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Tournaments & Oriented Trees

Oriented tree T on n vertices, tournament G

Is there a copy of T in G? |V (T )| = n ≤ |V (G)|

Definition (unavoidable trees)
A (oriented) tree T with |V (T )| = n is unavoidable if every
tournament on n vertices contains a copy of T .
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Unavoidable trees — examples

Directed paths ( Rédei 1934 ) · · ·

All large paths ( Thomason ’86 )

All paths, 3 exceptions ( Havet & Thomassé ’98 )

Some claws ( Saks & Sós 84; Lu ’93; Lu, Wang & Wong ’98 )

· · ·
· · ·

· · ·
· · ·

≤
(3

8 +
1

200

)
n branches
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Examples — non-unavoidable trees

· · ·

n − 2

is not in n − 3

And

5 vertices

is not in

3-regular3-regular: 2 · 5− 3 vertices
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Conjecture and proofs

Sumner’s conjecture (1971)
Every oriented tree on n vertices is contained in every tournament
on 2n − 2 vertices.

publ. who tournament size
1982 Chung n1+o(n)

1983 Wormald n log2(2n/e)

1991 Häggkvist & Thomason 12n and also
(
4 + o(n)

)
n

2002 Havet 38n/5− 6
2000 Havet & Thomassé (7n − 5)/2
2004 El Sahili 3n − 3
2011 Kühn, Mycroft & Osthus 2n − 2 for large n
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Embedding bounded-degree trees

Theorem (Kühn, Mycroft & Osthus, 2011)
For all α,∆ > 0 there exists n0 such that if n > n0,
each tournament on (1 + α)n vertices
contains any tree T on n vertices with ∆(T ) ≤ ∆.
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When can we do better?

Question (Alon)
Which trees are unavoidable?

Paths, some claws

... ...

...

...

≤
(3

8 +
1

200

)
n branches

, this tree:

7 vertices
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A family of examples – alternating trees

Alternating trees are rooted trees B`

B1:
r(B1)

Bi+1: r(Bi) r(Bi)

r(Bi+1)

Bi Bi

B1, B2 and B3 are unavoidable:

Theorem (Mycroft, N. 2016+)
For ` large enough, B` is unavoidable.
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More examples – balanced q-ary trees

q-ary tree are rooted trees Bq
` q ∈ N

Bq
1 :

r(Bq
1)

Bq
i+1:

q copies

· · ·r(Bq
i ) r(Bq

i ) r(Bq
i )

r(Bq
i+1)

Bq
i Bq

i Bq
i

Theorem (Mycroft, N. 2016+)
For each q ∈ N, if ` large enough then
almost all orientations of Bq

` are unavoidable.

The method works a much wider class of trees.
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Some definitions and a property of B`

B2 is a cherry:

centre

in-leaf out-leaf

B` has many pendant cherries

out cherry in cherry
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Characterization of large tournaments
Theorem (Kühn, Mycroft, Osthus 2011)
Large tournaments contain either a large strong cut or a large
robust expander of linear minimum semidegree.

Theorem (Kühn, Osthus, Treglown 2010)
A large robust expander of linear minimum semidegree contains a
regular cycle of cluster tournaments.

L R

bad

or

robust
expander
of linear

semidegree



11

Characterization of large tournaments
Theorem (Kühn, Mycroft, Osthus 2011)
Large tournaments contain either a large strong cut or a large
robust expander of linear minimum semidegree.

Theorem (Kühn, Osthus, Treglown 2010)
A large robust expander of linear minimum semidegree contains a
regular cycle of cluster tournaments.

L R

bad

or

robust
expander
of linear

semidegree



11

Characterization of large tournaments
Theorem (Kühn, Mycroft, Osthus 2011)
Large tournaments contain either a large strong cut or a large
robust expander of linear minimum semidegree.

Theorem (Kühn, Osthus, Treglown 2010)
A large robust expander of linear minimum semidegree contains a
regular cycle of cluster tournaments.

L R

bad

or

robust
expander
of linear

semidegree



11

Characterization of large tournaments
Theorem (Kühn, Mycroft, Osthus 2011)
Large tournaments contain either a large strong cut or a large
robust expander of linear minimum semidegree.

Theorem (Kühn, Osthus, Treglown 2010)
A large robust expander of linear minimum semidegree contains a
regular cycle of cluster tournaments.

L R

bad

or

robust
expander
of linear

semidegree



12

Embedding B` to G (general scheme)

I reserve a small set S ⊆ G
I form T ′ ⊆ B` removing a few leaves
I embed T ′ to G − S ( uses [KMO ’11] )
I use S to cover tricky vertices
I use perfect matchings to complete the copy of B`

B` G
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Beyond binary trees

Theorem (R. Mycroft, N., 2016+)
For all q > 0 there exists n0 such that if n > n0
almost all orientations of every “roughly balanced” q-ary tree on n
vertices are unavoidable.

Work in progress
For all ∆ > 0 there exists n0 such that for n > n0 almost all
labelled trees T on n vertices with ∆(T ) ≤ ∆ are unavoidable.

I most labelled undirected trees have pendant cherries
I most orientations of a labelled tree have good cherry

orientations

Questions
How about unbounded degree? (hopefully soon!)
How about the binary arborescence?
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Quick Reference


