Revisão : máximo, minimo em dimensão 1

Teorema (Teorema de Rolle)

Seja f uma função que satisfaça as seguintes hipóteses:

- lacktriangledown f é contínua no intervalo fechado [a,b],
- f é diferenciável no intervalo aberto (a, b),

Teorema (do valor intermediário)

Se f for contínua em [a,b] e se γ for um real compreendido entre f(a) e f(b), então existirá pelo menos um $c \in]a,b[$ tal que $f(c)=\gamma$.

Consequência: se f(a) < 0, $f(b) > 0 \Rightarrow$ existe $\gamma \in]a$, b[tal que $f(\gamma) = 0$.

Teorema

Se f for contínua em [a,b] então existirão x_1 e x_2 em [a,b] tais que $f(x_1) \le f(x) \le f(x_2)$ para todo $x \in [a,b]$. (Isto é $f(x_1)$ é o valor mínimo de f em [a,b], $ef(x_2)$ é o valor máximo)

Valor intermediário e equação y'=0

Teorema

Sef'(x)=0 para todo x em um intervalo (a,b) então f é constante em (a,b).

Prova: Vamos tomar $x_1 < x_2$. Então existe um $c \in (x_1, x_2)$ tal que $f(x_2) - f(x_1) = f'(c).(x_2 - x_1) = 0.(x_2 - x_1)$.

Consequência muito importante: determinar as primitivas de uma função f(x) em (a,b)

Definição

Uma função F(x) em (a,b) é uma primitiva de f(x) se F'(x) = f(x) em (a,b).

Exercício

- Determinar todas as primitivas em \mathbb{R} de:

 - **⑤** $f(x) = \frac{2}{x} + \frac{3}{x^2}$ em $(a,b) = (0,\infty)$

Máximo, mínimo local

Definição

- Uma função f tem um máximo local em c se $f(c) \ge f(x)$ para todo x em algum intervalo aberto contendo c.
- **2** Uma função f tem um mínimo local em c se $f(c) \le f(x)$ para todo x em algum intervalo aberto contendo c.

Como reconhecer um máximo ou mínimo local para f derivavel:

Teorema

Se f tiver um máximo ou mínimo local em c e f'(c) existir, então f'(c)=0.

Demonstração:

Definição

Um número crítico de uma função f é um número c no domínio de f tal que f'(c)=0 ou f'(c) não existe.

Teste da derivada primeira

Teorema

Suponha que c seja um número critico de f contínua.

- Se o sinal de f' mudar de positivo para negativo em c então f tem um máximo local em c,
- 2 Se o sinal de f' mudar de negativo para positivo em c, então f tem um mínimo local em c,
- Se f' não mudar de sinal em c , então f não tem máximo ou mínimo locais em c.

Exercício

Encontre os valores de max e min com o teste da primeira derivada para $f(x) = x^5 - 5x + 3$

Máximo absoluto (ou global)

Definição

Uma função f tem máximo absoluto (ou máximo global) em c se $f(c) \ge f(x)$ para todo $x \in D_f$. O número f(c) é chamado valor máximo de f em D_f . Também f tem um mínimo absoluto em c se $f(c) \le f(x)$ para todo $x \in D_f$, e o número f(c) é chamado valor mínimo de f em D_f . Os valores máximo e mínimo de f são chamados valores extremos de f.

Como determinar os valores extremos de f contínua em [a,b] fechado:

- Encontre os valores de f nos números críticos de f em (a,b);
- Encontre os valores de f nos extremos do intervalo (isto é, em a e b);
- O maior valor das etapas 1 e 2 é o valor máximo absoluto, e o menor desses valores é o valor mínimo absoluto.

Encontre os valores máximo e mínimo absolutos de f

Exercício

$$f(x) = x^{3} - 6x^{2} + 5, \quad [-3, 5]$$

$$f(x) = 3x^{4} - 4x^{3} - 12x^{2} + 1, \quad [-2, 3]$$

$$f(x) = (x^{2} - 1)^{3}, \quad [-1, 2]$$

$$f(x) = x + \frac{1}{x}, \quad [0.2, 4]$$

$$f(x) = \frac{x}{x^{2} - x + 1}, \quad [0, 3]$$

$$f(t) = t\sqrt{4 - t^{2}}, \quad [-1, 2]$$

$$f(t) = \sqrt[3]{t}(8 - t), \quad [0, 8]$$

$$f(t) = 2\cos t + \sin 2t, \quad [0, \pi/2]$$

$$f(t) = t + \cot(t/2), \quad [\pi/4, 7\pi/4]$$

$$f(x) = xe^{-x^{2}/8}, \quad [-1, 4]$$

$$f(x) = x - \ln x, \quad \left[\frac{1}{2}, 2\right]$$

$$f(x) = \ln(x^{2} + x + 1), \quad [-1, 1]$$

6

Uso da derivada segunda

Concavidade:

Definição

Se o gráfico de f estiver acima de todas as suas tangentes no intervalo I=(a,b), então ele \acute{e} chamado côncavo para cima em I. Se o gráfico estiver abaixo de todas as suas tangentes em I, ele \acute{e} chamado côncavo para baixo em I.

Como determinar a concavidade:

Teorema

- Se f''(x) > 0 para todo $x \in I$ então o gráfico de f é côncavo para cima em I.
- **2** Se f''(x) < 0 para todo $x \in I$ então o gráfico de f é côncavo para baixo em I.

Exercício

Encontre os intervalos de concavidade e os pontos de inflexão para: $f(x) = \frac{x^2}{x^2-1} e g(x) = \sqrt{x^2+1} - x$

7

Uso da derivada segunda II

Definição

Um ponto P na curva y = f(x) é um ponto de inflexão se f é continua e a função mudar de concavidade em P.

Observação: se a curva tiver uma tangente em P ponto de inflexão, então a curva cruza sua tangente em P.

Mais uma aplicação:

Teorema (Teste da derivada segunda)

Suponha que f" seja contínua perto de c.

- Se f'(c) = 0 e f''(c) > 0 então f tem um mínimo local em c.
- ② Se f'(c) = 0 e f''(c) < 0 então f tem um máximo local em c.

Exercício

Encontre os valores de máximo e mínimo locais de f com o teste das derivadas primeira e depois o teste da derivada segunda, para

$$f(x) = \frac{x}{x^2 + 4}$$
, e depois $g(x) = x + \sqrt{1 - x}$.

Máximo e mínimo em dimensão 2 e 3

Definição

Uma função f(x,y) tem um máximo local em (a,b) se $f(x,y) \le f(a,b)$ para todo (x,y) perto de (a,b). O número f(a,b) é chamado valor máximo local.

Mínimo local: localmente $f(x,y) \ge f(a,b)$.

Definição

Uma função f(x,y) tem um máximo absoluto em (a,b) se $f(x,y) \le f(a,b)$ para todo (x,y) no domínio de f.

Condição necessaria para ter um máximo ou mínimo local

Teorema

Se f tem derivadas parciais f_x , f_y em (a,b) e (a,b) \acute{e} um máximo local ou mínimo local em (a,b) então $f_x(a,b)=0$ e $f_y(a,b)=0$.

Exercício

Mostre o teorema acima.

Ponto crítico:

Definição

Um ponto (a,b) tal que uma das derivadas f_x , f_y não existe, ou tal que as duas existem mas $f_x(a,b) = f_y(a,b) = 0$ é chamado um ponto crítico (ou estacionário).

Teorema do valor médio

Teorema

Seja f diferenciável num conjunto aberto $U \subset \mathbb{R}^2$, e P_0 , P_1 dois pontos de U tais que o segmento $[P_0P_1] \subset U$. Então existe um ponto $P_3 \in (P_0P_1)$ tal que

$$f(P_1) - f(P_0) = \nabla f(P_3) \cdot (P_1 - P_0).$$