MAT 2110 : Cálculo para Química Aula 35/ Sexta 13/06/2014

Sylvain Bonnot (IME-USP)

2014

Trombeta de Gabriel

Definição

A trombeta de Gabriel (=do anjo Gabriel) é a superfície de revolução obtida pela rotação da curva $y = \frac{1}{x}$, com $x \in [1, \infty)$ ao redor do eixo x.

Volume do solido de revolução:

$$V = \int_{1}^{+\infty} \pi \cdot \left(\frac{1}{x^2}\right) dx := \pi \cdot \lim_{r \to \infty} \int_{1}^{r} \pi \cdot \left(\frac{1}{x^2}\right) dx$$

Mas isso é:

$$= \pi . \lim_{r \to \infty} [-1/x]_1^r = \pi . \lim_{r \to \infty} (1 - \frac{1}{r}) = \pi.$$

Área da superfície de revolução:

$$A = 2\pi \int_{1}^{r} \frac{1}{r} \cdot \sqrt{1 + \frac{1}{r^4}} dx \ge 2\pi \int_{1}^{r} \frac{1}{r} dx = 2\pi \ln r \to \infty!$$

Integrais impróprias

Definição

Se $\int_a^t f(x)dx$ existe para todo $t \ge a$ então:

$$\int_{a}^{\infty} f(x)dx = \lim_{t \to \infty} \int_{a}^{t} f(x)dx,$$

desde que o limite exista (como um número, finito). Neste caso, a integral imprópria $\int_a^{\infty} f(x) dx$ é chamada convergente.

Exercício

Mostrar que $\int_1^\infty \frac{1}{x^p} dx$ é convergente se p > 1 e divergente se $p \le 1$.

Integrais impróprias, segundo tipo

Definição

Se f é contínua em [a, b) e descontínua em b, então:

$$\int_{a}^{b} f(x)dx = \lim_{t \to b^{-}} \int_{a}^{t} f(x)dx,$$

se esse limite existir (como um número real finito), e a integral imprópria é chamada convergente (divergente, se não).

Se f é contínua em (a, b] e descontínua em a, então:

$$\int_{a}^{b} f(x)dx = \lim_{t \to a^{+}} \int_{t}^{b} f(x)dx,$$

se esse limite existir (como um número real finito).

Se f tiver uma descontinuidade em c, com a < c < b e $\int_a^c f(x) dx$ e $\int_c^b f(x) dx$ forem convergentes, então podemos definir: $\int_a^b f(x) dx = \int_c^c f(x) dx + \int_c^b f(x) dx$

Teorema de comparação para as integrais impróprias

Teorema

Vamos supor que f e g são contínuas com f(x) $\geq g(x) \geq 0$ *para x \geq a.*

- Se $\int_a^\infty f(x)dx$ é convergente, então $\int_a^\infty g(x)dx$ é convergente.
- **2** Se $\int_a^\infty g(x)dx$ é divergente, então $\int_a^\infty f(x)dx$ é divergente também.

Exercício

Mostrar que $\int_{1}^{\infty} \frac{1}{x^{p}} dx$ é convergente se p > 1 e divergente se $p \leq 1$.

Exemplos

Exercício

Calcule:

$$1. \int_0^\infty \frac{dx}{x^2 + 1}$$

$$3. \int_0^1 \frac{dx}{\sqrt{x}}$$

5.
$$\int_{-1}^{1} \frac{dx}{x^{2/3}}$$

7.
$$\int_0^1 \frac{dx}{\sqrt{1-x^2}}$$

$$9. \int_{-\infty}^{-2} \frac{2 \, dx}{x^2 - 1}$$

$$2. \int_1^\infty \frac{dx}{x^{1.001}}$$

4.
$$\int_{0}^{4} \frac{dx}{\sqrt{4 - x}}$$
6.
$$\int_{0}^{1} \frac{dx}{x^{1/3}}$$

8.
$$\int_0^1 \frac{dr}{r^{0.999}}$$

10.
$$\int_{-\infty}^{2} \frac{2 dx}{x^2 + 4}$$

Exemplos 2

Exercício

Convergente ou divergente?

41.
$$\int_{0}^{\pi} \frac{dt}{\sqrt{t + \sin t}}$$
42.
$$\int_{0}^{1} \frac{dt}{t - \sin t} (t \ge \sin t t \ge 0)$$
43.
$$\int_{0}^{2} \frac{dx}{1 - x^{2}}$$
44.
$$\int_{0}^{2} \frac{dx}{1 - x}$$
45.
$$\int_{-1}^{1} \ln |x| dx$$
46.
$$\int_{-1}^{1} -x \ln |x| dx$$
47.
$$\int_{1}^{\infty} \frac{dx}{x^{3} + 1}$$
48.
$$\int_{4}^{\infty} \frac{dx}{\sqrt{x - 1}}$$
49.
$$\int_{2}^{\infty} \frac{dv}{\sqrt{v - 1}}$$
50.
$$\int_{0}^{\infty} \frac{d\theta}{1 + e^{\theta}}$$
51.
$$\int_{0}^{\infty} \frac{dx}{\sqrt{x^{6} + 1}}$$
52.
$$\int_{2}^{\infty} \frac{dx}{\sqrt{x^{2} - 1}}$$
53.
$$\int_{0}^{\infty} \frac{\sqrt{x + 1}}{x^{2}} dx$$
54.
$$\int_{0}^{\infty} \frac{x dx}{\sqrt{x^{2} - 1}}$$

7

Equações diferenciais

Lei de crescimento natural: A população cresce a uma taxa proporcional ao tamanho da população *P*:

$$\frac{dP}{dt} = k.P$$

Solução: $P(t) = A.e^{kt}$, onde A é uma constante arbitrária.

Utilizando integrais:

$$\frac{dP}{P} = k.dt$$

então:

$$\int \frac{dP}{P} = \int k.dt$$

$$\ln |P| = kt + C$$

$$|P| = e^{C}.e^{k}t$$

$$P = A.e^{kt},$$

onde $A = \pm e^{C}$.

Problema de valor inicial

Teorema

A solução do problema de valor inicial

$$\frac{dP}{dt} = k.P, \qquad P(0) = P_0$$

é:

$$P(t) = P_0.e^{kt}$$

Lei de crescimento natural, com emigração:

$$P' = kP - m$$

Como resolver essa nova equação?

População e equação logistica:

Novo modelo: quando a pop. é muito grande ($\geq K$), a taxa de crescimento é negativa. Mas para P pequena, a taxa é quase = k.P

$$\frac{1}{P}\frac{dP}{dt} = k(1 - \frac{P}{k})$$

Como resolver essa equação?

$$\int \frac{K}{P.(K-P)} dP = \int k.dt$$

Agora podemos observar que:

$$\frac{K}{P.(K-P)} = \frac{1}{P} + \frac{1}{K-P}$$

então:

$$\ln|P| - \ln|K - P| = kt + C \Rightarrow \frac{K - P}{P} = A.e^{-kt}$$

e finalmente:

$$P = \frac{K}{1 + A.e^{-kt}}$$