Mini course : Part 3

"Solenoids, monodromy and horseshoes"

Sylvain Bonnot (IME-USP)

(Floripadynsys 2013)

Complex Hénon mappings in \mathbb{C}^{2}

- Basic properties: the map $\binom{x}{y} \mapsto\binom{x^{2}+c-a y}{x}$ has inverse $\binom{x}{y} \mapsto\binom{y}{(1 / a)\left(y^{2}+c-x\right)}$ and constant jacobian equal to a.
- Crude picture of dynamics:

Basic invariant sets

- Filled Julia sets

$$
K^{+}:=\left\{\binom{x}{y} \in \mathbb{C}^{2} \text { with bounded forward orbit }\right\}
$$

- Escaping set: $U^{+}:=\mathbb{C}^{2}-K^{+}$. We have also $U^{+}=\bigcup_{n \geq 0} H^{-n}\left(V^{+}\right)$.
- Julia sets $J^{+}=\partial K^{+}$, also $J^{-}=\partial K^{-}$. We can define $K=K^{+} \cap K^{-}$.
- Basins of attraction $W^{s}(p)$ of fixed points.
- Stable and unstable manifolds of saddle points p : they are isomorphic to \mathbb{C}.
- What is the topology of these sets? Are they connected?
- (partial) answer: $K^{ \pm}$is always connected.

Examples of horizontal slices of non-escaping sets

Picture Stable manifold, real slice

Self-similarity in the unstable manifolds

- The parametrization: Pictures of the stable manifolds look self-simila, here is why:

Theorem (Hubbard)

Let p be a saddle fixed point for H and assume that the eigenvalues of $\mathrm{DH}(p)$ are $|\lambda|>1>|\mu|$. Let v be an eigenvector for λ. The limit

$$
\Phi(z)=\lim _{m \rightarrow \infty} H^{m}\left(p+\frac{z}{\lambda^{m} v}\right)
$$

exists and give an injective immersion of \mathbb{C} onto the unstable manifold $W^{u}(p)$ that satisfies

$$
\Phi(\lambda z)=H(\Phi(z))
$$

Examples of unstable manifolds of saddle points

Focussing on the escaping sets

- Equivalent of a Böttcher coordinate:

Theorem (Hubbard)

There exists an analytic map $\phi^{+}: V^{+} \rightarrow \mathbb{C}$ satisfying the functional equation:

$$
\phi^{+} \circ H=\left(\phi^{+}\right)^{2}
$$

- External rays and equipotentials: (second pic made by R.Oliva)

The analogue of the disk to be pinched

- Solenoidal maps: self-map of solid torus $T_{0}=S^{1} \times \mathbb{D}$ given by

$$
\sigma:(\zeta, z) \mapsto\left(\zeta^{2}, \frac{1}{2} \zeta+\epsilon \frac{z}{\zeta}\right) .
$$

- Key fact: σ can be extended to the 3 -sphere $S^{3}=T_{0} \cup T_{1}$.
- Invariant solenoids: we define $\Sigma^{ \pm}$

$$
\Sigma^{+}:=\bigcap_{n \geq 0} \sigma^{n}\left(T_{0}\right)
$$

- Cone over solenoid: Cone $\left(\Sigma^{-}\right.$as $\left\{(r, \theta) \in \mathbb{R}^{4} \mid r \geq 1, \theta \in \Sigma^{-}\right\}$.

Topological model for $c \in \mathcal{C}$ and a small

- Let us set $Y=\mathbb{R}^{4}-\operatorname{Cone}\left(\Sigma^{-}\right)$. And consider the map $g: Y \rightarrow Y$ defined by:

$$
g(r, \theta)=\left(r^{2}, \sigma(\theta)\right)
$$

- Let $H_{a, c}:\binom{x}{y} \rightarrow\binom{x^{2}+c-a y}{x}$.

Theorem (B.)

For any $c \in \mathcal{C}$, there exists $\epsilon>0$ such that: for all $0<|a|<\epsilon$ there is a homeomorphism

$$
h: \mathbb{C}^{2} \rightarrow Y
$$

which conjugates $H_{a, c}$ to g.

Picture of model

What we have done so far

- The analogue of the closed disk, to be pinched: this analogue is the set K^{+}(topologically, a closed 4-ball, minus a solenoid in the boundary 3-sphere).
- Where to pinch? In the filled Julia set K^{+}, the pinching occur along stable manifolds of saddle cycles. Observe that those are dense in J^{+}.

"Truly 2-dimensional" examples

What could be done

Claim (Model for J^{+})

In the solid torus T, pick an identification between the disks $D_{3 / 7}$ and $D_{4 / 7}$ that preserves the dynamics. In $S^{3}-\Sigma^{-}$, consider the following equivalence relation : $x \sim y$ if and only if there exists $N \in \mathbb{N}$ such that $\sigma_{0}^{\circ N}(x)$ belongs to one of the disks $D_{3 / 7}, D_{4 / 7}, \sigma_{0}^{\circ N}(y)$ belongs to the other disk and both points are identified in these disks. The space $\left(S^{3}-\Sigma^{-}\right) / \sim$ together with the solenoidal map induced on it is a model for J^{+}together with the induced action of the Hénon map H.

One dimensional dynamics and automorphisms of the shift

- Fact: $c \notin \mathcal{M} \Rightarrow K_{c}$ is a Cantor set. Idea of the proof:

- Circling around \mathcal{M} : makes the Cantor sets dance...

Shift and quadratic dynamics

- coding the orbit of $z \in J_{c}=K_{c}$: Let D be a large disk with the critical value c on the boundary circle. Label D_{0} and D_{1} the 2 components of $P_{c}^{-1}(D)$.

- Itinerary of $z \in J_{c}: I(z):=\left(s_{0}, s_{1}, \ldots\right)$ where $s_{j}=0$ if $P_{c}^{j}(z) \in D_{0}$ (and 1 otherwise).

Proposition

The "itinerary map" $I: J_{c} \rightarrow \Sigma_{2}$ is a homeomorphism and the restriction of P_{c} to J_{c} is conjugated to the shift: $\sigma \circ I=I \circ P_{c}$

Shift and quadratic dynamics II

Theorem (Blanchard-Devaney-Keen)

Suppose θ is the automorphism of the 2-shift induced by the monodromy associated to a closed curve which winds once around \mathcal{M} in θ interchanges 0 's and 1's in Σ_{2}.

- "Shift locus": $\operatorname{deg} d$ polynomials with all crit. points going to ∞

Theorem

If $f \in \mathcal{S}_{d}$ then $K(f)$ is homeomorphic to a Cantor set, and $f_{\mid K(f)}$ is topologically conjugate to the one-sided shift map on d symbols.

Theorem (Blanchard-Devaney-Keen)

The homomorphism

$$
\pi_{1}\left(\mathcal{S}_{d}, f_{0}\right) \rightarrow \operatorname{Aut}\left(\sigma, \Sigma_{d}\right)
$$

is surjective in every degree $d \geq 2$.

Automorphisms of the full 2-shift

- $\operatorname{Aut}\left(\Sigma_{2}^{ \pm}\right)$is huge: it contains a countable sum of copies of \mathbb{Z}, and even better:

Proposition

$\operatorname{Aut}\left(\Sigma_{2}^{ \pm}\right)$contains every finite group.

- Proof: Cayley's theorem \Rightarrow it is enough to show $S_{n} \subset \operatorname{Aut}\left(\Sigma_{2}^{ \pm}\right)$. Given n, find r large enough so that there exists at least n distinct blocks $B_{1}, \ldots B_{n}$ of length r starting and finishing with 1 . Define an automorphism ϕ by: whenever it sees one block with a left and right padding of 0 s , it permutes the B_{n}.
- Open questions : is $\operatorname{Aut}\left(\Sigma_{2}^{ \pm}\right) \simeq \operatorname{Aut}\left(\Sigma_{3}^{ \pm}\right)$?

Hénon maps: horseshoes and shift locus

- Real horseshoe in \mathbb{R}^{2} :

Proposition

$K^{+}=B \cap f^{-1}(B) \cap f^{-2}(B) \ldots$ is Cantor set $\times[0,1]$, so is K^{-}and
$K=K \cap K^{-}$is a Cantor set.

Hénon maps : horseshoes and horseshoe locus

- (Real) horseshoe realized by a Hénon map: take $a \in \mathbb{R}$ small, $c \in \mathbb{R}$ very negative:

Definition

The complex horseshoe locus $\mathcal{H}^{\mathbb{C}}$ is the set of parameters $(a, c) \in \mathbb{C}^{2}$ for which the restriction of $H_{a, c}$ is hyperbolic and topologically conjugate to the full 2-shift.

Horseshoe and symbolic dynamics

- Real horseshoe in \mathbb{R}^{2} :

Proposition (Hubbard-ObersteVorth)
A Hénon map satisfies the horseshoe condition for some $R>0$ if

$$
\left.|c|>2(1+|a|)^{2}\right) .
$$

Horseshoe locus: work of Z. Arai

- Hyperbolicity locus: it contains a lot more than just the "shift locus":

Examples of monodromies: work of Hubbard and Lipa

- Example: take a slice $a=0.3$ in the parameter space:

Claim: this loop should correspond to the automorphism $A A B \star B A B A A$.

Monodromy: conjectures

Open question

Show that the loops drawn actually stay entirely within the Horseshoe locus.

- The main conjecture: obtain the analogue of the Blanchard-Devaney-Keen result:

Conjecture (Hubbard)

The induced monodromy group of the horseshoe locus together with the shift generate $\operatorname{Aut}\left(\Sigma_{2}^{ \pm}\right)$.

