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Is there a copy of T in G?

tree T

v(T ) = n

tournament G

v(G) ≥ n

r(T )

r(T ) := minimum k s.t. v(G) ≥ k =⇒ T ⊆ G.

T is unavoidable : T ⊆ G ∀G s.t. v(G) ≥ v(T ).

So n ≤ r(T ) ≤ 2n−1

T in every orientation of Kn ≡ T unavoidable ≡ r(T ) = n
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Proof by picture
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Unavoidable trees — examples

Directed paths ( Rédei ’34 ) · · ·

All large paths ( Thomason ’86 )

All paths, 3 exceptions ( Havet & Thomassé ’98 )

Some claws ( Saks & Sós ’84; Lu ’93; Lu, Wang & Wong ’98 )

· · ·
· · ·

· · ·
· · ·

≤
(3

8 + 1
200

)
n branches
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Avoidable trees, a longstanding conjecture

Conjecture (Sumner, 1971)
? r(T ) ≤ 2n− 2 for all T . v(T ) = n

publ. who tournament size
1982 Chung n1+o(n)

1983 Wormald n log2(2n/e)
1991 Häggkvist & Thomason 12n and also

(
4 + o(n)

)
n

2002 Havet 38n/5− 6
2000 Havet & Thomassé (7n− 5)/2
2004 El Sahili 3n− 3
2011 Kühn, Mycroft & Osthus 2n− 2 for large n

Conjecture (Havet & Thomassé, 2002)
? T has `T leaves =⇒ r(T ) ≤ n+ `T − 1. v(T ) = n
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Typical behaviour (1) — an approximate result
Kühn, Mycroft & Osthus, 2011

For all ε,∆ > 0 and large n

∆(T ) ≤ ∆ =⇒ r(T ) ≤ (1 + ε)n. v(T ) = n

Mycroft, N., 2018
For all ε, C > 0 and large n

∆(T ) ≤ (logn)C =⇒ r(T ) ≤ (1 + ε)n. v(T ) = n

=⇒ (1 + ε)n vertices suffice to embed almost every tree

Conjecture (Havet & Thomassé, 2002)
? If T has `T leaves and v(G) ≥ n+ `T − 1 then T ⊆ G.

Lemma
Typical tree T has ≈ n/e leaves and ∆(T ) < logn .

Mycroft, N., 2018
Havet and Thomassé’s conjecture holds for almost every T .

by Moon1st moment + Cayley
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Typical behaviour (2) — a probabilistic result
Tn := {n-vertex trees } oriented, labelled
Gn := {n-vertex tournaments } labelled

Bender, Wormald, 1988
There exists
T ⊆ Tn with |T | =

(
1− o(1)

)∣∣Tn

∣∣ and
G ⊆ Gn with |G| =

(
1− o(1)

)∣∣Gn

∣∣ s.t.

T ∈ T , G ∈ G =⇒ T ⊆ G.

Conjecture (Bender, Wormald, 1988)

? There exists T ⊆ Tn with |T | =
(
1− o(1)

)∣∣Tn

∣∣ s.t.

T ∈ T =⇒ T unavoidable

Mycroft, N., 2018
Indeed!
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Almost all trees are unavoidable!

Mycroft, N., 2018
There exists T ′n ⊆ Tn of size

(
1− o(1)

)∣∣Tn

∣∣ s.t.
each G ∈ Gn contains all T ∈ T ′n .

A sufficient condition which is typical !

Ingredients:

Mycroft, N., 2018
∆(T ) ≤ polylog(n) =⇒ (1 + ε)n

Kühn, Mycroft & Osthus, 2011
Structure of large tournaments
+ randomized embedding algorithm



9

Almost all trees are unavoidable!

Mycroft, N., 2018
There exists T ′n ⊆ Tn of size

(
1− o(1)

)∣∣Tn

∣∣ s.t.
each G ∈ Gn contains all T ∈ T ′n .

A sufficient condition which is typical !

Ingredients:

Mycroft, N., 2018
∆(T ) ≤ polylog(n) =⇒ (1 + ε)n

Kühn, Mycroft & Osthus, 2011
Structure of large tournaments
+ randomized embedding algorithm



10

Nice trees

···

···

···

···

···

···· · · · · ·

pendant

�

(out-star)
in-leaf

↗
out-leaf

↗

α-nice
∀α > 0, oriented tree T on n vertices is α-nice if

I αn pendant in-stars with an outleaf
I αn pendant out-stars with in- and outleaf

Mycroft, N., 2018
For all α,C > 0 and large n

T is α-nice and ∆(T ) ≤ (logn)C =⇒ T is unavoidable.
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Nice trees are nice, and ALSO typical

Mycroft, N., 2018
For all α,C > 0 and large n

T is α-nice and ∆(T ) ≤ (logn)C =⇒ T is unavoidable.

Moon, 1970

Almost all n-vertex trees have max. degree (1± o(1))
( logn

log logn

)
.

Basic lemma
Almost all n-vertex trees are 1

250 -nice.

=⇒ Almost all trees are unavoidable.
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Beyond tournaments — Dirac-type results

Komlós, Sárközy, Szemerédi, 1995

For all ∆ > 0, ε > 0, and large n,
tree T , graph G s.t. n = v(T ) = v(G)

if ∆(T ) ≤ ∆ and δ(G) ≥ (1/2 + ε)n
then T ⊆ G.

Mycroft, N., 2018+

For all ∆ > 0, ε > 0, and large n,
oriented tree T , digraph G s.t. n = v(T ) = v(G)

if ∆(T ) ≤ ∆ and δ0(G) ≥ (1/2 + ε)n
then T ⊆ G.

Work in progress:
1. Let ∆(T ) grow with n
2. More general spanning subdigraphs (i.e.: allow some cycles)
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Open questions
Q How about other oriented trees?

e.g., few leaves, or outbranchings

Q Characterise unavoidable trees

Q Orientations of n-chromatic graphs (Burr’s conjecture)

Conjecture (Burr, 1980)

? If G is a graph, χ(G) = 2n− 2 and T is a tree on n vertices,
then every orientation of G contains every orientation of T

Thanks! Other questions? Please ask!
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Quick Reference

Paths and claws

Avoidable trees

Sumner

Bounded degree result

“Unavoidable” conjecture

Result summary

Nice trees are nice — our sufficient condition
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Embedding T to G (general scheme)

I reserve a small set S ⊆ G
I form T ′ ⊆ T by removing a few leaves
I embed T ′ to G− S (using [MN 18] )
I use S to cover bad vertices
I use perfect matchings to complete the copy of T

T G

bad
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