Prova P3 de MAT 2352 26/11/2015 Professor: Sylvain Bonnot

e:		Prova (A)	
		Q	N
$N^{\underline{0}}$ USP : RG:		1	
		2	

Assinatura: _

11014 (11)		
N		

JUSTIFIQUE TODAS AS SUAS RESPOSTAS! Boa sorte!

 $1^{\underline{a}}$ Questão: (4 pontos) Seja S a parte do hiperbolóide $x^2 + z^2 - y^2 = 9$ com $z \ge 0$ limitada por $x^2 + y^2 = 4$, orientada com \vec{n} tal que $\vec{n} \cdot \vec{k} > 0$.

- 1. dê uma parametrização de S e uma expressão para o campo de vetores normais \vec{n} .
- 2. calcule $\iint_S \vec{F} \cdot \vec{n} dS$ onde $\vec{F}(x, y, z) = (z, 2z, x^2)$.

 $2^{\underline{a}}$ Questão: (3 pontos) Seja γ a curva dada pela intersecção do parabolóide $z=x^2+y^2$ com o cilindro $x^2+y^2=6$, orientada de modo que sua projeção no plano xy seja percorrida no sentido anti-horário. Calcule $\int_{\gamma} \vec{F}.d\vec{r}$ para $\vec{F}(x,y,z)=(x-y,x-z+\frac{y^2}{2+\mathrm{sen}y},y)$.

 $3^{\underline{a}}$ Questão: (3 pontos) Seja S a superfície dada por $z=x^2+y^2+2xy$, limitada por $x^2+y^2=2$. Seja $f(x,y,z) = \frac{3x^2 + 2y^2}{\sqrt{1 + 8z}}$. Calcule a integral de superfície $\int_S f(x,y,z) dS$.