MAT 0320 Lista 1

Prof. Sylvain Bonnot

Exercício 1. Coloque os números complexos na forma a + bi:

- a) $\frac{1}{2+3i}$
- b) $\frac{1+i}{3+2i}$
- c) $(1+i)^3$
- d) $(2+3i)^2$

Exercício 2. Coloque os números complexos na forma polar:

- a) $1 + i\sqrt{2}$
- b) 4i
- c) 1 + i
- d) -5

Exercício 3. Represente graficamente os conjuntos de complexos que satisfazem a condição dada:

- 1. $z.\bar{z} = 1$
- 2. $z + \bar{z} + 2 = 0$
- 3. |z| = |z 1|
- 4. $z + \bar{z} + 2i = 0$

Exercício 4. Seja $\lambda > 0$ com $\lambda \neq 1$. Mostre que o conjunto dos pontos $z \in \mathbb{C}$ tais que $|z| = \lambda |z - 1|$ é um círculo.

Exercício 5. Utilizando a identidade de De Moivre, calcule:

- a) As raízes quadradas de $1 + \sqrt{3}i$, $\sqrt{3} i$ e 1 + i.
- b) As raízes cúbicas de 1-i e de i.

Exercício 6. Calcule as partes real e imaginária de $(1+i)^{100}$.

Exercício 7. Mostre que para todo número natural n e todo complexo $z \neq 1$ vale a identidade:

$$1 + z + z^2 + \dots + z^n = \frac{1 - z^{n+1}}{1 - z}.$$

Exercício 8. Utilizando o exercício anterior e tomando as partes reais de ambos os membros, verifique que a identidade

$$1 + \cos\theta + \cos 2\theta + \dots + \cos n\theta = \frac{1}{2} \left(1 + \frac{\sin\left(\left(n + \frac{1}{2}\right)\theta\right)}{\sin\left(\frac{\theta}{2}\right)} \right)$$

1

é valida para todo natural ne todo $0<\theta<2\pi.$

Exercício 9. Seja n um número natural e seja $\zeta=e^{2\pi i/n},$ mostre que para todo número complexo z temos:

$$z^{n}-1=(z-\zeta)(z-\zeta^{2})...(z-\zeta^{n})$$

Exercício 10. Sejam z_1, z_2 números complexos. Prove que

$$|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2(|z_1|^2 + |z_2|^2)$$

e interprete o resultado geometricamente.