SD1 Lista 2, (não é para entregar)

Sylvain Bonnot

Dinâmica topológica

Exercício 1. *Seja* $T: X \rightarrow X$ *uma aplicação.*

- (a) Mostre que para todo $A, B \subset X$ temos $A \cap T^n(B) = T^n(T^{-n}A \cap B)$.
- (b) mostre que $x \in X$ é errante se e somente se existe um aberto U de x tal que para todo $n \ge 1$ temos $U \cap T^{-n}(U) = \emptyset$.
- (c) se $T: X \to X$ é um homeomorfismo mostre que $\Omega(T^{-1}) = \Omega(T)$ (onde $\Omega(T)$ é o conjunto dos pontos não errantes.

Exercício 2. Mostre que o conjunto de pontos não errantes é fechado, é f –invariante, contém $\omega_f(x)$ para qualquer $x \in X$.

Exercício 3. Mostre que para toda sequência finita $(k_1,...,k_n)$ de inteiros k_i em $\{0,1,...,9\}$, existe um inteiro n > 0 tal que a representação decimal de 2^n começa com a sequência $(k_1,...,k_n)$.

Exercício 4. Mostre a existência de pontos não recorrentes e não eventualmente periódicos para $E_2: S^1 \to S^1$.

Exercício 5. Lembra que um subconjunto Y de X, fechado, $Y \neq \emptyset$, invariante (i.e $f(Y) \subset Y$) é chamado minimal para f se não existir um menor $Z \subset Y$ que seja não vazio, fechado, invariante. Seja agora X compacto e $f: X \to X$ contínua.

- (a) Mostre que $Y \subset X$ é minimal se e somente se $\omega_f(y) = Y$ para todo $y \in Y$.
- (b) Mostre que $Y \subset X$ é minimal se e somente se a órbita positiva de qualquer $y \in Y$ é densa em Y.

Exercício 6. Mostre que um homeomorfismo $f: X \to X$ é minimal (i.e X minimal para f) se e somente se para todo $U \subset X$ aberto não vazio, existe um $n \in \mathbb{N}$ tal que

$$\bigcup_{k=-n}^{k=n} f^k(U) = X.$$

Exercício 7. Mostre que um homeomorfismo f de um espaço métrico compacto X é minimal se e somente se para qualquer e > 0 existe um inteiro N = N(e) tal que para todo $x \in X$ o conjunto $\{x, f(x), \ldots, f^N(x)\}$ seja e-denso em X.

Lembra que um conjunto Z é ϵ -denso se para qualquer $x \in X$, a bola aberto de centro x e raio ϵ contem um ponto de Z.

Transitividade topológica

Exercício 8. Mostre que se X não possui pontos isolados e se a órbita $\mathcal{O}_f^+(x)$ é densa, então $\omega_f(x)$ é densa. Mostre com um exemplo que isso não é verdade se X tem pontos isolados.

Exercício 9. Mostre um exemplo de sistema com uma órbita inteira $\mathcal{O}_f(x_0)$ densa mas sem órbitas positivas $\mathcal{O}_f^+(x)$ densas.