
Chapter 9
A Strange Attractor

The perfect square has no corners.
Great talents ripen late.
The highest notes are hard to hear.
The greatest form has no shape.

Lao Tzu

9.1 Introduction

Using the Hartman–Grobman theorem, we can show that a small perturbation f
of a hyperbolic toral automorphism is conjugate to this automorphism. For such a
transformation, all points are therefore nonwandering, and there exists a dense set
of recurrent points.

Consider the hyperbolic automorphism on T2 given by the matrix A D �
2 1
1 1

�
.

What happens if we carry out a local perturbation in the neighborhood of the origin
.0; 0/ that transforms this fixed point into an attracting point? By the Hartman–
Grobman theorem, there exists an open set U of points that will be attracted by
.0; 0/. In this chapter, we consider an explicit example of perturbation. The open
set U in this example is depicted in Fig. 9.1. What can be said about this set?

We will see that there exists a hyperbolic fixed point p on the boundary of this
open set. Its stable and unstable manifolds

Wss. p/ D fx 2 T2 j d� f n.x/; f n. p/
� �����!

n!1 0g
D fx j d� f n.x/; p

� �����!
n!1 0g;

Wsu. p/ D fx 2 T2 j d� f �n.x/; f �n. p/
� �����!

n!1 0g
D fx j d� f �n.x/; p

� �����!
n!1 0g

form two immersed submanifolds of dimension 1. The stable manifold of p cannot,
of course, belong to the open set U of points attracted by .0; 0/. We will show
that its closure K has empty interior and coincides with the complement of U.
Consequently, most orbits converge to the origin.
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90 9 A Strange Attractor

What can we be said about the dynamics of f �1? The origin is now a repelling
point, and all other points converge to the invariant compact set K. Moreover, the
transformation restricted to K is transitive. The structure of K is interesting: it has
empty interior in T2, but contains an immersed submanifold of dimension 1 that is
both dense in K and has empty interior in K. This is therefore a geometric object
that is halfway between a line and a plane. It is indicated in black on Fig. 9.1, while
its complement, in white, corresponds to the open set U.

The proofs are based on the Hartman–Grobman linearization theorem and on the
existence of an invariant direction on K that is dilated by the differential of f . In
fact, the transformation A has an eigenvalue that is greater than 1 and the associated
dilation is undisturbed by the perturbation when we are far from the origin.

Historically, the compact set K is the first example of a uniformly hyperbolic
attractor that is not a submanifold. It was constructed by S. Smale in 1972. Since
the transformation f �1 comes from a toral automorphism, which is the simplest
example of an Anosov diffeomorphism, it is called a diffeomorphism derived from
Anosov (DA diffeomorphism for short). We can carry out this type of construction
on any transformation with a hyperbolic fixed point.

9.2 Perturbation of a Toral Automorphism

We begin with the matrix A D �
2 1
1 1

�
. We denote the golden mean by � D 1Cp

5
2
'

1.618. The matrix A admits two eigenvalues �2 and ��2; the associated eigenvectors
eu D 1p

1C�2
�
�
1

�
and es D 1p

1C�2
� �1
�

�
form an orthonormal basis for R2. We have

�
2 1

1 1

�

D 1p
1C �2

�
� �1
1 �

� �
�2 0

0 ��2
�

1p
1C �2

�
� 1

�1 �
�

:

Let us perturb A in such a manner that the point 0 becomes attracting. For .x; y/ 2
� 1

2
; 1
2

�2
, set

f

�
x
y

�

D 1p
1C �2

�
� �1
1 �

��
�2 C p1k.r=a/ 0

0 ��2
�

1p
1C �2

�
� 1

�1 �
��

x
y

�

D
�
2 1

1 1

��
x
y

�

C p1
1C �2 k.r=a/

�
�2 �

� 1

��
x
y

�

;

with r D p
x2 C y2 and k.r/ D .1 � r2/21Œ�1;1�.r/ used as a C1 “bump”. The

parameter a controls the extent of the perturbation, while the parameter p1 controls
its amplitude. When a 2 Œ0; 1=2�, the map f passes to the quotient and defines
a transformation from T2 to T2, also denoted by f . Let us establish some of its
properties.
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Properties

• For every .x; y/ 2 T2, we have f ..x; y/C Reu/ � f .x; y/C Reu.
• For p1 2 .��2; 0� and a 2 Œ0; 1=2�, the map f is a diffeomorphism of the torus T2.
• For p1 2 .��2; 1 � �2�, the point 0 is an attracting fixed point. We denote its

basin of attraction by U.
• For p1 2 .��2; 1 � �2�, the map f has a fixed point p 2 .0; a/eu such that
Œ0; p/ � U.

• The open ball B.0; jpj/ is included in the basin of attraction U of 0.
• For every .x; y/ 2 Uc, we have jd.x;y/f � euj > 1.

Proof

• For every .x; y/ 2 T2, the point f .x; y/ � A.x; y/ belongs to Reu. Consequently,
the point f

�
.x; y/C teu

� � A
�
.x; y/C teu/

�
is also in Reu, and therefore

f
�
.x; y/C teu

� � f .x; y/ 2 Reu:

• Let us determine the Jacobian of f in the orthonormal basis .eu; es/:

det.df / D @

@x

�
xC ��2p1xk.r=a/

�

D 1C ��2p1k.r=a/C ��2p1
x2

ra
k0.r=a/

> 1C ��2p1:

The map f is therefore a local diffeomorphism.
Let us show that it is bijective. Let Sr be the circle with radius r and center 0.

The transformation f restricted to Sr is linear, and f .Sr/ is an ellipse with minor
axis ��2 r es and major axis .�2 C p1k.r=a// r eu. The lengths of these two axes
are strictly increasing functions for r 2 Œ0; a�. The sets f .Sr/ for r 2 Œ0; a� are
therefore disjoint, and the transformation f is bijective from the ball B.0; a/ onto
the set f .B.0; a//. This set coincides with the interior of the ellipse f .Sa/; it
therefore equals the image of B.0; a/ by the matrix

�
2 1
1 1

�
. Outside of B.0; a/,

this matrix coincides with f , which is bijective.
• The fixed point 0 is attracting for the values given above because the differential

D0f admits ��2 and �2 C p1 as eigenvalues.
• The map h.t/ D �2tCp1t k.t=a/ admits a fixed point in the interval .0; a/ because

h.0/ D 0, h0.0/ 2 .0; 1/, and h.a/ > a. Let t0 be the smallest fixed point of h in
.0; a/. We set p D t0 eu and note that �2 C p1k.jpj=a/ D 1.

• Let us show that j f .x; y/j < j.x; y/j if j.x; y/j < jpj. In the basis .eu; es/, we have

j f .x; y/j2 D ��4y2 C ��2xC p1xk.r=a/
�2

< ��4y2 C ��2xC p1xk.jpj=a/
�2

D ��4y2 C x2:
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We have used the fact that k is strictly decreasing on .0; a/ and the equality
p1k.jpj=a/ D 1� �2. The function .x; y/ 7! f .x; y/=j.x; y/j reaches its maximum
on the annulus f" 6 jmj 6 jpj � "g. It is therefore contractive on this annulus.
Every point of B.0; jpj/ has an orbit that ends up entering B.0; "/. The orbit of
the point therefore converges to 0.

• Let us determine the differential in the direction eu. In the basis .eu; es/, we have

d.x;y/f :eu D �2 C p1k.r=a/C p1
x2

ra
k0.r=a/

D 1 � p1
�
k.jpj=a/� k.r=a/

�C p1
x2

ra
k0.r=a/:

This is greater than 1 if r > jpj and equal to 1 if .x; y/ D .0; jpj/. This point is
in U.

ut
From here on, we take p1 D �2.236 and a D 0.5. We denote the basin of

attraction of 0 by U and the complement of U by K. Finally, we fix a linearization '
from a neighborhood V of p to .0; 1/2.

9.3 Perturbed Dynamics

We wish to show that the map f restricted to K is transitive. For the proof, we study
the stable and unstable manifolds of the fixed point p on the boundary of U. We will
need to verify that Wsu. p/ is dense in T2, and then that Wss. p/ is dense in K.

Lemma 9.1 Let x 2 K. Then for every " > 0, the segment x� Œ0; "� eu meets U. The
open set U is therefore dense in T2, and K has empty interior.

Proof The open set U consists of the points whose iterates converge to 0; it is
invariant under f . If the segment x � Œ0; "� eu does not meet U, then the same holds
for all of its iterates. Since Dyf � eu > 1 if y 2 K, these iterates are of the form
f n.x/ � Œ0; cn"� eu, with cn > Cn for some constant C > 1.

Since the set RCeu is dense in T2, we can find n 2 N such that every point of T2

is at a distance less than jpj from Œ0;Cn"� eu. In particular, the point f n.x/ is at a
distance less than jpj from Œ0;Cn"� eu; in other words, the point 0 is at a distance less
than jpj from the subset f n.x/ � Œ0;Cn"� eu � K. This gives a contradiction. ut
Proposition 9.1 The set p C RCeu is included in Wsu. p/. The unstable manifold
Wsu. p/ is therefore dense in T2.

Proof Suppose, to the contrary, that the set is not included in Wsu. p/. We can then
set

t1 D infft 2 RC j pC teu 62 Wsu. p/g:
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Because of the form of the map t 7! f . pC teu/, the real number t1 is positive. The
image of p C Œ0; t1/ eu by f is of the form p C Œ0; s/ eu. Since Wsu. p/ is invariant
under f , we have s D t1, and the point p0 D pC t1 eu is a fixed point of f .

The point p0 is distinct from the origin. Indeed, since p is in the set RCeu, we
would otherwise have 0 2 R�eu, which contradicts the irrationality of �. The set U
is the basin of attraction of the origin. It follows that the fixed point p0 is not in U;
the slope of the curve t 7! f . pC teu/ at t1 is therefore greater than 1. Consequently,
the points on pC Œ0; t1/ eu close to p0 D pC t1eu have negative iterates that approach
both p and p0, which is absurd. ut
Proposition 9.2 Let m 2 U and t > 0 be such that m C Œ0; t/ eu � U and
mC teu … U. Then mC teu belongs to Wss. p/. Moreover, the set Wss. p/\Wsu. p/
is dense in K.

Proof Let ' W V ! .�1; 1/2 be a linearization on an open neighborhood of p.
Since Wsu. p/ \ U contains .0; p/, there exists x0 2 .0; p/ \ V such that Œx0; f .x0/�
is in U \ V . Hence, there exists in '.V/ a rectangle Œ�ı; ı� � Œx0; f .x0/� contained
in '.U/. Its positive iterates under the action of Dpf �1 are also in '.U/ and cover
Œ�ı; ı� � Œx0; p/. This reasoning is illustrated by Fig. 9.2. The open set U comes to
lean against the stable manifold of p.

Consider a curve in the open set Œ�ı; ı� � Œx0;�x0/ originating in the lower half-
plane, and not entirely contained in '.U/. The first point of the curve that is not in
'.U/ must lie on the x-axis, that is, on '.Wss. p//.

For large n, the iterate f n.mC Œ0; t� eu/ is a line from a small neighborhood of 0
in the direction of eu. The first point of the curve that belongs to K must therefore
be in V , and belongs to Wss. p/.

Let us now show the density of Wss. p/\Wsu. p/ in K. Let m0 2 K and " > 0 be
such that m D m0 � " eu is in U. Since pC RCeu is dense in T2, there exists C > 0

such that pCC eu is arbitrarily close to m. Taking up the previous reasoning, we see
that the iterate f n. pC ŒC;CC 2t� eu/ is close to f n.mC Œ0; 2t� eu/. It therefore meets
Wss. p/ at a point x such that f �n.x/ is as close to mC t eu as we want. ut

9.4 Transitivity and the Mixing Property

Corollary 9.1 The map f restricted to K is transitive and topologically mixing.

Proof Let U1 be an open set intersecting K, let x1 2 Wss. p/ \ Wsu. p/ \ U1, and
let n1 be such that f �n.x1/ is in V for every n > n1. Set x0

1 D f �n1 .x1/. We begin by
showing that every segment in the direction of eu, passing close to x0

1, meets Wss.x0
1/

in the neighborhood of the point x0
1.

Let R � V be a small rectangle with center x0
1 and oriented in the directions of es

and eu. There exists N such that for every n > N, the iterate f n.x0
1/ is in V . The

set f N.R/ contains a small rectangle R0 with center f N.x0
1/ and, after increasing N

if necessary, we may assume that R0 crosses the open set V from top to bottom.
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Since f N.x0
1/ is in '..�1; 1/� f0g/, the vertical lines in R0 meet '..�1; 1/� f0g/ �

Wss
�

f N.x0
1/
�

in the neighborhood of f N.x0
1/. The vertical lines of R therefore meet

Wss.x0
1/ in the desired manner. Figure 9.3 summarizes the situation.

Let U2 be another open set intersecting K. To prove the transitivity, it suffices to
construct a point x0 2 K with a negative iterate in U2 and a positive iterate in U1.
Let x2 2 U2 \ Wss. p/ and " > 0 be such that x2 C Œ�"; "� eu is in U2. For large n,
the image f n.x2 C Œ�"; "� eu/ is a segment in the direction of eu, close to p, which
crosses V from top to bottom. It therefore meets Wss.x0

1/\ f n1 .U1/ at a point x0 that
is in K.

The previous reasoning shows that for every sufficiently large n, the set
f n.U2/\K meets f n1 .U1/. This implies that the restriction of f to K is topologically
mixing. ut
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Fig. 9.1 Basin of attraction of the origin. (a) 0 is an attracting fixed point. p is a hyperbolic fixed
point. (b) A segment in the direction eu that joins U to K must meet the stable manifold of p
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W ss(p)

U1
U2

V

p

x1

x2

R
R′

x′
1 x′

1

x′

fn(x2)
p

Fig. 9.3 Proof of the transitivity
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9.5 Exercises

9.5.1 Basic Exercises

Exercises 1–5 and 8–11 concern the diffeomorphism f we have just studied.

Exercise 1 Show that K is compact, connected, and uncountable.

Exercise 2 Show that for every m 2 T2, we havef .�m/ D �f .m/. Deduce that
there exists a hyperbolic fixed point p0 2 Œ�a; 0� eu and that Wss. p0/ is dense in K.

Exercise 3 Show that Wss. p/ has empty interior in K.
Hint: Note that no point of Wss. p/ has dense orbit.

Exercise 4 Let " > 0. Show that . pCŒ0; "� eu/ \K is compact, without any isolated
points, and with empty interior in pC Œ0; "� eu. Deduce that it is uncountable.

Exercise 5 Show that the points of Wss. p/ can be reached from U in the following
sense: for every x 2 Wss. p/ there exists a continuous map � W Œ0; 1�! T2 such that
�.Œ0; 1// � U and �.1/ D x.

Exercise 6 Show that we can glue two systems derived from Anosov in such a way
that we obtain a diffeomorphism f on a surface of genus 2 whose nonwandering
set is the union of two uncountable connected compact sets K1 and K2 restricted to
which f is transitive.

Exercise 7 Let M be a differential manifold, and let f W M ! M be a C1

diffeomorphism with a hyperbolic fixed point p. Show that if Wss. p/ and Wsu. p/
are dense in M, then f is topologically mixing.

9.5.2 More Advanced Exercises

Exercise 8 Show that K is not locally connected.
Hint: Note that every neighborhood of p contains a point of U that belongs to
Wsu. p/ and iterate a neighborhood of this point.

Exercise 9 Let � W Œ0; 1�!K be a continuous map starting at p: �.0/ D p. On an
open neighborhood V of p on which we have a linearization, we consider a partial
path �.Œ0; ı�/ contained in V . Show that �.Œ0; ı�/ � Wss. p/.

Does it follow that �.Œ0; 1�/ � Wss. p/?

Exercise 10 Let � W Œ0; 1� ! T2 be a continuous map that satisfies �.Œ0; 1// �
Wss. p/. Show that �.1/ 2 Wss. p/.
Hint: Use contradiction and show that �.1/ is a hyperbolic fixed point.

Exercise 11 Show that K is not path-connected.
Hint: Show that p and �p cannot be connected by a path that remains in K.
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Exercise 12 Let M be a differential manifold, and let f W M ! M be a C1

diffeomorphism with a hyperbolic fixed point p. Suppose that Dpf has a unique
eigenvalue of absolute value less than 1 and that this eigenvalue is real and positive.
Show that Wss. p/ X fpg has two connected components.

9.6 Comments

The perturbation f studied in this chapter is C1 and has Lipschitz derivative. We could have
constructed a C1 map by taking a “bump” function of the type

k.r/ D exp
�

� 1

1� r2

�
1Œ�1;1�.r/:

From a numerical point of view, a polynomial “bump” seems preferable.
Here are three algorithms that allow us to visualize the compact set K.

• We choose a point x arbitrarily and iterate it a million times using the map f �1. If the
point is not the origin, its trajectory will converge to the attractor K. The transformation
f �1 restricted to K is transitive. For most x, the trajectory should therefore converge to
all points of the attractor. This is what is seen in practice. This method is the fastest one
from a numerical point of view.

• The origin is an attracting fixed point for the map f and K is the complement of its basin
of attraction. To visualize this basin, we fix a small disk with center the origin, and then
color the points of the plane as a function of the number of iterations needed to reach this
disk. In practice, most points reach the disk in less than 70 steps. We could, for example,
color all points needing more than twenty iterations in black, which would allow us to
represent a small neighborhood of K.

• We can show that the periodic points of f are dense in K. The set of periodic points with
period less than n, for n sufficiently large, therefore gives a good approximation of K.
Calculating the periodic points turns out to be very costly numerically, so this method is
seldom recommended.

We can describe the dynamics of f restricted to K in a more precise way. On K, the
transformation f is semiconjugate to a topologically mixing shift of finite type. R. F.
Williams (1974) has shown that it is conjugate to a shift on a generalized solenoid. The
behavior of f is therefore highly unpredictable.
The compact set K is locally homeomorphic to the product of a segment and a Cantor set.
We can verify this in the neighborhood of p by showing that the intersection of K and the
local unstable manifold of p has empty interior in K. To prove it in the neighborhood of
every point x of K, we must study in detail the structure of the stable manifolds Wss.x/ and
show that they are all immersed submanifolds of dimension 1.
The points of Wss. p/ and of Wss.�p/ make up the accessible boundary of U. They are the
only points of @U that are the endpoints of a curve � W Œ0; 1� ! T2 contained in U for
t 2 Œ0; 1/. This notion of accessible boundary no doubt corresponds better to the intuitive
idea one can have of the boundary of a set.
A DA diffeomorphism is an example of an Axiom A diffeomorphism: its periodic points
form a dense subset of the nonwandering set f0g [ K; when restricted to the latter, the
tangent space can be decomposed into the sum of two invariant subbundles, respectively
contracted and dilated by the differential of the map.
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The nonwandering set of an Axiom A diffeomorphism decomposes into a finite number
of invariant compact sets, restricted to which the transformation is transitive. This can be
proved by studying the stable and unstable manifolds of the periodic points, as was done
for the DA diffeomorphism.


