Mini course : Part 3 "Solenoids, monodromy and horseshoes"

Sylvain Bonnot (IME-USP)

(Floripadynsys 2013)

Complex Hénon mappings in \mathbb{C}^2

- **Basic properties:** the map $\binom{x}{y} \mapsto \binom{x^2+c-ay}{x}$ has inverse $\binom{x}{y} \mapsto \binom{y}{(1/a)(y^2+c-x)}$ and constant jacobian equal to *a*.
- Crude picture of dynamics:

Filled Julia sets

$$K^+ := \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{C}^2 \text{ with bounded forward orbit} \right\}$$

- Escaping set: $U^+ := \mathbb{C}^2 K^+$. We have also $U^+ = \bigcup_{n \ge 0} H^{-n}(V^+)$.
- Julia sets $J^+ = \partial K^+$, also $J^- = \partial K^-$. We can define $K = K^+ \cap K^-$.
- Basins of attraction $W^s(p)$ of fixed points.
- **Stable and unstable manifolds of saddle points** *p*: they are isomorphic to C.
- What is the topology of these sets? Are they connected?
- (partial) answer: K^{\pm} is always connected.

Examples of horizontal slices of non-escaping sets

Picture Stable manifold, real slice

Self-similarity in the unstable manifolds

• **The parametrization:** Pictures of the stable manifolds look self-simila, here is why:

Theorem (Hubbard)

Let p be a saddle fixed point for H and assume that the eigenvalues of DH(p) are $|\lambda| > 1 > |\mu|$ *. Let v be an eigenvector for \lambda. The limit*

$$\Phi(z) = \lim_{m \to \infty} H^m \left(p + \frac{z}{\lambda^m v} \right)$$

exists and give an injective immersion of $\mathbb C$ onto the unstable manifold $W^u(p)$ that satisfies

$$\Phi(\lambda z) = H(\Phi(z))$$

Examples of unstable manifolds of saddle points

Focussing on the escaping sets

• Equivalent of a Böttcher coordinate:

Theorem (Hubbard)

There exists an analytic map $\phi^+ : V^+ \to \mathbb{C}$ *satisfying the functional equation:*

$$\phi^+ \circ H = (\phi^+)^2$$

• External rays and equipotentials: (second pic made by R.Oliva)

The analogue of the disk to be pinched

• Solenoidal maps: self-map of solid torus $T_0 = S^1 \times \mathbb{D}$ given by $\sigma : (\zeta, z) \mapsto (\zeta^2, \frac{1}{2}\zeta + \epsilon_{\overline{\zeta}}^z).$

- Key fact: σ can be extended to the 3-sphere $S^3 = T_0 \cup T_1$.
- Invariant solenoids: we define Σ^{\pm}

$$\Sigma^+ := \bigcap_{n \ge 0} \sigma^n(T_0)$$

• Cone over solenoid: Cone(Σ^- as $\{(r, \theta) \in \mathbb{R}^4 | r \ge 1, \theta \in \Sigma^-\}$.

Topological model for $c \in C$ and a small

• Let us set $Y = \mathbb{R}^4 - Cone(\Sigma^-)$. And consider the map $g: Y \to Y$ defined by:

$$g(r,\theta) = (r^2, \sigma(\theta)).$$

• Let
$$H_{a,c}: {\binom{x}{y}} \to {\binom{x^2+c-ay}{x}}.$$

Theorem (B.)

For any $c \in C$, there exists $\epsilon > 0$ such that: for all $0 < |a| < \epsilon$ there is a homeomorphism

$$h: \mathbb{C}^2 \to Y$$

which conjugates $H_{a,c}$ to g.

,

- The analogue of the closed disk, to be pinched: this analogue is the set *K*⁺ (topologically, a closed 4-ball, minus a solenoid in the boundary 3-sphere).
- Where to pinch? In the filled Julia set *K*⁺, the pinching occur along stable manifolds of saddle cycles. Observe that those are dense in *J*⁺.

"Truly 2-dimensional" examples

Claim (Model for J^+)

In the solid torus T, pick an identification between the disks $D_{3/7}$ and $D_{4/7}$ that preserves the dynamics. In $S^3 - \Sigma^-$, consider the following equivalence relation : $x \sim y$ if and only if there exists $N \in \mathbb{N}$ such that $\sigma_0^{\circ N}(x)$ belongs to one of the disks $D_{3/7}$, $D_{4/7}$, $\sigma_0^{\circ N}(y)$ belongs to the other disk and both points are identified in these disks. The space $(S^3 - \Sigma^-) / \sim$ together with the solenoidal map induced on it is a model for J^+ together with the induced action of the Hénon map H.

One dimensional dynamics and automorphisms of the shift

• Fact: $c \notin \mathcal{M} \Rightarrow K_c$ is a Cantor set. Idea of the proof:

• Circling around *M*: makes the Cantor sets dance...

Shift and quadratic dynamics

• coding the orbit of $z \in J_c = K_c$: Let *D* be a large disk with the critical value *c* on the boundary circle. Label D_0 and D_1 the 2 components of $P_c^{-1}(D)$.

• Itinerary of $z \in J_c$: $I(z) := (s_0, s_1, ...)$ where $s_j = 0$ if $P_c^j(z) \in D_0$ (and 1 otherwise).

Proposition

The "itinerary map" $I : J_c \to \Sigma_2$ *is a homeomorphism and the restriction of* P_c *to* J_c *is conjugated to the shift:* $\sigma \circ I = I \circ P_c$

Theorem (Blanchard-Devaney-Keen)

Suppose θ is the automorphism of the 2-shift induced by the monodromy associated to a closed curve which winds once around \mathcal{M} in θ interchanges 0 's and 1's in Σ_2 .

• "Shift locus": deg *d* polynomials with all crit. points going to ∞

Theorem

If $f \in S_d$ then K(f) is homeomorphic to a Cantor set, and $f_{|K(f)}$ is topologically conjugate to the one-sided shift map on d symbols.

Theorem (Blanchard-Devaney-Keen)

The homomorphism

$$\pi_1(\mathcal{S}_d, f_0) \to Aut(\sigma, \Sigma_d)$$

is surjective in every degree $d \ge 2$.

Automorphisms of the full 2-shift

Aut(Σ₂[±]) is huge: it contains a countable sum of copies of Z, and even better:

Proposition

 $Aut(\Sigma_2^{\pm})$ contains every finite group.

- **Proof**: Cayley's theorem \Rightarrow it is enough to show $S_n \subset Aut(\Sigma_2^{\pm})$. Given *n*, find *r* large enough so that there exists at least *n* distinct blocks $B_1, \ldots B_n$ of length *r* starting and finishing with 1. Define an automorphism ϕ by: whenever it sees one block with a left and right padding of 0s, it permutes the B_n .
- **Open questions :** is $Aut(\Sigma_2^{\pm}) \simeq Aut(\Sigma_3^{\pm})$?

Hénon maps: horseshoes and shift locus

• Real horseshoe in \mathbb{R}^2 :

Proposition

 $K^+ = B \cap f^{-1}(B) \cap f^{-2}(B) \dots$ is Cantor set $\times [0, 1]$, so is K^- and $K = K \cap K^-$ is a Cantor set.

Hénon maps : horseshoes and horseshoe locus

• (Real) horseshoe realized by a Hénon map: take $a \in \mathbb{R}$ small, $c \in \mathbb{R}$ very negative:

Definition

The complex horseshoe locus $\mathcal{H}^{\mathbb{C}}$ is the set of parameters $(a, c) \in \mathbb{C}^2$ for which the restriction of $H_{a,c}$ is hyperbolic and topologically conjugate to the full 2-shift.

Horseshoe and symbolic dynamics

• Real horseshoe in \mathbb{R}^2 :

Proposition (Hubbard-ObersteVorth)

A Hénon map satisfies the horseshoe condition for some R > 0 if

 $|c| > 2(1+|a|)^2).$

Horseshoe locus: work of Z. Arai

• **Hyperbolicity locus**: it contains a lot more than just the "shift locus":

Examples of monodromies: work of Hubbard and Lipa

• **Example**: take a slice a = 0.3 in the parameter space:

Claim: this loop should correspond to the automorphism $AAB \star BABAA$.

Open question

Show that the loops drawn actually stay entirely within the Horseshoe locus.

• **The main conjecture:** obtain the analogue of the Blanchard-Devaney-Keen result:

Conjecture (Hubbard)

The induced monodromy group of the horseshoe locus together with the shift generate $Aut(\Sigma_2^{\pm})$.