Topological models in holomorphic dynamics

Sylvain Bonnot (IME-USP)

Workshop on Dynamics, Numeration and Tilings 2013

Summary from last time

Describe the topology of some "nice" subsets $K \subset \mathbb{C}$: Here "nice" means:

- K is compact,
- $\mathbb{C}-K$ is connected,
- K is connected,
- K is locally connected.

How to do it?

- Use Uniformization theorem: $\hat{\mathbb{C}}-K$ is a topological disk $\Rightarrow \exists$ biholom. $\psi: \mathbb{C}-\overline{\mathbb{D}} \rightarrow \mathbb{C}-K$,
- Then: "locally connected" $\Rightarrow \psi$ extends continuously (not necess. 1 to 1 !) to a map $\gamma: S^{1} \rightarrow \partial K$.

Summary from last time

Definition

We define on the circle S^{1} an equivalence relation \sim_{K} by $t \sim_{k} t$ iff $\gamma(t)=\gamma(t)$.

Some remarks:

- The equivalence relation has "no crossing" (unlinked),
- Such an equivalence relation (i.e graph closed + unlinked) can only produce loc. connected spaces.

Summary: application to the case of quadratic dynamics

 $P_{c}: z \mapsto z^{2}+c$Main object to study: "Filled Julia set K_{c} " (for a given c)

$$
K_{c}^{+}:=\{z \in \mathbb{C} \mid \text { orbit of } z \text { is bounded }\}
$$

Strong dichotomy: (recall that $\mathcal{M}:=\{c \in \mathbb{C} \mid$ orbit of c is bounded $\}$)

- Case $c \in \mathcal{M}$: then K_{c} is connected (but not necessarily loc. connected),
- Case $c \notin \mathcal{M}$: then K_{c} is totally disconnected, a Cantor set.

Added bonus: for K connected, the biholomorphism between $\mathbb{C}-K$ and $\mathbb{C}-\mathbb{D}$ is given by the Böttcher map (conjugacy with $z \mapsto z^{2}$). Question: parameters c for which K_{c} is locally connected?

Geometric description of the pinching model for $z \mapsto z^{2}-1$

- Extension of the conjugacy to the boundary of the disk: here $\psi:=\phi^{-1}$ has a continuous extension $\mathbb{C}-\mathbb{D}(r) \rightarrow \mathbb{C}-\operatorname{int}(K)$, which induces a continuous map $\gamma: S^{1} \rightarrow \partial K$ (a semi-conjugacy).
- Some necessary conditions:
- "rays cannot cross" \Rightarrow (if $\theta_{1} \sim \theta_{2}$ and $\theta_{3} \sim \theta_{4}$ then the intervals $\left(\theta_{1}, \theta_{2}\right)$ and $\left(\theta_{3}, \theta_{4}\right)$ are disjoint or nested).
- Periodic maps to periodic: the map γ is a semi-conjugacy...
- Consequences: The unique fixed point of the doubling map has to go to a fixed point. The unique 2 -cycle $\{1 / 3,2 / 3\}$ has to go to a 2-cycle (impossible, not in K) or a fixed point.
- Preimages: the other preimage of $\gamma_{1 / 3} \cup \gamma_{2 / 3}$ is $\gamma_{1 / 6} \cup \gamma_{5 / 6}$.
- Further preimages:
$f^{-1}\left(\gamma_{1 / 6} \cup \gamma_{5 / 6}\right)=\gamma_{1 / 12} \cup \gamma_{5 / 12} \cup \gamma_{7 / 12} \cup \gamma_{11 / 12}$. The "non-crossing property" will force the correct pairings.

First few pairings for $z \mapsto z^{2}-1$

Subshift $:\left(e x: 1 / 12=.00(01)^{\infty}=.11(10)^{\infty}\right)$ do $D E\left(E^{\infty}\right)$

More general recipe

Case of periodic critical point: Pick one "root angle" of the component of the interior of K_{c} containing c and split the circle as follows:

Then for any $t \in S^{1}$ define the itinerary $I(t)$ under angle doubling. Equivalence relation: $t \sim t^{\prime}$ if and only if t and t^{\prime} have the same itineraries.

One more application of the external rays: "Yoccoz puzzles"

Douady's Rabbit (pic by A. Chéritat)

Application to the Mandelbrot set itself

Böttcher coordinate: $\phi_{c}(z)$ for $P_{c}: z \mapsto z^{2}+c$.

Theorem (Douady-Hubbard)

(1) The function $\phi_{c}(z)$ is analytic in c and z;
(2) The function $\theta: c \mapsto \phi_{c}(c)$ is well-defined in $\mathrm{C}-\mathcal{M}$;
(3) $\theta: \widehat{\mathbb{C}}-\mathcal{M} \rightarrow \widehat{\mathbb{C}}-\overline{\mathbb{D}}$ is a biholomorphism
(1) \mathcal{M} is connected.

Explicit uniformization of $\widehat{\mathbb{C}}-\mathcal{M}$:

$$
\phi_{c}(c)=c \cdot \prod_{n=0}^{\infty}\left(1+\frac{c}{P_{c}^{n}(c)^{2}}\right)^{\frac{1}{2^{n+1}}}
$$

Question ("MLC conjecture")

The set \mathcal{M} is locally connected?

Pinched disks IV : what is \mathcal{M} for Thurston?

Pinched disks V : description of the lamination associated to \mathcal{M}

Lavaurs Algorithm:

(1) Angles that are 2-periodic under angle doubling map: $\left(\frac{1}{3}, \frac{2}{3}\right)$
(2) Angles that are 3-periodic: $\left(\frac{1}{7}, \frac{2}{7}\right),\left(\frac{3}{7}, \frac{4}{7},\right),\left(\frac{5}{7}, \frac{6}{7}\right)$
(3) Angles that are 4-periodic: $\left(\frac{1}{15}, \frac{2}{15}\right),\left(\frac{3}{15}, \frac{4}{15},\right),\left(\frac{6}{15}, \frac{9}{15}\right), \ldots$
(9) ...

Pinched disks VI : Mandelbrot set

Pinched disks VII : Mandelbrot set (D. Schleicher)

Moving to higher dimensions

(1) Possible dynamical systems: the list is huge. Here are some examples

- Polynomials endomorphisms: $\binom{x}{y} \mapsto\binom{x^{3}+x \cdot y+4}{3 x^{2} y}$
- Analytic self-maps of $\mathbb{P}^{1} \times \mathbb{P}^{1}$, of $\mathbb{P}^{2}(\mathbb{C}), \ldots$
- Polynomial automorphisms: example $\binom{x}{y} \mapsto\binom{P(x)-a y}{x}$ ("Complex Hénon mappings).
- etc...
(2) Polynomial automorphisms of \mathbb{C}^{2} :

Theorem (Friedland-Milnor)

Let $f \in \operatorname{Aut}\left(\mathbb{C}^{2}\right)$. Then either f is conjugated in $\operatorname{Aut}\left(\mathbb{C}^{2}\right)$ to a composition of Hénon maps, or it is conjugated to a product of elementary maps of the type $E\binom{x}{y}=\binom{a x+p(y)}{b y+c}$ where $a b \neq 0$ and p is a polynomial.
(3) Small perturbations of quadratic polynomials.

\mathbb{C} and \mathbb{C}^{2} : they look the same

- Same definitions: analytic functions (as power series), holomorphic functions (are holomorphic separately, in each variable).
- Same kind of theorems example: "bounded holomorphic functions on \mathbb{C}^{2} must be constant".
- Exercise: Prove that the non-escaping set of F intersects any horizontal line $\{x=$ constant $\}$.
- But nothing is straightforward: Find an example of a non constant non open analytic map of \mathbb{C}^{2}.

\mathbb{C} and \mathbb{C}^{2} are different: Fatou-Bieberbach domains

Given $f \in \operatorname{Aut}\left(\mathbb{C}^{2}\right)$ such that $\binom{0}{0}$ is an attracting fixed point:

$$
f\binom{x}{y}=L\binom{x}{y}+h\binom{x}{y}
$$

with

$$
L\binom{x}{y}=\binom{\lambda x}{\mu y} \quad \text { where } 0<|\mu|^{2}<|\lambda|<|\mu|<1
$$

Theorem

Then the basin U of $\mathbf{0}$ is biholomorphic to \mathbb{C}^{2}.

Proof:

- First: prove f is conjugated to L near the origin,
- Then extend this conjugacy by the dynamics: given any $x \in U$, there exists N such that $f^{\circ N}(x)$ is in the domain of definition of ϕ. We can then extend ϕ by the formula

$$
\phi(x)=L^{-N} \phi\left(f^{\circ N}\right) x .
$$

Some horizontal slices $y=$ constant

\mathbb{C} and \mathbb{C}^{2} : they do not look the same...

Attracting fixed points and linearization in dimension 1: Given

$$
f(z)=z(\lambda+O(z)) \quad \text { with } 0<|\lambda|<1
$$

then near 0 we have a conjugacy

$$
\phi \circ f \circ \phi^{-1}(z)=\lambda z .
$$

This means that f is linearizable: it is conjugate to its linear part. Attracting fixed points and linearization in dimension 2: Assume

$$
f\binom{x}{y}=L\binom{x}{y}+h\binom{x}{y}
$$

with

$$
L\binom{x}{y}=\binom{\lambda x}{\mu y} \quad \text { where } 0<|\lambda| \leq|\mu|<1
$$

and $\left|h\binom{x}{y}\right| \leq C\left(|x|^{2}+|y|^{2} \mid\right)$ for some C. Then f is not always
linearizable at the origin: $f\binom{x}{y}=\binom{x / 2}{y / 4+x^{2}}$.

Fatou-Bieberbach domains (continued)

Case when $0<|\mu|^{2}<|\lambda|<|\mu|<1$

$$
\text { Set } \phi_{n}=L^{-n} \circ f^{\circ n},
$$

$$
\text { and then study } \phi_{n+1}-\phi_{n} \text { : }
$$

$$
\phi_{n+1}-\phi_{n}=L^{-(n+1)} \circ h \circ f^{\circ n} .
$$

Choose $\epsilon>0$ so small that $(|\mu|+\epsilon)^{2}<|\lambda|$, and $\rho>0$ so small that there exists C such that

$$
\begin{gathered}
\left|\binom{x}{y}\right|<\rho \Longrightarrow\left|f\binom{x}{y}\right| \leq(|\mu|+\epsilon)\left|\binom{x}{y}\right| \\
\left|h\binom{x}{y}\right| \leq C\left|\binom{x}{y}\right|
\end{gathered}
$$

Then

$$
\begin{aligned}
\left|\phi_{n+1}\binom{x}{y}-\phi_{n}\binom{x}{y}\right| & =\left|L^{-(n+1)} \circ h \circ f^{\circ n}\binom{x}{y}\right| \\
& \leq \frac{1}{|\lambda|^{n+1}} C\left((|\mu|+\epsilon)^{n}\right)^{2}=\frac{C}{|\lambda|}\left(\frac{(|\mu|+\epsilon)^{2}}{|\lambda|}\right)^{n} .
\end{aligned}
$$

Complex Hénon mappings in \mathbb{C}^{2}

- Basic properties: the map $\binom{x}{y} \mapsto\binom{P(x)-a y}{x}$ has inverse $\binom{x}{y} \mapsto\binom{y}{(1 / a)(P(y)-x)}$ and constant jacobian equal to a.
- Crude picture of dynamics:

Basic invariant sets

- Filled Julia sets

$$
K^{+}:=\left\{\binom{x}{y} \in \mathbb{C}^{2} \text { with bounded forward orbit }\right\}
$$

- Escaping set: $U^{+}:=\mathbb{C}^{2}-K^{+}$. We have also $U^{+}=\bigcup_{n \geq 0} H^{-n}\left(V^{+}\right)$.
- Julia sets $J^{+}=\partial K^{+}$, also $J^{-}=\partial K^{-}$. We can define $K=K^{+} \cap K^{-}$.
- Basins of attraction $W^{s}(p)$ of fixed points.
- Stable and unstable manifolds of saddle points p : they are isomorphic to \mathbb{C}.
- What is the topology of these sets? Are they connected?
- (partial) answer: $K^{ \pm}$is always connected.

Theorem (Bedford-Smillie)

- If p is a sink for f and if B is the basin of attraction of p then $\partial B=J^{+}$.
- If p is a saddle point for f then the stable manifold $W^{s}(p)$ is dense in J^{+}.

Examples of horizontal slices of non-escaping sets

Picture Stable manifold, real slice

