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Abstract. In 2017, J. B. Carlisle has proposed a method for fraud
detection in randomized controlled trials based on a comparison of re-
ported baseline data between treatment groups. While Carlisle has only
used the method for continuous variables, some authors have recently
employed a naive adaptation of the method for dichotomous variables.
We explain why such adaptation leads to p-values that are wrong by or-
ders of magnitude and we make a simple concrete proposal for correction
of the method.

1. Introduction

The fraud detection method proposed by Carlisle in [4] consists of the
following steps: (i) for each continuous variable in the reported baseline data
of a randomized controlled trial, compare treatment and control groups and
compute a p-value (using, for instance, a t-test); (ii) combine all the p-values
obtained in the first step (using, for instance, Stouffer’s method) into a single
p-value. If the combined p-value obtained from this procedure is either too
small or too close to 1, we flag the study as “odd” or “suspicious”.

A very small combined p-value corresponds to baseline data that is too
unbalanced and a combined p-value that is very close to 1 corresponds
to baseline data that is oddly overly balanced, what could be informally
described as “too good to be true”. The rational behind the method is
that we are testing the null hypothesis that the baseline data arose from a
well-performed randomization procedure against some alternative hypothe-
sis (not rigorously defined in mathematical terms) that the data was gen-
erated from poor methodology or was fabricated. It is implicitly assumed
that poor methodology could increase the probability of unbalanced base-
line data, leading to small p-values, and data fabrication by hand (without
the help of automatic pseudorandom number generators) could increase the
probability of overly balanced baseline data and hence p-values that are
close to 1.

Carlisle’s method is known to have several limitations (see, for instance,
[8, 14]), some of which are recognized by Carlisle himself [4]:

• the methods used for combination of p-values assume independence,
while baseline variables in clinical trials are usually not independent;
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• stratified randomization leads to more similar groups than standard
simple randomization and thus p-values computed without taking
stratification into account will tend to be closer to 1;
• the method often detects simple mistakes and typos and in fact it

doesn’t seem to have much power to detect actual fraud. It should
thus be regarded as a (not very good) screening test, not a diagnostic
test.

To this list I would add the issue of multiple testing: fraud detectives often
perform multiple statistical tests on multiple articles and thus some small
p-values (or some p-values too close to 1) are supposed to be found among
honest methodologically sound trials. A cutoff such as 0.05 or 0.01 is thus
not enough evidence to make an accusation. Carlisle [4] implicitly suggests a
threshold of 1 in 10,000, unless several odd p-values are found among studies
by the same authors.

Although Carlisle restricts his analysis to continuous baseline variables,
some authors have incorrectly adapted the method to dichotomous vari-
ables, applying Fisher’s exact test or chi-square test with Yates continuity
correction for the computation of individual p-values. This leads to gross
errors for reasons explained in Sections 2 and 3. In Section 4 we suggest a
corrected adaptation of Carlisle’s method to dichotomous variables. Finally,
in Sections 5 and 6 we look at a few concrete examples in which the incorrect
adaptation of Carlisle’s method to dichotomous variables has been applied.

All computations for this manuscript were made using R software [7] and
all code is available at http://www.ime.usp.br/˜tausk/Carlisle. Numbers
presented in decimal notation are often rounded to a few decimal places
without explicit mention.

2. The pitfalls of statistics involving small numbers

Let us start by briefly recalling some of the theory of p-values and combi-
nation of p-values. Since this is all well-known by most statisticians, I will
keep technical details to a minimum to make the text accessible to a wider
audience.

Recall that a p-value is a [0, 1]-valued statistic, i.e., a function of the
outcome of some random experiment taking values between 0 and 1. The p-
value is used as a decision criterion for rejecting some null hypothesis: if one
chooses a number α ∈ [0, 1] and decides to reject the null hypothesis when
the p-value p is less than or equal to α, then the probability of committing a
type I error (i.e., incorrectly rejecting a true null hypothesis) should ideally
be equal to α. In symbols, ideally we should have:

(1) P0(p ≤ α) = α,

for all α ∈ [0, 1], where P0 denotes the probability of an event under the
null hypothesis. The number α is often called the nominal significance level
of the test and the probability P0(p ≤ α) is the true probability of type I
error. Equality (1) means that p is a random variable whose distribution is
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uniform in the interval [0, 1]. Such uniform distribution would be empirically
observed if many independent random experiments were performed and the
corresponding p-values were plotted.

Unfortunately, equality (1) between true probability of type I error and
nominal significance level is not always valid, for reasons that we explain in
a moment. If instead of (1) we have the inequality

(2) P0(p ≤ α) ≤ α,

for all α ∈ [0, 1] then the test is conservative: the probability of committing a
type I error can be smaller than the chosen nominal significance level α, but
will never exceed it. In this case type I errors will not occur more often than
what we choose to be an acceptable error rate, but a conservative test might
have low power , i.e., false null hypotheses will frequently not be rejected.
On the other hand, if inequality (2) can fail then we may be committing a
type I error more often than we wish.

The standard way of obtaining a p-value is the following: one chooses a
test statistic T with the property that, say, smaller values of T correspond
to observed outcomes that are less compatible with the null hypothesis and
more compatible with the alternative hypothesis. If a certain value t of T
is obtained in the experiment, we compute the corresponding p-value as the
probability P0(T ≤ t) under the null hypothesis that the value of T be less
than or equal to t. It is easy to prove that a p-value defined in this manner
will always satisfy1 inequality (2), but equality (1) will not hold unless the
random variable T is continuous, i.e., P0(T = t) = 0 for all t.

We note that in many cases even inequality (2) can fail due to the fact
that one is using approximations to the true distribution of T under the null
hypothesis. For example, one might be using the Central Limit Theorem to
approximate the distribution of a large sample mean by a normal distribu-
tion or one might be replacing the value of an unknown parameter by a point
estimate (say, replacing unknown population variance by sample variance).
While most statistics users know that equality (1) and even inequality (2)
will fail to hold exactly when approximations are employed, some might fail
to notice that substantial deviations from equality (1) can occur due to fail-
ure of continuity of the test statistic even when so called “exact” tests are
used. For example, if the test statistic T can assume only a finite number of
values then there will also be only a finite number of possible p-values and
the probability P0(p ≤ α) will be equal to the largest possible p-value that
is less than or equal to α; this might be a lot smaller than α.

1Sometimes the probability P0(T ≤ t) is replaced by a conditional probability of the
form P0(T ≤ t|S = s), with S some random object whose observed value is s. This
type of conditioning is often useful for eliminating unknown nuisance parameters, i.e.,
parameters whose value is not fixed by the null hypothesis. Inequality (2) also holds when
a conditional probability is used to define the p-value.
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group 1 group 2 row total

yes k1 k2 s

no N1 − k1 N2 − k2 N − s

column total N1 N2 N

Figure 1. A 2×2 contingency table. First group has N1 patients
of which k1 are “yes” patients and second group has N2 patients
of which k2 are “yes” patients; s = k1 + k2 is the total number of
“yes” patients and N = N1 +N2 is the total number of patients.

Let us look at the concrete example which is most relevant for our pur-
poses. Recall that a 2 × 2 contingency table (see Figure 1) is used to sum-
marize the number of patients in each treatment group for which a certain
dichotomous variable has the value “yes” and the number of patients in each
treatment group for which such dichotomous variable has the value “no”.

Fisher’s exact test can be applied to such a contingency table to test the
null hypothesis that the elements k1 and k2 on the first row were indepen-
dently sampled from binomial distributions Binom(N1, p) and Binom(N2, p)
with the same probability parameter p. Such null hypothesis will be true if
the value of the dichotomous variable is independent among patients and if
the probability p of a value “yes” is the same for both treatment groups. The
test works by conditioning on the row total s, which eliminates the depen-
dence on the unknown parameter p and makes the distribution of k1 a hy-
pergeometric distribution with all parameters known; moreover, k2 = s−k1

is then determined by k1. The test statistic T used to rank the contingency
tables in terms of compatibility with the null hypothesis is often chosen as
the hypergeometric probability of k1 and then a p-value is obtained in the
usual way. Note that for a given value of s the test statistic T and thus
the corresponding p-value can assume at most s + 1 distinct values, as k1

must be an integer between 0 and s. Thus, for instance, in situations where
pN is small, the value of s will have a tendency to be small and substantial
deviations from equality (1) will occur.

Let us illustrate the problem with some concrete numbers. Assume that
we have two groups of 100 patients each and that the probability of a patient
being a “yes” patient is 0.05, i.e., the elements of the first row of the con-
tingency table are independently sampled from Binom(100, 0.05). There are
1012 = 10,201 possible contingency tables and the distribution of Fisher’s
exact p-value can be determined explicitly by calculating both the p-value
and the probability of each possible contingency table. In Figure 2 we plot
the cumulative distribution function of Fisher’s exact p-value (in red) and
the cumulative distribution function of a uniform distribution (black diago-
nal). The graph of the cumulative distribution function of a p-value can be
thought as a graph in which the horizontal axis is the nominal significance
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Figure 2. Cumulative distribution function of Fisher’s exact p-
value (red) versus uniform distribution (black). 100 patients per
group, probability of “yes” equal to 0.05.

level and the vertical axis is the true probability of type I error. The diag-
onal corresponds to the ideal case (1) of a uniformly distributed p-value. If
only inequality (2) holds then the line stays below the diagonal and if even
inequality (2) fails then the line can go above the diagonal.

As the graph illustrates, there is in this case a substantial deviation from
a uniform distribution. One can also compare the distribution of the p-
value with a uniform distribution by looking at the expected value. For a
uniform distribution, the expected value is of course 1

2 , while for Fisher’s
exact p-value in this example the expected value is 0.6699.

Another popular test for the same null hypothesis of Fisher’s exact test
is the chi-square test. It uses a statistic whose distribution under the null
hypothesis is approximately a chi-square distribution and it is not an exact
test. For 2× 2 contingency tables, the statistical software R uses by default
the so called Yates continuity correction for the chi-square statistic. In
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Figure 3 we compare the cumulative distribution functions of Fisher’s exact
p-value (red), chi-square test p-value (green) and chi-square test with Yates
continuity correction p-value (blue) again in the case of 100 patients per
group and a 0.05 probability of “yes”. While the green line sometimes goes
above the diagonal, illustrating the fact that inequality (2) sometimes fails,
it is typically much closer to the diagonal than the red and blue lines. The
expected value of the chi-square test p-value is 0.4997. On the other hand,
the blue line is almost identical to the red line (making the red line barely
visible), which means that once Yates continuity correction is applied to the
chi-square test the distribution of the p-value under the null hypothesis is
almost identical to the distribution of Fisher’s exact p-value in this example.
The expected value of the p-value for chi-square test with Yates continuity
correction is 0.6694.

But so what if the distribution of the p-value of Fisher’s exact test (or chi-
square test with Yates continuity correction) can deviate a lot from a uniform
distribution? One might be interested in looking for more powerful options,
but as long as inequality (2) is valid, we can at least confidently reject the
null hypothesis when the p-value is very small. However, in the context of
Carlisle’s method we are sometimes going to reject the null hypothesis when
the p-value p is very close to 1 or, equivalently, we are going to regard 1− p
as the p-value of our test, rejecting the null hypothesis when 1 − p is very
small. Unfortunately, if p satisfies inequality (2) then 1 − p satisfies the
reverse inequality:

P0(1−p ≤ α) = P0(p ≥ 1−α) = 1−P0(p < 1−α) ≥ 1−P0(p ≤ 1−α) ≥ α,

so that now the true probability of type I error will be above the nominal
significance level. In case the distribution of p deviates substantially from a
uniform distribution, the true probability of type I error can be much larger
than nominal significance level when 1 − p is used as p-value and this is
really inappropriate. In Figure 4 we compare the cumulative distribution
function of 1 minus Fisher’s exact p-value (orange) with a uniform distribu-
tion (black). The results are terrible: the true probability of type I error is
around 0.38 for small nominal significance levels.

As we will see in the next section, the situation gets worse when many
p-values are combined, as even small deviations from a uniform distribution
might lead to a large deviation from a uniform distribution in the combined
p-value.

3. Combining p-values

Given many independent p-values p1, p2, . . . , pn there are several standard
techniques to combine them into a single p-value. This is often used for meta-
analysis: each p-value is obtained from a test of a certain null hypothesis
and the combined p-value is used to test the conjunction of all of the null
hypotheses. One standard combination procedure is Stouffer’s method: the
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Figure 3. Cumulative distribution function of Fisher’s exact p-
value (red), chi-square test p-value (green) and chi-square test with
Yates continuity correction p-value (blue) versus uniform distribu-
tion (black). 100 patients per group, probability of “yes” equal to
0.05.

combined p-value is given by:

(3) pStouffer = Φ
( 1√

n

n∑
i=1

Φ−1(pi)
)
,

where Φ : R → ]0, 1[ denotes the cumulative distribution function of the
standard normal distribution. The rational here is the following: if

pi, i = 1, . . . , n

are independent and uniform in [0, 1], then

Zi = Φ−1(pi), i = 1, . . . , n

are independent z-scores, i.e., independent standard normal random vari-
ables. The sum

∑n
i=1 Zi divided by

√
n is then again a standard normal
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Figure 4. Cumulative distribution function of 1 minus Fisher’s
exact p-value (orange) versus uniform distribution (black). 100
patients per group, probability of “yes” equal to 0.05.

random variable and applying Φ to a standard normal random variable we
get back to a random variable with a uniform distribution in [0, 1], which
can be used as a p-value. Stouffer’s combined p-value can be thought as the
p-value that arises from the test whose test statistic is given by:

(4)

n∑
i=1

Φ−1(pi),

assuming that pi, i = 1, . . . , n are independent and uniform in [0, 1].
Another standard procedure for combining p-values is to use their product∏n
i=1 pi or, equivalently, the sum of their logarithms

∑n
i=1 ln(pi) as the test

statistic. If pi, i = 1, . . . , n are independent and uniform in [0, 1] then
−2 ln(pi), i = 1, . . . , n are independent random variables having a chi-square
distribution with 2 degrees of freedom, so that −2

∑n
i=1 ln(pi) has a chi-

square distribution with 2n degrees of freedom. In this case, the combined
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p-value known as Fisher’s combined p-value can be computed as:

(5) pFisher = P
(
χ2(2n) ≥ −2

n∑
i=1

ln(pi)
)
,

where χ2(2n) denotes a random variable having a chi-square distribution
with 2n degrees of freedom.

Such combination methods work well when the individual p-values indeed
have a uniform distribution, but as discussed in Section 2 this is not in
general the case even for “exact” tests. The bad news is that small deviations
from uniformity can accumulate in the combined p-value. The good news is
that it can be shown that if the inequalities

(6) P0(pi ≤ α) ≤ α, i = 1, . . . , n

hold for all α ∈ [0, 1] then

(7) P0(pcombined ≤ α) ≤ α
also holds for all α ∈ [0, 1] for reasonable2 combination methods such as
Stouffer’s or Fisher’s. Thus, if the individual tests are correct in the sense
that true probability of type I error does not exceed nominal significance
level, then the test based on the combined p-value will also be correct in the
same sense. We only run the risk of the combined test being too conserva-
tive and having low power. However, as discussed in Section 2, Carlisle’s
method involves subtracting p-values from 1 and in this case inequality (7)
is reversed, leading to bad results.

Stouffer’s combination method can lead to particularly absurd results
when used with Fisher’s exact p-values. Namely, Stouffer’s combined p-
value will be exactly equal to 1 whenever any of the individual p-values
is exactly equal to 1 (assuming a continuous extension of Φ to [−∞,∞]).
To avoid such absurd results, N. Brown [1] suggests replacing individual
p-values larger than 0.98 with 0.98. Fisher’s combination method does not
behave badly when an individual p-value is equal to 1 and does not require
this type of adjustment, but as we will see both Brown’s adjusted Stouffer’s
method and Fisher’s method for combining p-values lead to bad results after
subtraction from 1, even when individual p-values do not deviate much from
a uniform distribution.

In Section 2 we looked into the case of 100 patients per group and a
probability of “yes” of 0.05 and we observed a large deviation of Fisher’s
exact p-value from a uniform distribution (with similar results for chi-square
test with Yates continuity correction). Now we will consider instead 100
patients per group and a probability of “yes” of 0.5, which leads to a smaller

2More precisely, it can be shown that if the statistic used for the combination method
is a monotonically increasing function of the individual p-values and if (6) holds then
the combined p-value ptrue based on the true distribution of the individual p-values is less
than or equal to the combined p-value pcombined obtained by pretending that the individual
p-values are uniform. Since P0(ptrue ≤ α) ≤ α holds, (7) follows.
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Figure 5. Cumulative distribution function of Fisher’s exact p-
value (red) and of 1 minus Fisher’s exact p-value (orange) versus
uniform distribution (black). 100 patients per group, probability
of “yes” equal to 0.5.

deviation between the distribution of Fisher’s exact p-value and a uniform
distribution (see Figure 5). The expected value of Fisher’s exact p-value in
this case is equal to 0.5766, closer to 1

2 than in the example considered in
Section 2.

Let us now investigate what happens when 20 Fisher’s exact p-values are
combined, assuming always 100 patients per group and a probability of “yes”
of 0.5. The number of possible 20-tuples of contingency tables is 10140, so
that direct computation of the distribution of combined p-values is impossi-
ble. We thus estimate the distributions using one hundred thousand Monte
Carlo simulations. Results can be seen in Figure 6. The curves are cumu-
lative distribution functions of combined p-values subtracted from 1. As
expected, Stouffer’s method yields absurd results (red). Brown’s adjusted
Stouffer’s method (blue) and Fisher’s method (green) are much better, but
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Figure 6. Cumulative distribution function of 1 minus Stouffer’s
combination (red), of 1 minus Fisher’s combination (green), of 1
minus Brown’s adjusted Stouffer’s combination (blue) and of uni-
form distribution (black). 100 patients per group, 20 contingency
tables, probability of “yes” equal to 0.5. Individual p-values are
Fisher’s exact p-values.

still really bad. The expected value of Stouffer’s combination is approxi-
mately 0.99, of Brown’s adjusted Stouffer’s combination is approximately
0.81 and of Fisher’s combination is approximately 0.72, while the expected
value of a uniform distribution is of course 1

2 .

4. Adapting Carlisle’s method to dichotomous variables
correctly

As discussed in Section 2, the naive reversion of a p-value p obtained
by replacing p with 1 − p leads to problems, as inequality (2) stating that
true probability of type I error cannot exceed nominal significance level is
reversed, so that true probability of type I error becomes greater than or
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equal to nominal significance level. Here is another way of looking at the
problem: if T is used as test statistic and if we define the p-value p associated
to an observed value t of T as p = P0(T ≤ t) (possibly also conditioning
on the value of some other random object, see Footnote 1) then the naively
reversed p-value 1 − p is equal to P0(T > t). Thus, the naively reversed
p-value excludes the observed value t from the p-value. If T is continuous,
so that P0(T = t) = 0, or at least if P0(T = t) is very small, this does not
create problems. However, for tests involving contingency tables with small
numbers the probability P0(T = t) is usually not small.

There is a simple way of fixing this problem: define the reverse p-value by
P0(T ≥ t), including the observed value t of T as usual. With such definition,
inequality (2) remains valid. So, for instance, we define the reverse Fisher’s
exact p-value for an observed contingency table as the hypergeometric prob-
ability of the set of all tables, with same marginals as the observed table,
having a hypergeometric probability greater than or equal to the observed
contingency table.

For the combination of the individual reverse Fisher’s exact p-values one
can use the usual combination formulas by Stouffer (3) or Fisher (5), but
since the distribution of individual p-values can deviate substantially from a
uniform distribution this can lead to non optimal tests with low power. The
best approach is to use instead Stouffer’s test statistic (4) or Fisher’s test
statistic

∑n
i=1 ln(pi) and the exact distribution of individual p-values under

the null hypothesis (conditioning as usual on the marginals of contingency
tables to eliminate nuisance parameters, obtaining a hypergeometric distri-
bution for the tables entries). Since Stouffer’s statistic degenerates to +∞
when any of the individual p-values is equal to 1 and since this occurrence is
not uncommon among p-values arising from contingency tables with small
numbers, we suggest using Fisher’s test statistic for which this inconvenience
does not occur. This seems like a better option than some dirty adjustment
like replacing p-values larger than 0.98 with 0.98 (see also Figure 6).

In case we have both dichotomous and continuous baseline variables, we
can just combine everything by using the sum of the logarithms of all reverse
p-values as test statistic, using reverse Fisher’s exact p-value described above
for dichotomous variables and the simple reversion 1 − p for continuous
variables; also, for continuous variables, we assume a uniform distribution
for the p-value under the null hypothesis, which should be a reasonable
approximation3. As there is no simple closed formula for the distribution of
the test statistic, one should estimate the combined p-values using Monte
Carlo simulations.

3One could run into some problems here with small samples, if the tests used to compute
p-values are not exact. Also, the fact that means and standard deviations presented in
articles tables are rounded could potentially create a problem, though perhaps the fact
that rounding goes in both directions will create some form of compensation and alleviate
this problem.
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Figure 7. Sheldrick’s plot of all 22 Fisher’s exact p-values calcu-
lated from dichotomous variables from Table 1 of [6].

5. K. Sheldrick on Marik et. al

Now let us look at a few concrete examples of incorrect applications of
Carlisle’s method to dichotomous variables. We start with Kyle Sheldrick’s
accusations against Marik et. al [6]. Sheldrick’s analysis was posted on his
blog [11] and the original post has now been deleted for unclear reasons;
one related post [12] in which Sheldrick replies to critics is still online. The
original post is archived here [13] and it is still favorably cited by MedPage
Today [5]. I have left several observations in the comment section of the
post explaining some of the issues discussed in this manuscript and got no
response from Sheldrick. My adaptation of Carlisle’s method discussed in
Section 4 is partially inspired by the comments of P. Shearer in Sheldrick’s
post (see also [9, 10]). Sheldrick exerts no caution in his choice of words:

“Unfortunately within about 5 minutes of reading the study it
became overwhelmingly clear that it is indeed research fraud
and the data is fabricated.

While usually I would use cautious language of ‘unusual’
or ‘unexpected’ patterns in the data and describe ‘irregulari-
ties’ and ‘concern’; no such caution is warranted in this case.
This is frankly audacious fraud. I have not requested access
to the raw data or contacted the authors for explanation as
the case is audacious no other explanation is apparent.”

His justification for such bold claim is based on the distribution of Fisher’s
exact p-values calculated for all 22 dichotomous baseline variables reported
in Table 1 of [6]. In Figure 7 we reproduce his plot of such p-values.

Sheldrick apparently believes that Fisher’s exact p-values for baseline di-
chotomous variables in a randomized trial should look like a random sample
from a uniform distribution, as the following quote indicates:
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“Based on this we would expect that if there was no systemic
bias the p values for differences in dichotomous baseline char-
acteristics (gender, demographics, comorbidities, diagnoses
etc) would, in most circumstances, centre on 0.5. If systemic
differences existed however the groups may be less similar and
p values may tend to numbers below 0.5, and this would not
be suspicious in a non-randomised study. Systemic biases
to p values greater than 0.5 are not usually possible without
matching (or some very rare pseudo-block designs not rele-
vant here) except in the setting of fraud.”

However, as discussed in Section 2, this is simply wrong. To illustrate this
point in this concrete example, let us look for instance at the mean of the 22
p-values. The mean of a random sample of size 22 from a uniform distribu-
tion has an approximately normal distribution with mean 1

2 and standard

deviation 1√
12·22

∼= 0.062. However, one can easily calculate explicitly the

true expected value of the mean of the 22 Fisher’s exact p-values in this
case (conditional on the marginals of contingency tables) and the result is
approximately 0.643. Thus, if you are expecting a random sample from a
uniform distribution, the true expected value of the mean will be more than
2.3 standard deviations above the value that you expect.

Likely following Carlisle, Sheldrick tries first to quantify the weirdness of
this sample of p-values by using a Stouffer combination, but he realises that
this will be a problem as Stouffer’s combined p-value is equal to 1 whenever
any of the p-values being combined is equal to 1:

“This actually presents a slight problem in estimating how
unlikely these results are, as the most common test for fraud
in this situation would be the Stouff-Fisher, but this will de-
clare these results infinitely unlikely (as the majority of vari-
ables have a p value of exactly 1), when in reality it is proba-
bly more likely that it is no more than trillions to quadrillions
to one.”

The “infinitely unlikely” is an attempt to make sense of the null p-value
obtained by subtracting Stouffer’s combined p-value from 1; since this is
absurd, Sheldrick speculates that the correct p-value should be something
like “trillions to quadrillions to one”. But as we have discussed before,
defining a p-value as 1 minus a Stouffer combination of Fisher’s exact p-
values leads to disastrous results (see Figure 6).

His final attempt at quantifying the weirdness of the 22 p-values is this:

“A ‘quick and dirty’ way to assess this would be to consider
that the probability of any one variable having a p value over
0.4 is 60%, the binomial probability of 22 such measures hav-
ing no observed values under 0.4 is close to (0.6)22 or around
1 in 100,000, this assumes independence which is perhaps a
little unfair, but likely underestimates the improbability of
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such a finding as the results are not evenly distributed be-
tween 0.4 and 1.”

Basing a statistical test on a specific number like 0.4 which is chosen due
to properties observed in the data is not good practice4 and he probably
realises this as he calls the method “quick and dirty”, but another problem
of course is that it is not true that we should be expecting the 22 p-values
to constitute a sample from a uniform distribution, so that the probability
of an individual p-value being above 0.4 is not 0.6.

This concludes our discussion of Sheldrick’s attempt at analysing the base-
line data of [6]. Let us now apply the correct adaptation of Carlisle’s method
to dichotomous variables that we suggested in Section 4. Using one million
Monte Carlo simulations and the product (or, equivalently, the sum of the
logarithms) of the reverse Fisher’s exact p-values for the 22 baseline vari-
ables as test statistic (and conditioning on marginals of contingency tables)
an estimated p-value of approximately 1 in 489 is obtained.

This method of obtaining a p-value, like Carlisle’s original method, as-
sumes independence of the baseline variables, which is usually not true. In
general it is not easy to do a better analysis which takes dependence into
account, but in this case it is easy to do a little better than just assuming
independence as 5 of the 22 dichotomous variables are actually the 5 possible
values of a nominal variable. More explicitly, 5 variables are just the names
of possible primary diagnoses and each patient has precisely one primary di-
agnosis, so that this part of Table 1 of [6] is really a 5×2 contingency table.
We can define a reverse Fisher’s exact p-value for a given contingency table
of arbitrary size by taking the probability of the set of tables, with the same
marginals as the given table, whose probabilities are larger than or equal to
the probability of the given table (with all probabilities conditional on the
marginals of the table). In this case we have just 45,760 possible tables and
thus reverse Fisher’s exact p-values can be calculated explicitly. The reverse
Fisher’s exact p-value for the 5×2 table corresponding to primary diagnosis
in [6] is approximately equal to 1 in 163. If we estimate the p-value for the
other 17 baseline dichotomous variables in [6] using the method of Section 4
(with one million Monte Carlo simulations) we get approximately 0.064 or
around 1 in 15.5. Thus, in some sense, the somewhat weird overbalance
between groups in Table 1 of [6] is concentrated in the 5 lines corresponding
to primary diagnosis.

Now, if we combine the p-value for the 5 × 2 table with the p-values of
all other 17 dichotomous variables by using the sum of the logarithms of
all reverse Fisher’s exact p-values as test statistic, we obtain a p-value of

4Formally, if you have a family (pλ)λ∈Λ of random variables that are valid p-values and
if you choose the index λ by a criterion that depends on the data then λ itself should
be regarded as a random object and then you are not really using one of the valid p-
values from the given family, but instead you are constructing a new random variable
by plugging a random index into p. Such random variable won’t in general satisfy the
necessary requirements to qualify as a p-value.
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approximately 1 in 653 (with one million Monte Carlo simulations). This is a
little less than the p-value that was obtained by treating all 22 dichotomous
variables as independent, which is counterintuitive, as one would expect that
taking some dependence into account would yield a larger p-value.

Summarizing our analysis of the baseline dichotomous variables in [6],
we conclude that p-values obtained from reasonable analyses should be of
the order of 1 in a few hundred. These are low p-values, but way above
the threshold of 1 in 10,000 implicitly suggested by Carlisle [4]. We note
that the reported baseline data of [6] contains also 8 continuous variables
for which mean and standard deviation are reported and there doesn’t seem
to be a good reason to exclude those from the analysis. In Figure 8 we show
a plot of the 8 p-values obtained from the continuous variables by using a t-
test (assuming equal variance on both groups — assuming unequal variance
instead would make almost no difference).

Visually, Figure 8 looks like a reasonable sample from a uniform distri-
bution. Note that a uniform distribution in [0, 1] has mean 1

2 and variance

equal to 1
12
∼= 0.083, while the mean of these 8 p-values is equal to 0.535 and

the sample variance is equal to 0.072.
We should now conclude our analysis with a formal test which includes

the reverse Fisher exact p-value for the 5× 2 contingency table correspond-
ing to primary diagnosis, the 17 reverse Fisher exact p-values for the other
17 dichotomous variables and the reverse (naively, subtracting from 1) p-
values for the 8 continuous variables for which mean and standard deviation
are supplied. We use again the sum of logarithms of p-values as test statis-
tics and assume a uniform distribution for p-values of continuous variables.
Unfortunately, for one of the continuous variables (Creatinine) the reported
group means in Table 1 of [6] are exactly equal and this leads to a reverse
p-value of zero, which is the case in which Fisher’s statistic based on sum of
logarithms degenerates to −∞. Since values in Table 1 are rounded to one
decimal place, we fix this problem with an ad hoc adjustment of subtracting
0.05 from the mean of one group and adding 0.05 to the mean of the other
group for this variable (see Footnote 3).

The resulting p-value once everything is taken together is approximately
0.079 or around 1 in 12.7. This is larger than even the standard “statis-
tical significance” threshold of 0.05. Of course, the fact remains that the
dichotomous variables alone (or the primary diagnosis variable alone) lead
to p-values of the order of 1 in a few hundred. However, it seems to me that
faking data for continuous variables with reasonable statistical properties
is even harder than faking data for dichotomous variables, as one have to
worry about faking also reasonable standard deviations. So, if it were the
case that the patients of [6] do not exist at all and all the data in Table 1 is
fabricated, it would be a little odd that the fraudster succeeded so well with
the continuous variables and not so well with the dichotomous variables.
Besides a coincidence, the p-values of the order of 1 in a few hundred for



INCORRECT USE OF CARLISLE’S METHOD FOR DICHOTOMOUS VARIABLES 17

Figure 8. p-values obtained from 8 continuous variables in Ta-
ble 1 of [6] for which mean and standard deviation are reported.
The p-values are computed using an unpaired t-test assuming equal
variance between groups.

the dichotomous variables could be explained by something as simple as a
mistake in the part of Table 1 related to primary diagnosis, for example.

6. N. Brown on Cadegiani et. al

Let us now look at the application by Nick Brown [1] of the erroneous
adaptation of Carlisle’s method to dichotomous variables in two studies by
Cadegiani et. al [2, 3]. Unlike Sheldrick (see Section 5) Brown includes both
continuous and dichotomous baseline variables in his analysis, but the num-
ber of continuous variables in either article is very small. In [2] we have
53 dichotomous baseline variables and only 2 continuous baseline variables,
while in [3] we have 81 dichotomous baseline variables and only 3 contin-
uous baseline variables (Table 1 in both articles). Brown [1] does several
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sensitivity analyses which we do not discuss in detail here. The summary of
what he does is the following:

• compute p-values for continuous baseline variables using a t-test;
• compute p-values for dichotomous baseline variables using either a

Fisher exact test or a chi-square test with Yates continuity correction
— depending on the analysis, variables with very small values are
simply excluded;
• compute 1 minus the Stouffer combination of all p-values obtained

in the previous steps.

Also, after computing the p-values, Brown replaces any p-value above 0.98
with 0.98 (what we call Brown’s adjustment in Section 3) to avoid the cata-
strophic behaviour of Stouffer’s method with p-values that are exactly equal
to 1. In the case of continuous variables, Brown worries about the fact that
means and standard deviations in article tables are rounded (see Footnote 3)
and he claims to have compensated for rounding in a way that maximizes
the t-statistic and thus minimizes the corresponding p-value. This choice
works in favor of authors, i.e., it favors the non fraud conclusion, though see
Remark 1 below. This does not matter much as the number of continuous
variables is small and what influences results the most are the dichotomous
variables.

For the proxalutamide article [2], the largest p-value obtained by Brown
is 0.0000337 and for the dutasteride article [3] the largest p-value obtained
by Brown is 0.00000000819. As discussed in Sections 2 and 3, the p-value
obtained by subtracting from 1 the Stouffer combination of Fisher’s exact
p-values can lead to really bad results, even with Brown’s 0.98-adjustment
(see Figure 6). Moreover, replacing Fisher’s exact test with chi-square test
with Yates continuity correction makes little difference (see Figure 3).

Applying the correct adaptation of Carlisle’s method that we suggested
in Section 4 to the baseline data of the proxalutamide article [2], including
both dichotomous and continuous variables, with one million Monte Carlo
simulations a p-value of approximately 0.017 or around 1 in 60 is obtained.
Not particularly weird given the limitations of the method. I didn’t worry
about the fact that reported means and standard deviations in Table 1 of
the articles are rounded and I simply computed the p-values for continuous
variables using a t-test with the data as given in the articles (assuming
equal variance on both groups). For the dutasteride article [3], including
both dichotomous and continuous variables, with one million Monte Carlo
simulations a p-value of approximately 0.0024 or around 1 in 409 is obtained.
This is weirder, but still way above the 1 in 10,000 threshold implicitly
suggested by Carlisle [4].

Remark 1. For article [2], Brown reports explicitly all the p-values that he
found. For the two continuous variables, the reported p-values are 0.431 and
0.703. These are the maximum possible p-values compatible with the values
in Table 1 of [2] and thus the p-values that favor the hypothesis of fraud
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the most. This is likely a mistake, as he claims in the text to be doing the
opposite. The minimum possible p-values (using t-test with equal variance)
compatible with the values in Table 1 are 0.368 and 0.226.
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