Topological models in holomorphic dynamics

Sylvain Bonnot (IME-USP)

Workshop on Dynamics, Numeration and Tilings 2013

Summary from last time

Describe the topology of some "nice" subsets $K \subset \mathbb{C}$ **:** Here "nice" means:

- K is compact,
- $\mathbb{C} K$ is connected,
- *K* is connected,
- *K* is locally connected.

How to do it?

- Use Uniformization theorem: $\hat{\mathbb{C}} K$ is a topological disk $\Rightarrow \exists$ biholom. $\psi : \mathbb{C} \overline{\mathbb{D}} \rightarrow \mathbb{C} K$,
- **Then:** "locally connected" $\Rightarrow \psi$ extends continuously (not necess. 1 to 1!) to a map $\gamma : S^1 \rightarrow \partial K$.

Summary from last time

Definition

We define on the circle S^1 an equivalence relation \sim_K by $t \sim_k t$ iff $\gamma(t) = \gamma(t)$.

Some remarks:

- The equivalence relation has "no crossing" (unlinked),
- Such an equivalence relation (i.e graph closed + unlinked) can only produce loc. connected spaces.

Summary: application to the case of quadratic dynamics $P_c: z \mapsto z^2 + c$

Main object to study: "Filled Julia set *K*_c" (for a given *c*)

$$K_c^+ := \{z \in \mathbb{C} | \text{orbit of } z \text{ is bounded} \}$$

Strong dichotomy: (recall that $\mathcal{M} := \{c \in \mathbb{C} | \text{orbit of } c \text{ is bounded} \}$)

- Case $c \in \mathcal{M}$: then K_c is connected (but not necessarily loc. connected),
- Case $c \notin M$: then K_c is totally disconnected, a Cantor set.

Added bonus: for *K* connected, the biholomorphism between $\mathbb{C} - K$ and $\mathbb{C} - \mathbb{D}$ is given by the Böttcher map (conjugacy with $z \mapsto z^2$). **Question:** parameters *c* for which K_c is locally connected?

Geometric description of the pinching model for $z\mapsto z^2-1$

- Extension of the conjugacy to the boundary of the disk: here $\psi := \phi^{-1}$ has a continuous extension $\mathbb{C} \mathbb{D}(r) \to \mathbb{C} int(K)$, which induces a continuous map $\gamma : S^1 \to \partial K$ (a semi-conjugacy).
- Some necessary conditions:
 - **"rays cannot cross"** \Rightarrow (if $\theta_1 \sim \theta_2$ and $\theta_3 \sim \theta_4$ then the intervals (θ_1, θ_2) and (θ_3, θ_4) are disjoint or nested).
 - **Periodic maps to periodic:** the map *γ* is a semi-conjugacy...
- **Consequences:** The unique fixed point of the doubling map has to go to a fixed point. The unique 2-cycle {1/3,2/3} has to go to a 2-cycle (impossible, not in *K*) or a fixed point.
- **Preimages:** the other preimage of $\gamma_{1/3} \cup \gamma_{2/3}$ is $\gamma_{1/6} \cup \gamma_{5/6}$.
- Further preimages:

 $f^{-1}(\gamma_{1/6} \cup \gamma_{5/6}) = \gamma_{1/12} \cup \gamma_{5/12} \cup \gamma_{7/12} \cup \gamma_{11/12}$. The "non-crossing property" will force the correct pairings.

First few pairings for $z \mapsto z^2 - 1$

Subshift : $(ex : 1/12 = .00(01)^{\infty} = .11(10)^{\infty})$ do $DE(E^{\infty})$

6

Case of periodic critical point: Pick one "root angle" of the component of the interior of K_c containing *c* and split the circle as follows:

Then for any $t \in S^1$ define the itinerary I(t) under *angle doubling*. **Equivalence relation:** $t \sim t'$ if and only if t and t' have the same itineraries.

One more application of the external rays: "Yoccoz puzzles"

Douady's Rabbit (pic by A. Chéritat)

Application to the Mandelbrot set itself

Böttcher coordinate: $\phi_c(z)$ for $P_c: z \mapsto z^2 + c$.

Theorem (Douady-Hubbard)

- The function $\phi_c(z)$ is analytic in c and z;
- **2** The function $\theta : c \mapsto \phi_c(c)$ is well-defined in $\mathbb{C} \mathcal{M}$;
- $\ \, {\color{black} \bullet} \ \, {\color{black} \bullet} \ \, \widehat{\mathbb{C}} \mathcal{M} \rightarrow \widehat{\mathbb{C}} \overline{\mathbb{D}} \ \, \textit{is a biholomorphism}$

 \bigcirc \mathcal{M} is connected.

Explicit uniformization of $\widehat{\mathbb{C}} - \mathcal{M}$:

$$\phi_c(c) = c. \prod_{n=0}^{\infty} \left(1 + \frac{c}{P_c^n(c)^2}\right)^{\frac{1}{2^{n+1}}}$$

Question ("MLC conjecture")

The set \mathcal{M} is locally connected?

Pinched disks IV : what is \mathcal{M} for Thurston?

Pinched disks V : description of the lamination associated to $\ensuremath{\mathcal{M}}$

Lavaurs Algorithm:

- Angles that are 2-periodic under angle doubling map: $(\frac{1}{3}, \frac{2}{3})$
- **2** Angles that are 3-periodic: $(\frac{1}{7}, \frac{2}{7}), (\frac{3}{7}, \frac{4}{7}), (\frac{5}{7}, \frac{6}{7})$
- **3** Angles that are 4-periodic: $(\frac{1}{15}, \frac{2}{15}), (\frac{3}{15}, \frac{4}{15}), (\frac{6}{15}, \frac{9}{15}), \dots$
- **(1**) . . .

Pinched disks VI : Mandelbrot set

Pinched disks VII : Mandelbrot set (D. Schleicher)

Moving to higher dimensions

- **Possible dynamical systems:** the list is huge. Here are some examples
 - Polynomials endomorphisms: $\binom{x}{y} \mapsto \binom{x^3+x.y+4}{3x^2y}$
 - Analytic self-maps of $\mathbb{P}^1 \times \mathbb{P}^1$, of $\mathbb{P}^2(\mathbb{C}), \ldots$
 - Polynomial automorphisms: example $\binom{x}{y} \mapsto \binom{P(x)-ay}{x}$ ("Complex Hénon mappings).
 - etc ...
- **2** Polynomial automorphisms of \mathbb{C}^2 :

Theorem (Friedland-Milnor)

Let $f \in Aut(\mathbb{C}^2)$. Then either f is conjugated in $Aut(\mathbb{C}^2)$ to a composition of Hénon maps, or it is conjugated to a product of elementary maps of the type $E\binom{x}{y} = \binom{ax+p(y)}{by+c}$ where $ab \neq 0$ and p is a polynomial.

Small perturbations of quadratic polynomials.

- Same definitions: analytic functions (as power series), holomorphic functions (are holomorphic separately, in each variable).
- Same kind of theorems example: "bounded holomorphic functions on ℂ² must be constant".
- **Exercise:** Prove that the non-escaping set of *F* intersects any horizontal line {*x* = *constant*}.
- **But nothing is straightforward:** Find an example of a non constant non open analytic map of C².

$\mathbb C$ and $\mathbb C^2$ are different: Fatou-Bieberbach domains

Given $f \in Aut(\mathbb{C}^2)$ such that $\binom{0}{0}$ is an attracting fixed point: $f\binom{x}{y} = L\binom{x}{y} + h\binom{x}{y}$

with

$$L\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} \lambda x\\ \mu y \end{pmatrix}$$
 where $0 < |\mu|^2 < |\lambda| < |\mu| < 1.$

Theorem

Then the basin U *of* **0** *is biholomorphic to* \mathbb{C}^2 *.*

Proof:

- First: prove *f* is conjugated to *L* near the origin,
- Then extend this conjugacy by the dynamics: given any *x* ∈ *U*, there exists *N* such that *f*^{oN}(*x*) is in the domain of definition of *φ*. We can then extend *φ* by the formula

$$\phi(x) = L^{-N}\phi(f^{\circ N})x.$$

Some horizontal slices y = constant

\mathbb{C} and \mathbb{C}^2 : they do not look the same...

Attracting fixed points and linearization in dimension 1: Given

 $f(z) = z(\lambda + O(z)) \quad \text{with } 0 < |\lambda| < 1$

then near 0 we have a conjugacy

$$\phi \circ f \circ \phi^{-1}(z) = \lambda z.$$

This means that *f* is *linearizable*: it is conjugate to its linear part. **Attracting fixed points and linearization in dimension 2:** Assume

$$f\begin{pmatrix}x\\y\end{pmatrix} = L\begin{pmatrix}x\\y\end{pmatrix} + h\begin{pmatrix}x\\y\end{pmatrix}$$

with

$$L\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}\lambda x\\\mu y\end{pmatrix}$$
 where $0 < |\lambda| \le |\mu| < 1$

and $\left| h \begin{pmatrix} x \\ y \end{pmatrix} \right| \le C(|x|^2 + |y|^2|)$ for some *C*. Then *f* is not always

linearizable at the origin: $f\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} x/2\\ y/4 + x^2 \end{pmatrix}$.

Fatou-Bieberbach domains (continued)

Case when $0 < |\mu|^2 < |\lambda| < |\mu| < 1$

Set $\phi_n = L^{-n} \circ f^{\circ n}$, and then study $\phi_{n+1} - \phi_n$:

$$\phi_{n+1}-\phi_n=L^{-(n+1)}\circ h\circ f^{\circ n}.$$

Choose $\epsilon > 0$ so small that $(|\mu| + \epsilon)^2 < |\lambda|$, and $\rho > 0$ so small that there exists *C* such that

$$\left| \begin{pmatrix} x \\ y \end{pmatrix} \right| < \rho \implies \left| f \begin{pmatrix} x \\ y \end{pmatrix} \right| \le \left(|\mu| + \epsilon \right) \left| \begin{pmatrix} x \\ y \end{pmatrix} \right|$$
$$\left| h \begin{pmatrix} x \\ y \end{pmatrix} \right| \le C \left| \begin{pmatrix} x \\ y \end{pmatrix} \right|$$

Then

$$\begin{aligned} \left| \phi_{n+1} \begin{pmatrix} x \\ y \end{pmatrix} - \phi_n \begin{pmatrix} x \\ y \end{pmatrix} \right| &= \left| L^{-(n+1)} \circ h \circ f^{\circ n} \begin{pmatrix} x \\ y \end{pmatrix} \right| \\ &\leq \frac{1}{|\lambda|^{n+1}} C \Big((|\mu| + \epsilon)^n \Big)^2 = \frac{C}{|\lambda|} \left(\frac{(|\mu| + \epsilon)^2}{|\lambda|} \right)^n. \end{aligned}$$

Complex Hénon mappings in \mathbb{C}^2

- **Basic properties:** the map $\binom{x}{y} \mapsto \binom{P(x)-ay}{x}$ has inverse $\binom{x}{y} \mapsto \binom{y}{(1/a)(P(y)-x)}$ and constant jacobian equal to *a*.
- Crude picture of dynamics:

Basic invariant sets

Filled Julia sets

$$K^+ := \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{C}^2 \text{ with bounded forward orbit} \right\}$$

- Escaping set: $U^+ := \mathbb{C}^2 K^+$. We have also $U^+ = \bigcup_{n \ge 0} H^{-n}(V^+)$.
- Julia sets $J^+ = \partial K^+$, also $J^- = \partial K^-$. We can define $K = K^+ \cap K^-$.
- Basins of attraction $W^s(p)$ of fixed points.
- **Stable and unstable manifolds of saddle points** *p*: they are isomorphic to C.
- What is the topology of these sets? Are they connected?
- (partial) answer: K^{\pm} is always connected.

Theorem (Bedford-Smillie)

- If p is a sink for f and if B is the basin of attraction of p then $\partial B = J^+$.
- If p is a saddle point for f then the stable manifold $W^{s}(p)$ is dense in J^{+} .

Examples of horizontal slices of non-escaping sets

Picture Stable manifold, real slice

