Spanning trees of dense digraphs

Tássio Naia

ICGT 2018

Spanning trees of dense digraphs

Tássio Naia

Joint work with Richard Mycroft

ICGT 2018

Is there a copy of T in G?

 $r(T) \coloneqq \min k \quad \text{s.t.} \quad v(G) \ge k \implies T \subseteq G.$

Is there a copy of T in G?

 $r(T)\coloneqq \mathsf{minimum}\;k\;\;\mathsf{s.t.}\;\;v(G)\geq k\;\Longrightarrow\;T\subseteq G.$

So
$$n \le r(T) \le 2^{n-1}$$

Is there a copy of T in G?

$$\begin{split} r(T), \mbox{ Unavoidable tree} \\ r(T) &\coloneqq \mbox{ minimum } k \quad {\rm s.t.} \quad v(G) \geq k \implies T \subseteq G. \\ T \mbox{ is unavoidable } : \quad T \subseteq G \quad \forall G \quad {\rm s.t.} \quad v(G) \geq v(T). \\ {\rm So} \quad n \leq r(T) \leq 2^{n-1} \end{split}$$

Is there a copy of T in G?

$$\begin{split} r(T), \mbox{ Unavoidable tree}\\ r(T) &\coloneqq \mbox{ minimum } k \ \ \mbox{s.t.} \ \ v(G) \geq k \implies T \subseteq G.\\ T \ \mbox{ is unavoidable } \colon \ T \subseteq G \quad \forall G \ \ \mbox{s.t.} \ \ v(G) \geq v(T).\\ \mbox{So} \ \ n \leq r(T) \leq 2^{n-1} \end{split}$$

T in every orientation of $K_n ~\equiv~ T$ unavoidable

Is there a copy of T in G?

 $\begin{array}{l} r(T), \mbox{ Unavoidable tree}\\ r(T)\coloneqq \mbox{ minimum }k \ \ {\rm s.t.} \ \ v(G)\geq k \implies T\subseteq G.\\ T \mbox{ is unavoidable }: \ \ T\subseteq G \ \ \forall G \ \ {\rm s.t.} \ \ v(G)\geq v(T).\\ {\rm So} \ \ n\leq r(T)\leq 2^{n-1} \end{array}$

T in every orientation of $K_n ~\equiv~ T$ unavoidable $~\equiv~ r(T) = n$

Proof by picture

Directed paths (Rédei '34) $\bullet \rightarrow \bullet \rightarrow \bullet \cdots \bullet \rightarrow \bullet$

All large paths (Thomason '86)

Directed paths (Rédei '34) $\bullet \rightarrow \bullet \rightarrow \bullet \cdots \bullet \rightarrow \bullet$

All large paths (Thomason '86)

All paths, 3 exceptions (Havet & Thomassé '98)

Directed paths (Rédei '34) $\bullet \rightarrow \bullet \rightarrow \bullet \cdots \bullet \rightarrow \bullet$

All large paths (Thomason '86)

All paths, 3 exceptions (Havet & Thomassé '98)

Some claws (Saks & Sós '84; Lu '93; Lu, Wang & Wong '98)

$$\begin{array}{c} \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \cdots \\ \bullet \rightarrow \bullet \rightarrow \bullet \cdots \\ \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \cdots \end{array} \end{array} \right\} \leq \left(\frac{3}{8} + \frac{1}{200} \right) n \text{ branches}$$

 $5\ {\rm vertices}$

Avoidable trees, a longstanding conjecture

Conjecture (Sumner, 1971)
$$v(T) = n$$

 $r(T) \le 2n-2$ for all T.

Avoidable trees, a longstanding conjecture

		Conjecture (Sumner, 1971)
$r(T) \leq$	2n-2 for all T .	v(T) = n
publ.	who	tournament size
1982	Chung	$n^{1+o(n)}$
1983	Wormald	$n\log_2(2n/e)$
1991	Häggkvist & Thomason	$12n$ and also $ig(4+{\sf o}(n)ig)n$
2002	Havet	38n/5 - 6
2000	Havet & Thomassé	(7n-5)/2
2004	El Sahili	3n - 3
2011	Kühn, Mycroft & Osthus	2n-2 for large n

Avoidable trees, a longstanding conjecture

$r(T) \le 2n-2$ for all T . $v(T) = n$ publ.whotournament size1982Chung $n^{1+o(n)}$ 1983Wormald $n \log_2(2n/e)$ 1991Häggkvist & Thomason $12n$ and also $(4 + o(n))n$ 2002Havet $38n/5 - 6$ 2000Havet & Thomassé $(7n-5)/2$ 2004El Sahili $3n - 3$ 2011Kühn, Mycroft & Osthus $2n - 2$ for large n			Conjecture (Sumner, 1971)
publ.whotournament size1982Chung $n^{1+o(n)}$ 1983Wormald $n \log_2(2n/e)$ 1991Häggkvist & Thomason $12n$ and also $(4 + o(n))n$ 2002Havet $38n/5 - 6$ 2000Havet & Thomassé $(7n - 5)/2$ 2004El Sahili $3n - 3$ 2011Kühn, Mycroft & Osthus $2n - 2$ for large n	$r(T) \leq$	2n-2 for all T .	v(T) = n
1982Chung $n^{1+o(n)}$ 1983Wormald $n \log_2(2n/e)$ 1991Häggkvist & Thomason $12n$ and also $(4 + o(n))n$ 2002Havet $38n/5 - 6$ 2000Havet & Thomassé $(7n - 5)/2$ 2004El Sahili $3n - 3$ 2011Kühn, Mycroft & Osthus $2n - 2$ for large n	publ.	who	tournament size
1983Wormald $n \log_2(2n/e)$ 1991Häggkvist & Thomason $12n$ and also $(4 + o(n))n$ 2002Havet $38n/5 - 6$ 2000Havet & Thomassé $(7n - 5)/2$ 2004El Sahili $3n - 3$ 2011Kühn, Mycroft & Osthus $2n - 2$ for large n	1982	Chung	$n^{1+o(n)}$
1991Häggkvist & Thomason $12n$ and also $(4 + o(n))n$ 2002Havet $38n/5 - 6$ 2000Havet & Thomassé $(7n - 5)/2$ 2004El Sahili $3n - 3$ 2011Kühn, Mycroft & Osthus $2n - 2$ for large n	1983	Wormald	$n\log_2(2n/e)$
2002Havet $38n/5-6$ 2000Havet & Thomassé $(7n-5)/2$ 2004El Sahili $3n-3$ 2011Kühn, Mycroft & Osthus $2n-2$ for large n	1991	Häggkvist & Thomason	$12n$ and also $ig(4+{\sf o}(n)ig)n$
2000Havet & Thomassé $(7n-5)/2$ 2004El Sahili $3n-3$ 2011Kühn, Mycroft & Osthus $2n-2$ for large n	2002	Havet	38n/5 - 6
2004 El Sahili $3n-3$ 2011 Kühn, Mycroft & Osthus $2n-2$ for large n	2000	Havet & Thomassé	(7n-5)/2
2011 Kühn, Mycroft & Osthus $2n-2$ for large n	2004	El Sahili	3n-3
	2011	Kühn, Mycroft & Osthus	2n-2 for large n

Conjecture (Havet & Thomassé, 2002) T has ℓ_T leaves $\implies r(T) \le n + \ell_T - 1$. v(T) = n

Kühn, Mycroft & Osthus, 2011

 $\mbox{ For all } \varepsilon, \Delta > 0 \quad \mbox{ and } \ \mbox{ large } n \label{eq:eq:star}$

 $\Delta(T) \leq \Delta \quad \Longrightarrow \quad r(T) \leq (1+\varepsilon)n. \qquad v(T) = n$

Kühn, Mycroft & Osthus, 2011

 $\begin{array}{lll} \mbox{For all } \varepsilon,\Delta>0 & \mbox{ and } & \mbox{ large }n\\ \hline \Delta(T)\leq\Delta & \Longrightarrow & r(T)\leq(1+\varepsilon)n. & v(T)=n \end{array}$

Mycroft, N., 2018

For all $\varepsilon, C > 0$ and large n

$$\Delta(T) \le (\log n)^C \implies r(T) \le (1+\varepsilon)n.$$
 $v(T) = n$

Kühn, Mycroft & Osthus, 2011

 $\begin{array}{rcl} \text{For all } \varepsilon, \Delta > 0 & \text{and} & \text{large } n \\ & & \Delta(T) \leq \Delta & \implies & r(T) \leq (1+\varepsilon)n. & v(T) = n \end{array}$

Mycroft, N., 2018

For all $\varepsilon, C > 0$ and large n

 $\Delta(T) \le (\log n)^C \implies r(T) \le (1+\varepsilon)n.$ v(T) = n

Moon, 1970

Typically,
$$\Delta(T) = (1 \pm o(1)) \left(\frac{\log n}{\log \log n}\right)$$
. T la

Kühn, Mycroft & Osthus, 2011

 $\begin{array}{rcl} \text{For all } \varepsilon, \Delta > 0 & \text{and} & \text{large } n \\ & & \Delta(T) \leq \Delta & \implies & r(T) \leq (1+\varepsilon)n. & v(T) = n \end{array}$

Mycroft, N., 2018

For all $\varepsilon, C > 0$ and large n

 $\Delta(T) \le (\log n)^C \implies r(T) \le (1 + \varepsilon)n.$ v(T) = n

Moon, 1970

Typically,
$$\Delta(T) = (1 \pm o(1)) \left(\frac{\log n}{\log \log n}\right)$$
. T labelled
 $\implies (1 + \varepsilon)n$ vertices suffice to embed almost every tree

Mycroft, N., 2018

For all $\varepsilon, C > 0$ and large n $\Delta(T) \le (\log n)^C \implies r(T) \le (1 + \varepsilon)n. \qquad v(T) = n$

 $\implies (1+\varepsilon)n$ vertices suffice to embed almost every tree

Mycroft, N., 2018

For all $\varepsilon, C > 0$ and large n $\Delta(T) \le (\log n)^C \implies r(T) \le (1 + \varepsilon)n. \qquad v(T) = n$

 $\implies (1+\varepsilon)n$ vertices suffice to embed almost every tree

Conjecture (Havet & Thomassé, 2002) If T has ℓ_T leaves and $v(G) \ge n + \ell_T - 1$ then $T \subseteq G$.

Mycroft, N., 2018 For all $\varepsilon, C > 0$ and large n $\Delta(T) \le (\log n)^C \implies r(T) \le (1+\varepsilon)n. \qquad v(T) = n$ \implies $(1 + \varepsilon)n$ vertices suffice to embed almost every tree Conjecture (Havet & Thomassé, 2002) If T has ℓ_T leaves and $v(G) \ge n + \ell_T - 1$ then $T \subseteq G$. Lemma Typical tree T has $\approx n/e$ leaves and $\Delta(T) < \log n$.

Mycroft, N., 2018 For all $\varepsilon, C > 0$ and large n $\Delta(T) \le (\log n)^C \implies r(T) \le (1+\varepsilon)n.$ v(T) = n $\implies (1+\varepsilon)n$ vertices suffice to embed almost every tree Conjecture (Havet & Thomassé, 2002) If T has ℓ_T leaves and $v(G) \ge n + \ell_T - 1$ then $T \subseteq G$. $1^{\rm st}$ moment + Cayley γ by Moon γ Lemma Typical tree T has $\approx n/e$ leaves and $\Delta(T) < \log n$.

Mycroft, N., 2018 For all $\varepsilon, C > 0$ and large n $\Delta(T) \le (\log n)^C \implies r(T) \le (1+\varepsilon)n. \qquad v(T) = n$ $\implies (1+\varepsilon)n$ vertices suffice to embed almost every tree Conjecture (Havet & Thomassé, 2002) If T has ℓ_T leaves and $v(G) \ge n + \ell_T - 1$ then $T \subseteq G$. 1^{st} moment + Cayley γ by Moon γ Lemma Typical tree T has $\approx n/e$ leaves and $\Delta(T) < \log n$.

Havet and Thomassé's conjecture holds for almost every T.

Mycroft, N., 2018

 $\mathcal{T}_n \coloneqq \set{n ext{-vertex trees}} \mathcal{G}_n \coloneqq \set{n ext{-vertex tournaments}}$

oriented, labelled labelled

 $\mathcal{T}_n \coloneqq \{ n \text{-vertex trees} \}$ oriented, labelled $\mathcal{G}_n \coloneqq \{ n \text{-vertex tournaments} \}$ labelled

Bender, Wormald, 1988

There exists

$$\mathcal{T} \subseteq \mathcal{T}_n \quad \text{with} \quad |\mathcal{T}| = (1 - o(1))|\mathcal{T}_n| \quad \text{and} \\ \mathcal{G} \subseteq \mathcal{G}_n \quad \text{with} \quad |\mathcal{G}| = (1 - o(1))|\mathcal{G}_n| \quad \text{s.t.} \\ T \in \mathcal{T}, \ G \in \mathcal{G} \implies T \subseteq G.$$

 $\mathcal{T}_n \coloneqq \{ n \text{-vertex trees} \}$ oriented, labelled $\mathcal{G}_n \coloneqq \{ n \text{-vertex tournaments} \}$ labelled

Bender, Wormald, 1988

here exists

$$\mathcal{T} \subseteq \mathcal{T}_n$$
 with $|\mathcal{T}| = (1 - o(1)) |\mathcal{T}_n|$ and
 $\mathcal{G} \subseteq \mathcal{G}_n$ with $|\mathcal{G}| = (1 - o(1)) |\mathcal{G}_n|$ s.t.
 $T \in \mathcal{T}, \ G \in \mathcal{G} \implies T \subseteq G.$

T

 $\begin{array}{ll} & \text{Conjecture (Bender, Wormald, 1988)} \\ & \text{There exists } \mathcal{T} \subseteq \mathcal{T}_n \quad \text{with} \quad |\mathcal{T}| = (1 - o(1)) |\mathcal{T}_n| \quad \text{s.t.} \\ & T \in \mathcal{T} \implies T \text{ unavoidable} \end{array}$

 $\mathcal{T}_n \coloneqq \{ n \text{-vertex trees} \}$ oriented, labelled $\mathcal{G}_n \coloneqq \{ n \text{-vertex tournaments} \}$ labelled

Bender, Wormald, 1988

There exists

$$\mathcal{T} \subseteq \mathcal{T}_n$$
 with $|\mathcal{T}| = (1 - o(1)) |\mathcal{T}_n|$ and
 $\mathcal{G} \subseteq \mathcal{G}_n$ with $|\mathcal{G}| = (1 - o(1)) |\mathcal{G}_n|$ s.t.
 $T \in \mathcal{T}, \ G \in \mathcal{G} \implies T \subseteq G.$

 $\begin{array}{l} \text{Conjecture (Bender, Wormald, 1988)} \\ \text{There exists } \mathcal{T} \subseteq \mathcal{T}_n \quad \text{with} \quad |\mathcal{T}| = (1 - o(1)) |\mathcal{T}_n| \quad \text{s.t.} \\ \\ T \in \mathcal{T} \implies T \text{ unavoidable} \end{array}$

Mycroft, N., 2018

Indeed!

Almost all trees are unavoidable!

Mycroft, N., 2018

There exists $\mathcal{T}'_n \subseteq \mathcal{T}_n$ of size $(1 - o(1))|\mathcal{T}_n|$ s.t. each $G \in \mathcal{G}_n$ contains all $T \in \mathcal{T}'_n$.

A sufficient condition which is typical !

Almost all trees are unavoidable!

Mycroft, N., 2018

There exists $\mathcal{T}'_n \subseteq \mathcal{T}_n$ of size $(1 - o(1))|\mathcal{T}_n|$ s.t. each $G \in \mathcal{G}_n$ contains all $T \in \mathcal{T}'_n$.

A sufficient condition which is typical ! Ingredients:

Mycroft, N., 2018

 $\Delta(T) \leq \mathsf{polylog}(n) \quad \Longrightarrow \quad (1+\varepsilon)n$

Kühn, Mycroft & Osthus, 2011

Structure of large tournaments + randomized embedding algorithm

Nice trees

Nice trees

 α -nice

 $\forall \alpha > 0 \text{, oriented tree } T \text{ on } n \text{ vertices is } \alpha \text{-nice if}$

- αn pendant in-stars with an outleaf
- αn pendant out-stars with in- and outleaf

Nice trees

 $\alpha\text{-nice}$

 $\forall \alpha > 0,$ oriented tree T on n vertices is $\alpha\text{-nice}$ if

- αn pendant in-stars with an outleaf
- αn pendant out-stars with in- and outleaf

Mycroft, N., 2018

For all $\alpha, C > 0$ and large nT is α -nice and $\Delta(T) \leq (\log n)^C \implies T$ is unavoidable. Nice trees are nice, and ALSO typical

Mycroft, N., 2018

For all $\alpha, C > 0$ and large nT is α -nice and $\Delta(T) \leq (\log n)^C \implies T$ is unavoidable. Nice trees are nice, and ALSO typical

Mycroft, N., 2018

For all $\alpha, C > 0$ and large nT is α -nice and $\Delta(T) \leq (\log n)^C \implies T$ is unavoidable.

Moon, 1970 Almost all *n*-vertex trees have max. degree $(1 \pm o(1)) \left(\frac{\log n}{\log \log n}\right)$.

Basic lemma

Almost all *n*-vertex trees are $\frac{1}{250}$ -nice.

Nice trees are nice, and ALSO typical

Mycroft, N., 2018

For all $\alpha, C > 0$ and large nT is α -nice and $\Delta(T) \leq (\log n)^C \implies T$ is unavoidable.

Moon, 1970 Almost all *n*-vertex trees have max. degree $(1 \pm o(1)) \left(\frac{\log n}{\log \log n}\right)$.

Basic lemma

Almost all *n*-vertex trees are $\frac{1}{250}$ -nice.

 \implies Almost all trees are unavoidable.

Komlós, Sárközy, Szemerédi, 1995

Komlós, Sárközy, Szemerédi, 1995

 $\label{eq:alpha} {\rm For \ all} \quad \Delta>0, \quad \varepsilon>0, \quad {\rm and} \quad {\rm large} \ n,$

Komlós, Sárközy, Szemerédi, 1995

Komlós, Sárközy, Szemerédi, 1995

Komlós, Sárközy, Szemerédi, 1995

 $\begin{array}{lll} \mbox{For all} & \Delta>0, & \varepsilon>0, & \mbox{and} & \mbox{large }n, \\ & \mbox{tree }T, & \mbox{graph }G & \mbox{s.t.} & n=v(T)=v(G) \\ & \mbox{if} & \Delta(T)\leq\Delta & \mbox{and} & \delta(G)\geq(1/2+\varepsilon)n \end{array}$

Komlós, Sárközy, Szemerédi, 1995

 $\begin{array}{lll} \mbox{For all} & \Delta>0, & \varepsilon>0, & \mbox{and} & \mbox{large }n, \\ & \mbox{tree }T, & \mbox{graph }G & \mbox{s.t.} & n=v(T)=v(G) \\ & \mbox{if} & \Delta(T)\leq\Delta & \mbox{and} & \delta(G)\geq(1/2+\varepsilon)n \\ & \mbox{then} & T\subseteq G. \end{array}$

Komlós, Sárközy, Szemerédi, 1995

 $\begin{array}{lll} \mbox{For all} & \Delta > 0, & \varepsilon > 0, \mbox{ and } \mbox{large } n, \\ & \mbox{tree } T, \mbox{ graph } G \mbox{ s.t. } & n = v(T) = v(G) \\ & \mbox{if } & \Delta(T) \leq \Delta \mbox{ and } & \delta(G) \geq (1/2 + \varepsilon)n \\ & \mbox{then } & T \subseteq G. \end{array}$

Mycroft, N., 2018⁺

 $\begin{array}{lll} \mbox{For all} & \Delta > 0, & \varepsilon > 0, & \mbox{and large }n, & & \\ & & \mbox{oriented tree } T, & \mbox{digraph } G & \mbox{s.t. } & n = v(T) = v(G) & \\ & & \mbox{if } & \Delta(T) \leq \Delta & \mbox{and } & \delta^0(G) \geq (1/2 + \varepsilon)n & \\ & & \mbox{then } & T \subseteq G. & \end{array}$

Komlós, Sárközy, Szemerédi, 1995

Mycroft, N., 2018⁺

 $\begin{array}{lll} \mbox{For all} & \Delta > 0, \quad \varepsilon > 0, \quad \mbox{and} \quad \mbox{large } n, \\ & \mbox{oriented tree} \quad T, \quad \mbox{digraph} \quad G \quad \mbox{s.t.} \quad n = v(T) = v(G) \\ & \mbox{if} \quad \Delta(T) \leq \Delta \quad \mbox{and} \quad \delta^0(G) \geq (1/2 + \varepsilon)n \\ & \mbox{then} \quad T \subseteq G. \end{array}$

Work in progress:

- 1. Let $\Delta(T)$ grow with n
- 2. More general spanning subdigraphs (i.e.: allow some cycles)

Open questions

Q How about other oriented trees?

e.g., few leaves, or outbranchings

- Q Characterise unavoidable trees
- **Q** Orientations of *n*-chromatic graphs (Burr's conjecture)

Conjecture (Burr, 1980)

? If G is a graph, $\chi(G) = 2n - 2$ and T is a tree on n vertices, then every orientation of G contains every orientation of T

Open questions

Q How about other oriented trees?

e.g., few leaves, or outbranchings

- Q Characterise unavoidable trees
- **Q** Orientations of *n*-chromatic graphs (Burr's conjecture)

Conjecture (Burr, 1980) If G is a graph, $\chi(G) = 2n - 2$ and T is a tree on n vertices, then every orientation of G contains every orientation of T

Thanks! Other questions? Please ask!

Quick Reference

Paths and claws

Avoidable trees

Sumner

Bounded degree result

"Unavoidable" conjecture

Result summary

Nice trees are nice — our sufficient condition

• reserve a small set $S \subseteq G$

- $\blacktriangleright \text{ reserve a small set } S \subseteq G$
- form $T' \subseteq T$ by removing a few leaves

- $\blacktriangleright \text{ reserve a small set } S \subseteq G$
- form $T' \subseteq T$ by removing a few leaves
- embed T' to G S (using [MN 18])

- $\blacktriangleright \text{ reserve a small set } S \subseteq G$
- form $T' \subseteq T$ by removing a few leaves
- embed T' to G S (using [MN 18])
- ▶ use S to cover bad vertices

- reserve a small set $S \subseteq G$
- form $T' \subseteq T$ by removing a few leaves
- embed T' to G-S (using [MN 18])
- use S to cover bad vertices
- use perfect matchings to complete the copy of T

- reserve a small set $S \subseteq G$
- form $T' \subseteq T$ by removing a few leaves
- embed T' to G S (using [MN 18])
- use S to cover bad vertices
- use perfect matchings to complete the copy of T

