
LOCALIZING THE CONNECTIVITY OF THE

COMPLEMENT

DANIEL V. TAUSK

If X is a connected topological space we sometimes want to know if X
remains connected after we remove a “small” subset S of X. For example,
if we remove a line from a plane then we disconnect the plane, but if we
remove just a point the plane remains connected. More generally, it can be
shown1 using transversality arguments that the complement of an immersed
(second countable) submanifold of a connected differentiable manifold is
path connected if the codimension of the submanifold is at least 2.

Here we are not interested in proving results establishing the connectivity
of the complement of a subset, we will be merely showing conditions under
which such problem is local. We start with the following result.

Proposition 1. Let X be a connected topological space and S be a subset
of X with empty interior. If every x ∈ S has a neighborhood V in X such
that V \ S is connected then X \ S is connected.

Proof. Let C be nonempty and clopen with respect to X \ S. We will show
that the closure C of C in X is open in X and this will imply that C = X
and hence that C = C ∩ (X \ S) = X \ S. So let x ∈ C be given and let
us check that x is an interior point of C. If x ∈ S, we take V as in the
statement of the proposition and we note that C ∩ (V \S) is nonempty and
clopen with respect to V \ S, so that C contains V \ S. Now since X \ S
is dense in X, if U is an open neighborhood of x contained in V we have
that U ∩ (X \ S) = U \ S is dense in U and thus U is contained in C. Now
assume x ̸∈ S, so that x ∈ C ∩ (X \S) = C. Since C is open in X \S, there
exists A open in X with C = A ∩ (X \ S) = A \ S and since A \ S is dense
in A we have that A is contained in C. But x ∈ C ⊂ A, so x is an interior
point of C. □

Can we get a path connected version of Proposition 1? Yes we can, but
the obvious adaptation doesn’t work as we will see later (Example 4). We
need the following simple lemma.

Lemma 2. Let X be a connected topological space and U be an open cover
of X. Given p, q ∈ X, there exists a finite nonempty sequence (Ui)

n
i=1 in U

such that p ∈ U1, q ∈ Un and Ui ∩ Ui+1 ̸= ∅ for i = 1, . . . , n− 1.
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1For two points p and q not on the submanifold, one shows that every smooth path

connecting p and q admits a small perturbation that is transversal to the submanifold. If
the codimension is at least 2, transversality implies disjointness.
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Proof. Consider the binary relation ∼ on X such that p ∼ q if and only
if a sequence (Ui)

n
i=1 as in the statement of the lemma exists. It is readily

checked that ∼ is an equivalence relation whose equivalence classes are open.
It follows that the equivalence classes are also closed, as the complement
of an equivalence class is the union of the other equivalence classes. The
connectivity of X then implies that there is at most one equivalence class.

□

Proposition 3. Let X be a connected topological space and S be a subset
of X with empty interior. If every x ∈ X has a neighborhood V in X such
that V \ S is path connected then X \ S is path connected.

Proof. Let U be the collection consisting of the interiors of all the subsets V
of X such that V \S is path connected. By our assumptions, U is a covering
of X. Given p, q ∈ X \S, let (Ui)

n
i=1 be a sequence in U as in the statement

of Lemma 2. Since S has empty interior, for i = 1, . . . , n− 1, there exists xi
in the nonempty open set Ui∩Ui+1 not in S. Setting x0 = p and xn = q, we
have that xi and xi+1 are both in Ui+1 \S for i = 0, . . . , n− 1 and therefore
xi and xi+1 can be connected by a continuous path in X \S. The conclusion
follows. □

The simplest attempted adaptation of Proposition 1 to the path connected
case would assume that every x ∈ S has a neighborhood V such that V \S is
path connected, but in Proposition 3 we assumed this condition to hold for
every x ∈ X. If X is locally path connected then obviously such condition
will hold automatically for x ∈ X outside of the closure of S, as for such x
we could pick a path connected neighborhood V of x that is disjoint from
S. Would it be sufficient in Proposition 3 to assume the existence of the
neighborhood V for every x ∈ S if we knew thatX is locally path connected?
The answer is no, as the next example shows.

Example 4. Let X =
(
]0,+∞[×R

)
∪
(
R× ]−1, 1[

)
be endowed with the

topology induced by the Euclidean plane R2 and set:

S =
{ 1

n
: n = 1, 2, . . .

}
× ]−1, 1[ .

We have that X is a connected open subset of R2 and therefore it is also
locally path connected and path connected. Moreover, V = ]0,+∞[ ×R is
an open subset of X containing S and it is easily checked that V \S is path
connected, so that for every x ∈ S we have that V is a neighborhood of x
in X such that V \ S is path connected. We show that X \ S is not path
connected. Assume by contradiction that there exists a continuous path
(x, y) : [0, 1] → X \ S ⊂ R2 such that x(0) = y(0) = 0 and x(1) > 0. Let
t ∈ [0, 1] be the infimum of x−1

[
]0,+∞[

]
which by continuity must satisfy

x(t) = 0 and t < 1. Now since
(
x(t), y(t)

)
∈ X we must have y(t) ∈ ]−1, 1[

and therefore [t, t+ε] ⊂ y−1
[
]−1, 1[

]
for some ε > 0. But by the definition of

t the map x must assume some positive value on ]t, t+ ε] and thus x(s) = 1
n
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for some s ∈ ]t, t+ ε] and some positive integer n. Since also y(s) ∈ ]−1, 1[
we get

(
x(s), y(s)

)
∈ S, contradicting our assumptions on the path (x, y).
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