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Directed paths (Rédei '34) @—>—e—>—e@ - 0e—>—e@
All large paths ( Thomason '86)
All paths, 3 exceptions (Havet & Thomassé '98)

Some claws (Saks & Sés '84; Lu '93; Lu, Wang & Wong '98)
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o——0 - 09—07( is not in n—3 > ./\\/

And e——® isnotin

¥
[ ]
5 vertices

o——e
3-regular: 2 -5 — 3 vertices
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Avoidable trees, a longstanding conjecture

Conjecture (Sumner, 1971)
r(T)<2n-—2 for all T'.

publ. who tournament size

1082 Chung plto()

1983 Wormald nlogy(2n/e)

1991  Héaggkvist & Thomason  12n and also (4 + o(n))n
2002 Havet 38n/5—6

2000 Havet & Thomassé (Tn —5)/2

2004 El Sahili 3n—3

2011  Kahn, Mycroft & Osthus 2n — 2 for large n

Conjecture (Havet & Thomassé, 2002)
T has by leaves — r(T)<n+{lp—1.
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Mycroft, N., 2018
Foralle,C >0 and largen

A(T) < (logn)® = r(T)<(1+e)n.

= (1 + ¢)n vertices suffice to embed almost every tree

Conjecture (Havet & Thomassé, 2002)
If T has {7 leaves and v(G) >n+¥¢p—1 then T CQG.

15' moment + Cayley 3{ by Moon 31 Lemma
I Typical tree T" has ~n/e leaves and A(T) <logn .

Mycroft, N., 2018
I Havet and Thomassé's conjecture holds for almost every T
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There exists
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GCG, with |G]=(1-0(1))|Gn| st

TeT, Geg = TCAG.

Conjecture (Bender, Wormald, 1988)
There exists T C T, with |[T] = (1 —0(1))|Ta| st

TeT = T unavoidable

I Mycroft, N., 2018
Indeed!



Almost all trees are unavoidable!

Mycroft, N., 2018
There exists 7, C T, of size (1—0(1))|Tn| s.t.
each G € G, contains all T € T, .

A sufficient condition which is ' typical !



Almost all trees are unavoidable!

Mycroft, N., 2018
There exists 7, C T, of size (1—0(1))|Tn| s.t.
each G € G, contains all T € T, .

A sufficient condition which is ' typical !
Ingredients:

Mycroft, N., 2018
A(T) < polylog(n) = (1+¢)n

Kiihn, Mycroft & Osthus, 2011
Structure of large tournaments
+ randomized embedding algorithm
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Nice trees are nice, and ALSO typical

Mycroft, N., 2018
For all a,C > 0 and large n
T is a-nice and A(T) < (logn)® == T is unavoidable.

Moon, 1970

1
Almost all n-vertex trees have max. degree (1 + o(1)) (logoign)

Basic lemma

Almost all n-vertex trees are ﬁ-nice.

— Almost all trees are unavoidable.
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Beyond tournaments — Dirac-type results

Komlés, Sarkdzy, Szemerédi, 1995
Forall A>0, >0, and largen,
tree T, graph G st. n=v(T)=v(G)
if A(T)<A and 0(G)>(1/24+¢)n
then T CG.

Mycroft, N., 2018™
Forall A>0, >0, and largen,
oriented tree 7', digraph G st. n=v(T)=v(G)
if A(T)<A and 8%G)=>(1/2+ée)n
then T CG.
Work in progress:
1. Let A(T) grow with n

2. More general spanning subdigraphs (i.e.: allow some cycles)
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Q How about other oriented trees?
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e.g., few leaves, or outbranchings

Q Characterise unavoidable trees

Q Orientations of n-chromatic graphs (Burr's conjecture)

Conjecture (Burr, 1980)
If G is a graph, x(G) =2n — 2 and T is a tree on n vertices,
then every orientation of GG contains every orientation of T’

Thanks! Other questions? Please ask!
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Paths and claws
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Bounded degree result
“Unavoidable™” conjecture
Result summary

Nice trees are nice — our sufficient condition
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