Em todas as questões da prova, considera-se fixada uma orientação do espaço.

Q1. Considere as seguintes afirmações:

- (I) se $\mathcal{B} = \{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$ for uma base de V^3 tal que $[\vec{e}_1, \vec{e}_2, \vec{e}_3] = 1$, então \mathcal{B} será ortonormal;
- (II) para quaisquer vetores $\vec{v}, \vec{w} \in V^3$, vale que $\vec{v} \wedge (\vec{v} \wedge \vec{w}) = \vec{0}$;
- (III) para quaisquer vetores $\vec{v}, \vec{w} \in V^3$ e qualquer $\lambda \in \mathbb{R}$, se $\lambda \vec{w} \neq \vec{0}$, então proj $_{\vec{v}}\vec{v} = \operatorname{proj}_{\lambda \vec{v}}\vec{v}$.

Assinale a alternativa correta:

- (a) todas as afirmações são falsas;
- (b) apenas as afirmações (I) e (III) são verdadeiras;
- (c) apenas as afirmações (II) e (III) são verdadeiras;
- (d) todas as afirmações são verdadeiras;
- (e) apenas a afirmação (III) é verdadeira.

Q2. Seja $\Sigma = (O, \mathcal{B})$ um sistema de coordenadas em E^3 . Seja $a \in \mathbb{R}$ e considere as retas r e s cujas equações vetoriais são:

$$r: X = (1, a, 1)_{\Sigma} + \lambda(-1, 0, 2)_{\mathcal{B}}, \quad \lambda \in \mathbb{R}$$
 es $s: X = (0, 1, a)_{\Sigma} + \lambda(1, 0, 1)_{\mathcal{B}}, \quad \lambda \in \mathbb{R}.$

Temos que as retas r e s serão reversas se, e somente se:

- (a) $a \neq 3$;
- (b) a = 1;
- (c) $a \neq 1$;
- (d) $a \neq 0$;
- (e) a > 1.

- Q3. Considere as seguintes afirmações:
 - (I) se $\mathcal{B} = \{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$ for uma base de V^3 , então $\mathcal{C} = \{\vec{e}_2, \vec{e}_1, -2\vec{e}_3\}$ será uma base de V^3 com a mesma orientação que \mathcal{B} ;
 - (II) para quaisquer vetores não nulos $\vec{v}, \vec{w} \in V^3$, existe um vetor $\vec{x} \in V^3$ tal que $\vec{v} \wedge \vec{x} = \vec{w}$;
 - (III) para quaisquer vetores não nulos $\vec{v}, \vec{x}, \vec{y} \in V^3$, se $\vec{v} \wedge \vec{x} = \vec{v} \wedge \vec{y}$, então $\vec{x} = \vec{y}$.

Assinale a alternativa correta:

- (a) todas as afirmações são verdadeiras;
- (b) apenas as afirmações (I) e (II) são verdadeiras;
- (c) apenas a afirmação (I) é verdadeira;
- (d) todas as afirmações são falsas;
- (e) apenas a afirmação (II) é verdadeira.
- **Q4.** Seja \mathcal{B} uma base ortonormal de V^3 e considere os vetores:

$$\vec{v} = (1, 0, 1)_{\mathcal{B}}, \quad \vec{w} = (1, 1, 1)_{\mathcal{B}} \quad e \quad \vec{z} = (1, 1, -2)_{\mathcal{B}}.$$

Seja π um plano paralelo a \vec{v} e a \vec{w} e suponha que $\vec{z}_1, \vec{z}_2 \in V^3$ sejam tais que $\vec{z} = \vec{z}_1 + \vec{z}_2, \ \vec{z}_1$ seja paralelo a π e \vec{z}_2 seja ortogonal a π . Temos que a soma das coordenadas de \vec{z}_1 na base \mathcal{B} é igual a:

- (a) $\frac{1}{3}$;
- (b) 0;
- (c) -1;
- (d) -2;
- (e) 1.

Q5. Seja $\Sigma = (O, \mathcal{B})$ um sistema de coordenadas em E^3 . Considere a reta r cuja equação vetorial é:

$$r: X = (-1, 2, 1)_{\Sigma} + \lambda(1, 3, 2)_{\mathcal{B}}, \quad \lambda \in \mathbb{R}.$$

Assinale a alternativa correspondente a um ponto Q que pertença à reta r:

- (a) $Q = (0, 5, 2)_{\Sigma}$;
- (b) $Q = (1, -2, -1)_{\Sigma};$
- (c) $Q = (1, 8, 5)_{\Sigma}$;
- (d) $Q = (2, 8, 5)_{\Sigma}$;
- (e) $Q = (1, 3, 2)_{\Sigma}$.

Q6. Seja \mathcal{B} uma base ortonormal positiva de V^3 . Considere os vetores

$$\vec{v} = (1, 0, 1)_{\mathcal{B}}$$
 e $\vec{w} = (-1, 2, 0)_{\mathcal{B}}$

e seja $\mathcal{C} = \{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$ uma base ortonormal positiva de V^3 tal que \vec{e}_1 tenha a mesma direção e sentido que \vec{v} , \vec{e}_2 seja uma combinação linear de \vec{v} e \vec{w} e tal que a primeira coordenada de \vec{e}_2 na base \mathcal{B} seja positiva. A soma das coordenadas do vetor \vec{e}_3 na base \mathcal{B} é igual a:

- (a) $\frac{\sqrt{2}}{2}$;
- (b) $\frac{1}{3}$;
- (c) 0;
- (d) $-\frac{\sqrt{2}}{2}$;
- (e) $-\frac{1}{3}$.

Q7. Seja $\Sigma = (O, \mathcal{B})$ um sistema de coordenadas em E^3 , em que \mathcal{B} é uma base ortonormal de V^3 . Considere os pontos:

$$A = (1,0,1)_{\Sigma}, \quad B = (-1,0,2)_{\Sigma}, \quad C = (0,1,1)_{\Sigma} \quad e \quad D = (1,2,1)_{\Sigma}.$$

Temos que o volume do tetraedro de vértices A, B, C e D é igual a:

- (a) $\frac{1}{4}$;
- (b) 1;
- (c) 2;
- (d) $\frac{1}{2}$;
- (e) $\frac{1}{3}$.

Q8. Sejam $A, B, C \in E^3$ os vértices de um triângulo equilátero de lado unitário e sejam $\vec{e}_1 = \overrightarrow{AB}$ e $\vec{e}_2 = \overrightarrow{AC}$. Seja \vec{e}_3 um vetor ortogonal a \vec{e}_1 e a \vec{e}_2 tal que $\|\vec{e}_3\| = 2$. Se $\vec{v} = (1,3,2)_{\mathcal{B}}$, em que \mathcal{B} é a base definida por $\mathcal{B} = \{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$, então $\|\vec{v}\|$ será igual a:

- (a) $\sqrt{29}$;
- (b) $3\sqrt{2}$;
- (c) $\sqrt{14}$;
- (d) 4;
- (e) $\sqrt{10}$.

Q9. Seja $\mathcal B$ uma base ortonormal de V^3 e sejam $A,B,C\in E^3$ pontos tais que:

$$\overrightarrow{AB} = (1,3,2)_{\mathcal{B}} \quad \text{e} \quad \overrightarrow{AC} = (-1,2,1)_{\mathcal{B}}.$$

Temos que a área do triângulo de vértices $A,\,B\in C$ é igual a:

- (a) 3;
- (b) $\frac{1}{2}\sqrt{35}$;
- (c) $\sqrt{62}$;
- (d) $\frac{1}{2}\sqrt{13}$;
- (e) $\frac{1}{2}\sqrt{17}$.

Q10. Sejam $\vec{v}, \vec{w}, \vec{z} \in V^3$ tais que $[\vec{v}, \vec{w}, \vec{z}] = 3$. Temos que o produto misto $[\vec{v} + \vec{w} + \vec{z}, \vec{w} - 2\vec{z}, 2\vec{v} + \vec{z}]$

é igual a:

- (a) -5;
- (b) 5;
- (c) -6;
- (d) -15;
- (e) 15.