[$$

é mensurável, em que $C_x = \{y \in Y : (x, y) \in C\}.$

Solução. Note em primeiro lugar que, para todo $x \in X$, a função

$$i_x: Y \ni y \longmapsto (x,y) \in X \times Y$$

é mensurável, já que ambas as suas coordenadas são mensuráveis. Daí, para todo $C \in \mathcal{A} \otimes \mathcal{B}$, temos que $C_x = i_x^{-1}[C] \in \mathcal{B}$, de modo que a expressão $\mu_x(C_x)$ está bem-definida. Denotamos por $\lambda_C : X \to [0, +\infty[$ a função definida por $\lambda_C(x) = \mu_x(C_x)$, para todo $x \in X$, em que $C \in \mathcal{A} \otimes \mathcal{B}$. Seja:

$$\mathcal{S} = \{ C \in \mathcal{A} \otimes \mathcal{B} : \lambda_C \text{ \'e uma função mensur\'avel} \}.$$

Queremos mostrar que $\mathcal{S} = \mathcal{A} \otimes \mathcal{B}$. Seja:

$$\mathcal{C} = \{ A \times B : A \in \mathcal{A}, B \in \mathcal{B} \}.$$

Note que se $C = A \times B$ com $A \in \mathcal{A}$ e $B \in \mathcal{B}$, então λ_C é o produto da função característica de A pela função $X \ni x \mapsto \mu_x(B) \in [0, +\infty[$. Como ambas são mensuráveis, segue que λ_C é mensurável e portanto que $\mathcal{C} \subset \mathcal{S}$. Do fato que \mathcal{C} é fechada por interseções finitas, segue que a classe σ -aditiva gerada por \mathcal{C} coincide com o σ -anel gerado por \mathcal{C} . Mas o σ -anel gerado por \mathcal{C} (que coincide com a σ -álgebra gerada por \mathcal{C} , já que $X \times Y \in \mathcal{C}$) é $\mathcal{A} \otimes \mathcal{B}$ e portanto para mostrar que $\mathcal{S} = \mathcal{A} \otimes \mathcal{B}$ é suficiente mostrar que \mathcal{S} é uma classe σ -aditiva. Com esse propósito, note em primeiro lugar que \mathcal{S} é não vazia, já que contém \mathcal{C} . Dados $\mathcal{C}, \mathcal{C}' \in \mathcal{S}$ disjuntos, temos que

$$\lambda_{C \cup C'}(x) = \mu_x ((C \cup C')_x) = \mu_x (C_x \cup C'_x) = \mu_x (C_x) + \mu_x (C'_x) = \lambda_C(x) + \lambda_{C'}(x),$$

para todo $x \in X$, já que $(C \cup C')_x = C_x \cup C'_x$, sendo essa união disjunta. Como λ_C e $\lambda_{C'}$ são mensuráveis, segue que $\lambda_{C \cup C'} = \lambda_C + \lambda_{C'}$ é mensurável e portanto que $C \cup C' \in \mathcal{S}$. Assim, \mathcal{S} é fechada por uniões finitas disjuntas. Sejam agora $C, C' \in \mathcal{S}$ com $C' \subset C$. Temos que

$$\lambda_{C \setminus C'}(x) = \mu_x ((C \setminus C')_x) = \mu_x(C_x) - \mu_x(C'_x) = \lambda_C(x) - \lambda_{C'}(x),$$

para todo $x \in X$, já que $(C \setminus C')_x = C_x \setminus C'_x$, $C'_x \in C_x$ e a medida μ_x é finita. Como λ_C e $\lambda_{C'}$ são mensuráveis, segue que $\lambda_{C \setminus C'} = \lambda_C - \lambda_{C'}$ é mensurável e que $C \setminus C' \in \mathcal{S}$. Logo \mathcal{S} é fechada por diferenças próprias. Para completar a solução, vamos mostrar que \mathcal{S} é fechada por uniões de sequências crescentes.

Seja $(C^n)_{n\geq 1}$ uma sequência em $\mathcal S$ tal que $C^n\nearrow C$. Daí, para todo $x\in X$, temos $C^n\nearrow C_x$ e portanto

$$\lambda_C(x) = \mu_x(C_x) = \lim_{n \to +\infty} \mu_x(C_x^n) = \lim_{n \to +\infty} \lambda_{C^n}(x),$$

para todo $x \in X$. Assim $(\lambda_{C^n})_{n \geq 1}$ converge pontualmente para λ_C e como cada λ_{C^n} é mensurável, concluímos que λ_C é mensurável e portanto que $C \in \mathcal{S}$.

Questão 4. Nos itens abaixo, consideramos a reta real \mathbb{R} munida da σ -álgebra de Borel $\mathcal{B}(\mathbb{R})$ e da medida de Lebesgue $\mathfrak{m}: \mathcal{B}(\mathbb{R}) \to [0, +\infty]$ e o plano \mathbb{R}^2 munido da σ -álgebra de Borel $\mathcal{B}(\mathbb{R}^2) = \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})$ e da medida de Lebesgue $\mathfrak{m} \times \mathfrak{m}$.

(a) (valor 1,0 ponto) Dado $k \in \mathbb{R}$, mostre que a translação

$$t_k: \mathbb{R} \ni x \longmapsto x + k \in \mathbb{R}$$

preserva medida, i.e.:

$$\mathfrak{m}(t_k^{-1}[B]) = \mathfrak{m}(B),$$

para todo $B \in \mathcal{B}(\mathbb{R})$.

(b) (valor 1,5 pontos) Seja $f:\mathbb{R}^2\to\mathbb{R}$ uma função integrável e seja $\psi:\mathbb{R}\to\mathbb{R}$ uma função mensurável. Mostre que a função

$$g: \mathbb{R}^2 \ni (x,y) \longmapsto f(x,y+\psi(x)) \in \mathbb{R}$$

é integrável e que $\int_{\mathbb{R}^2} g d(\mathfrak{m} \times \mathfrak{m}) = \int_{\mathbb{R}^2} f d(\mathfrak{m} \times \mathfrak{m}).$

Solução. Temos que a função $\phi = t_k$ é mensurável, já que é contínua. Para resolver o item (a), devemos mostrar que a medida push-forward

$$\phi_* \mathfrak{m} : \mathcal{B}(\mathbb{R}) \ni B \longmapsto \mathfrak{m}(\phi^{-1}[B]) \in [0, +\infty]$$

é igual a m. Considere a coleção:

$$\mathcal{S} = \{ [a, b] : a, b \in \mathbb{R}, \ a \le b \}.$$

Temos que S é fechada por interseções finitas e que $\mathfrak{m}|_{S}$ é uma medida finita e, em particular, σ -finita. Como $\mathcal{B}(\mathbb{R})$ é o σ -anel gerado por S, para mostrar que $\phi_*\mathfrak{m} = \mathfrak{m}$ é suficiente mostrar que $\phi_*\mathfrak{m}$ e \mathfrak{m} coincidem em S. Mas isso segue diretamente do fato que

$$(\phi_* \mathfrak{m})([a,b]) = \mathfrak{m}([a-k,b-k]) = (b-k) - (a-k) = b-a = \mathfrak{m}([a,b]),$$

para quaisquer $a,b\in\mathbb{R}$ com $a\leq b$. Para o item (b), note primeiro que a função

$$\theta: \mathbb{R}^2 \ni (x,y) \longmapsto (x,y+\psi(x)) \in \mathbb{R}^2$$

é mensurável, já que sua primeira coordenada é π_1 e sua segunda coordenada é $\pi_2 + \psi \circ \pi_1$, em que π_1 e π_2 denotam as projeções de \mathbb{R}^2 . Daí $g = f \circ \theta$ também é mensurável e portanto |g| é mensurável e não negativa. Podemos portanto aplicar o Teorema de Tonelli para |g|, obtendo:

$$\int_{\mathbb{R}^2} |g| \, \mathrm{d}(\mathfrak{m} \times \mathfrak{m}) = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} |f(x, y + \psi(x))| \, \mathrm{d}\mathfrak{m}(y) \right) \, \mathrm{d}\mathfrak{m}(x)$$
$$= \int_{\mathbb{R}} \left(\int_{\mathbb{R}} |f_x| \circ t_{\psi(x)} \, \mathrm{d}\mathfrak{m} \right) \, \mathrm{d}\mathfrak{m}(x),$$

em que $f_x : \mathbb{R} \to \mathbb{R}$ é definida por $f_x(y) = f(x,y)$, para todo $y \in \mathbb{R}$. Pelo resultado do item (a) temos que, para todo $x \in \mathbb{R}$, a função $t_{\psi(x)}$ preserva medida e portanto pelo resultado do Exercício 3 da quinta lista temos:

$$\int_{\mathbb{R}} |f_x| \circ t_{\psi(x)} \, \mathrm{d}\mathfrak{m} = \int_{\mathbb{R}} |f_x| \, \mathrm{d}\mathfrak{m}.$$

Daí

$$\int_{\mathbb{R}^2} |g| \operatorname{d}(\mathfrak{m} \times \mathfrak{m}) = \int_{\mathbb{R}} \Big(\int_{\mathbb{R}} |f(x,y)| \operatorname{d}\mathfrak{m}(y) \Big) \operatorname{d}\mathfrak{m}(x) = \int_{\mathbb{R}^2} |f| \operatorname{d}(\mathfrak{m} \times \mathfrak{m}) < +\infty,$$

em que na segunda igualdade usamos o Teorema de Tonelli para a função |f|. Isso mostra que |g| e portanto g é integrável. Podemos agora usar o Teorema de Fubini–Tonelli para g e repetir os passos acima, obtendo:

$$\begin{split} \int_{\mathbb{R}^2} g \, \mathrm{d}(\mathfrak{m} \times \mathfrak{m}) &= \int_{\mathbb{R}} \Big(\int_{\mathbb{R}} f \big(x, y + \psi(x) \big) \, \mathrm{d}\mathfrak{m}(y) \Big) \, \mathrm{d}\mathfrak{m}(x) \\ &= \int_{\mathbb{R}} \Big(\int_{\mathbb{R}} f_x \circ t_{\psi(x)} \, \mathrm{d}\mathfrak{m} \Big) \, \mathrm{d}\mathfrak{m}(x) \\ &= \int_{\mathbb{R}} \Big(\int_{\mathbb{R}} f(x, y) \, \mathrm{d}\mathfrak{m}(y) \Big) \, \mathrm{d}\mathfrak{m}(x) = \int_{\mathbb{R}^2} f \, \mathrm{d}(\mathfrak{m} \times \mathfrak{m}). \end{split}$$

Questão 5. (valor 2,5 pontos) Sejam (X, \mathcal{A}, μ) um espaço de medida e $f: X \to [0,1]$ uma função integrável. Mostre que:

$$\lim_{n \to +\infty} \int_X (f(x))^n d\mu(x) = \mu(f^{-1}(1)).$$

Solução. Como f é mensurável, temos que f^n é mensurável, para todo n (já que, por exemplo, o produto de funções mensuráveis é mensurável). Dado $x \in X$, temos que $\lim_{n \to +\infty} \left(f(x)\right)^n$ é igual a zero, se f(x) < 1 e é igual a 1, se f(x) = 1. Daí $(f^n)_{n \geq 1}$ converge pontualmente para a função característica do conjunto $f^{-1}(1)$. Além do mais, como f toma valores em [0,1], temos que $0 \leq f^n \leq f$, para todo $n \geq 1$. O fato que a função f é integrável implica então que estão satisfeitas as hipótese do Teorema da Convergência Dominada e portanto:

$$\lim_{n \to +\infty} \int_X (f(x))^n d\mu(x) = \int_X \chi_{f^{-1}(1)} d\mu = \mu(f^{-1}(1)).$$

Questão 6. (valor 2,5 pontos) Sejam (X, \mathcal{A}, μ) um espaço de medida e $(f_n)_{n\geq 1}$ uma sequência de funções mensuráveis $f_n: X \to \mathbb{R}$ que converge em medida para uma função mensurável $f: X \to \mathbb{R}$. Suponha que exista uma função integrável $\phi: X \to [0, +\infty[$ tal que $|f_n(x)| \leq \phi(x)$ para todo $x \in X$ e todo $n \geq 1$. Mostre que f é integrável e que:

$$\lim_{n \to +\infty} \int_X f_n \, \mathrm{d}\mu = \int_X f \, \mathrm{d}\mu.$$

Solução. Como f_n é mensurável e $|f_n| \le \phi$, temos

$$\int_{X} |f_n| \, \mathrm{d}\mu \le \int_{X} \phi \, \mathrm{d}\mu < +\infty,$$

donde $|f_n|$ e portanto f_n é integrável. Do fato que $(f_n)_{n\geq 1}$ converge em medida para f segue que alguma subsequência de $(f_n)_{n\geq 1}$ converge pontualmente quase sempre para f. Como $|f_n| \leq \phi$ para todo n, segue que $|f(x)| \leq \phi(x)$ para quase todo $x \in X$ e portanto, já que f é mensurável, temos:

$$\int_X |f| \, \mathrm{d}\mu \le \int_X \phi \, \mathrm{d}\mu < +\infty.$$

Daí |f| e f são integráveis. Agora suponha por absurdo que a sequência de integrais $(\int_X f_n \, \mathrm{d}\mu)_{n\geq 1}$ não convirja para a integral de f. Nesse caso existe $\varepsilon>0$ tal que

$$\left| \int_X f_n \, \mathrm{d}\mu - \int_X f \, \mathrm{d}\mu \right| \ge \varepsilon,$$

para uma infinidade de índices n. Existe então uma subsequência $(f_{n_k})_{k\geq 1}$ de $(f_n)_{n\geq 1}$ tal que

(1)
$$\left| \int_X f_{n_k} d\mu - \int_X f d\mu \right| \ge \varepsilon,$$

para todo $k \geq 1$. Como $(f_n)_{n\geq 1}$ converge em medida para f, temos que a subsequência $(f_{n_k})_{k\geq 1}$ também converge em medida para f, já que

$$\lim_{k \to +\infty} \mu \left(\left\{ x \in X : |f_{n_k}(x) - f(x)| \ge \eta \right\} \right)$$

$$= \lim_{n \to +\infty} \mu \left(\left\{ x \in X : |f_n(x) - f(x)| \ge \eta \right\} \right) = 0,$$

para todo $\eta > 0$. Do fato que $(f_{n_k})_{k \geq 1}$ converge em medida para f, segue que existe uma subsequência $(f_{n_k})_{i \geq 1}$ de $(f_{n_k})_{k \geq 1}$ que converge pontualmente quase sempre para f. Mas $|f_{n_{k_i}}| \leq \phi$ para todo i e a função ϕ é integrável, donde o Teorema da Convergência Dominada nos dá que:

$$\lim_{i \to +\infty} \int_X f_{n_{k_i}} \, \mathrm{d}\mu = \int_X f \, \mathrm{d}\mu.$$

Em particular

$$\left| \int_X f_{n_{k_i}} \, \mathrm{d}\mu - \int_X f \, \mathrm{d}\mu \right| < \varepsilon,$$

para todo i suficientemente grande, o que contradiz o fato que (1) vale para todo $k \geq 1.$