Topological models in holomorphic dynamics

Sylvain Bonnot (IME-USP)

Workshop on Dynamics, Numeration and Tilings 2013

Overview of the mini course

- Iterating $z \mapsto z^{2}+c$ in \mathbb{C} : basic invariant set, the "filled Julia set" :

$$
K_{c}^{+}:=\{z \in \mathbb{C} \mid \text { orbit of } z \text { is bounded }\}
$$

(1) At infinity $z^{2}+c$ is "like" z^{2} :

this will produce identifications of the following type:

Overview

- Iterating $z \mapsto z^{2}+c$:
(1) Dynamical partitions: "Yoccoz puzzles"

(2) Moving Cantor sets: opposite situation, for every c large, K_{c} is Cantor set, moving with s.

Now each Cantor set $\simeq\{0,1\}^{\mathbb{N}}$, so loops in parameter space produce automorphisms of $\Sigma_{2}:=\{0,1\}^{\mathbb{N}}$.

Overview

- Higher dimensional version: to simplify we study polynomial maps: so-called Hénon maps

$$
H:\binom{x}{y} \in \mathbb{C}^{2} \mapsto\binom{x^{2}+c-a y}{x}
$$

- Standard thing to do: plot "non-escaping sets"

- Use dynamics at ∞ : to produce invariant partitions

Overview

- Higher dimensional version: what is the analogue of the "shift locus"?

- Horseshoe locus: dynamics is conjugated to the full 2-shift.
- Moving around in the Horseshoe locus: will produce automorphisms of the full 2-shift.

Roadmap to quadratic dynamics

Roadmap to quadratic dynamics 2: Pic by Kawahira

The simplest dynamics

(1) The squaring map: $z \mapsto z^{2}$.

(2) Key fact: as simple as it is, this case will somehow generate all the others.

Dynamics and fixed points: super-attracting fixed points

(1) Super-attracting fixed points: $f\left(z_{0}\right)=z_{0}$ and $f^{\prime}\left(z_{0}\right)=0$.
(2) Example 1: $z_{0}=-1$ for $N(z)=\frac{z^{2}+1}{2 z}$.
(3) Example 2: $z_{0}=0$ for $f(z)=z^{2}+z^{3}$.
(9) Example 3: $z_{0}=0$ for $g(z)=\frac{z^{2}}{1+0.24 * z^{2}}$

Example 2: basin of attraction of 0

Example 3: basin of attraction of 0

Super-attracting fixed points: Böttcher's coordinate

(1) The case of a quadratic poynomial $P_{c}: z \mapsto z^{2}+c$:

Theorem

There exists a biholomorphism ϕ in a neighborhood U of $z_{0}=\infty$ such that the following diagram commutes:

$$
\begin{array}{lll}
U \xrightarrow{\phi} & V \\
\downarrow^{P_{c}} & & \downarrow^{2} \\
U \xrightarrow{\phi} & V
\end{array}
$$

(2) Demonstration: (Idea: define $" \sqrt[2^{n}]{P_{c}^{\circ n}(z)^{\prime \prime}}$)

Böttcher's coordinate II

(1) Demonstration: (Idea: define $\sqrt[2^{n}]{P_{c}^{\circ n}(z)^{\prime \prime}}$) More precisely: at infinity $\frac{P(z)}{z^{2}} \sim 1+\epsilon(z)$, so we can define $\psi(z):=\log \frac{P(z)}{z^{2}}$ and thus write

$$
P(z)=z^{2} \cdot \exp \psi(z) .
$$

Then, by induction, we get:
$P^{n}(z)=z^{2^{n}} \exp \left(2^{n-1} \psi(z)+\ldots+\psi\left(P^{n-1}(z)\right)\right)$. Finally the 2^{n}-th root we wanted can be taken as

$$
z . \exp \left(\frac{1}{2} \psi(z)+\ldots \frac{1}{2^{n}} \psi\left(P^{n-1}(z)\right)\right) .
$$

(2) Explicit example: the so-called Joukowsky transform $z \mapsto z+1 / z$ is one such map for $z \mapsto z^{2}-2$.

Consequences of the existence of the Böttcher coordinate I

Theorem (Douady-Hubbard)

Let f be a polynomial map of degree $d \geq 2$. If the filled Julia set contains all the finite critical points of f, then the two sets K and $J=\partial K$ are connected and the complement of K is isomorphic to $\mathbb{C}-\overline{\mathbb{D}}$ under an isomorphism

$$
\hat{\phi}: \mathbb{C}-K \rightarrow \mathbb{C}-\overline{\mathbb{D}}
$$

such that

$$
\hat{\phi} \circ f(z)=\phi(z)^{d} .
$$

When at least one critical point off belongs to $C-K$, then K and J have an uncountable number of connected components.

Connected basin of infinity U : critical points do not escape

- Exhaustion of $U: U$ is the increasing union of $U_{n}:=f^{-n}\left(\widehat{\mathbb{C}}-\mathbb{D}_{R}\right)$.
- Claim: each restriction $f: U_{n+1} \rightarrow U_{n}$ is a branched double cover, with the ∞ being the only branch point.
- Claim: all the U_{n} are topological disks (so is their union) (Hint: given $f: S \rightarrow T$ we get $\chi(S)=2 \cdot \chi(T)-\sum_{b r \cdot p t s}\left(\right.$ deg $\left._{a} f-1\right)$, remembering that $\chi(S)=2-2 g-n$.
- Plane topology: G open connected set is simply connected iff $\widehat{\mathbb{C}}-G$ is connected.

Pinched disks description of compact sets in \mathbb{C}

We consider sets $K \subset \mathbb{C}$ such that:

- K is compact,
- $\mathbb{C}-K$ is connected (i.e K is "full"),
- K is connected,
- K is locally connected.

Lemma

Let $K \subset \mathbb{C}$ be compact, connected and full. Then one can find in a unique way a radius $r \geq 0$ and a biholomorphism $\phi: \mathbb{C}-K \rightarrow \mathbb{C}-\overline{\mathbb{D}}(r)$ such that $\phi(z) / z \rightarrow 1$ as $z \rightarrow \infty$.

Lemma

Let K be as above and locally connected. Then $\psi:=\phi^{-1}$ has a continuous extension $\mathbb{C}-\mathbb{D}(r) \rightarrow \mathbb{C}-\operatorname{int}(K)$, which induces a continuous map $\gamma: S^{1} \rightarrow \partial K$.

Equivalence relation defining the pinched disks models

 (Thurston)
Definition

We define on the circle S^{1} an equivalence relation \sim_{K} by $t \sim_{k} t$ iff $\gamma(t)=\gamma(t)$.

More pinched disks: $z \mapsto z^{2}-1$

More about: $z \mapsto z^{2}-1$

- Distinguished types of points:
- "Tips": they correspond to separations between blue and yellow.
- "Cut points": they correspond to words of the type 010101010101...

Geometric description of the pinching model for $z \mapsto z^{2}-1$

- Extension of the conjugacy to the boundary of the disk: here $\psi:=\phi^{-1}$ has a continuous extension $\mathbb{C}-\mathbb{D}(r) \rightarrow \mathbb{C}-\operatorname{int}(K)$, which induces a continuous map $\gamma: S^{1} \rightarrow \partial K$ (a semi-conjugacy).
- Some necessary conditions:
- "rays cannot cross" \Rightarrow (if $\theta_{1} \sim \theta_{2}$ and $\theta_{3} \sim \theta_{4}$ then the intervals $\left(\theta_{1}, \theta_{2}\right)$ and $\left(\theta_{3}, \theta_{4}\right)$ are disjoint or nested).
- Periodic maps to periodic: the map γ is a semi-conjugacy...
- Consequences: The unique fixed point of the doubling map has to go to a fixed point. The unique 2 -cycle $\{1 / 3,2 / 3\}$ has to go to a 2-cycle (impossible, not in K) or a fixed point.
- Preimages: the other preimage of $\gamma_{1 / 3} \cup \gamma_{2 / 3}$ is $\gamma_{1 / 6} \cup \gamma_{5 / 6}$.
- Further preimages:
$f^{-1}\left(\gamma_{1 / 6} \cup \gamma_{5 / 6}\right)=\gamma_{1 / 12} \cup \gamma_{5 / 12} \cup \gamma_{7 / 12} \cup \gamma_{11 / 12}$. The "non-crossing property" will force the correct pairings.

