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§6. Sheaves

In complex analysis one frequently has to deal with functions which have
various domains of definition. The notion of a sheaf gives a suitable formal
setting to handle this situation.

6.1. Definition. Suppose X is a topological space and T is the system of open
sets in X. A presheaf of abelian groups on X is a pair (&, p) consisting of

(i) a family & = (% (U))y. ¢ of abelian groups,
(ii) a family p = (p})y. v e 1, v <1y Of group homomorphisms

pv: F(U)—> F(V), where V is open in U,
with the following properties:
py =1idgq, forevery Ue T,

pwept=ph for WcVcl.

Remark. Generally one just writes & instead of (&, p). The homo-
morphisms p} are called restriction homomorphisms. Instead of pi( f) for
fe F(U) one writes just f | V. Analogous to presheaves of abelian groups
one can also define presheaves of vector spaces, rings, sets, etc.

6.2. Example. Suppose X is an arbitrary topological space. For any open
subset U < X let ¥(U) be the vector space of all continuous functions
f: U= C.For V < U let py: €(U) - €(V) be the usual restriction mapping.
Then (%, p) is a presheaf of vector spaces on X.

6.3. Definition. A presheaf # on a topological space X is called a sheaf if for
every open set U < X and every family of open subsets U; < U, i € I, such
that U= J;.; U; the following conditions, which we will call the Sheaf
Axioms, are satisfied:

(I) If £, g € #(U) are elements such that f |U; = g| U, for every i € I,
then f=g.
(IT) Given elements f; € #(U,), i € I, such that

f;lUi('\ U_i:f:r-lUiﬁ Uj fOralli,jEI,
then there exists an fe #(U) such that f | U; = f; for every i € I.
Remark. The element f, whose existence is assured by (II), is by (I)
uniquely determined.

Applying (I) and (II) to the case U = (F = | );. o U, implies () con-
sists of exactly one element.
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6.4. Examples

(a) For every topological space X the presheaf ¢ defined in (6.2) is a
sheaf. Both Sheaf Axioms (I) and (II) are trivially fulfilled.

(b) Suppose X is a Riemann surface and ()(U)is the ring of holomorphic
functions defined on the open set U < X. Taking the usual restriction map-
ping O(U)— O(V) for V < U one gets the sheaf ¢V of holomorphic functions
on X. The sheaf .# of meromorphic functions on X is defined analogously.

{(c) For an open subset U of a Riemann surface X let O*(U) be the
multiplicative group of all holomorphic maps f: U — C* With the usual
restriction maps O* is a sheaf of (multiplicative) abelian groups. The sheaf
A* is defined analogously: For any open set U < X, .#*(U) consists of all
meromorphic functions fe .#(U) which do not vanish identically on any
connected component of U.

(d) Suppose X is an arbitrary topological space and G is an abelian
group. Define a presheaf % on X as follows: For any non-empty open subset
Uc X let 4(U)=G and let () -=0. As for the restriction mappings, let
py =id¢ if V s @ and let p§; be the zero homomorphism. If G contains at
least two distinct elements g,, g, and if X has two disjoint non-empty open
subsets Uy, U,, then ¢ is not a sheaf. This is because Sheaf Axion (II) does
not hold. For, since U;n U,=(J, one has ¢,|U nU,=0=
g2|U, n U, but there isno f e (U, u U,) = G such that f | U, = g, and
f | Uy=9,.

(¢) One can easily modify the previous example to obtain a sheaf. For
any open set U, let Z(U) be the abelian group of all locally constant map-
pings g: U— G. Then if U i1s a non-empty connected open set, one has
G(U) = G.For V< U let §(U)— %(V) be the usual restriction. Then 7 is a
sheaf on X which is called the sheaf of locally constant functions with values
in G. Often it 1s just denoted by G.

6.5. The Stalk of a Presheaf. Suppose # is a presheaf of sets on a topological
space X and a € X is a point. On the disjoint union

| #(U),

U3a
where the union is taken over all the open neighborhoods U of a, introduce
an equivalence relation 5 as follows: Two elements f € #(U)and g € #(V)
are related f~ g precisely if there existsanopenset Wwithae Wc U n V
such that f | W = g|W. One can easily check that this really is an equi-
valence relation. The set &, of all equivalence classes, the so-called inductive
limit of #(U), is given by

7O (gro) =

and is called the stalk of & at the point a. If # is a presheaf of abelian groups
(resp. vector spaces, rings), then the stalk %, with the operation defined on
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the equivalence classes by means of the operation defined on representatives,
is also an abelian group (resp. vector space, ring).
For any open neighborhood U of g, let

pa: F(U)—> Z,

be the mapping which assigns to each element f € #(U)itsequivalence class
modulo . One calls p,(f) the germ of f at a. As an example consider the
sheaf @ of holomorphic functions on a domain X < C. Leta € X. A germ of
a holomorphic function ¢ € ( ,is represented by a holomorphic function in an
open neighborhood of g and thus has a Taylor series expansion ) @2,
¢,(z — a)’ with a positive radius of convergence. Two holomorphic functions
on neighborhoods of a determine the same germ at a precisely if they have
the same Taylor series expansion about a. Thus there is an isomorphism
between the stalk (7, and the ring C{z — a} of all convergent power series in
z — a with complex coefficients. In an analogous way, the ring .# , of gerins
of meromorphic functions at a is isomorphic to the ring of all convergent

Laurent series

Yefz—a)y, kez, ¢ €C,
=

which have fimte principal parts.
For any germ of a function ¢ € (7, the value of the function, ¢(a) € C, is
well-defined, i.e., is independent of the choice of representative.

6.6. Lemma. Suppose F is a sheaf of abelian groups on the topological space
X and U < X is an open subset. Then an element f € & (U) is zero precisely if
all germs p,(f) € #,, x € U, vanish.

This follows directly from Sheaf Axiom (I).

6.7. The Topological Space Associated to a Presheaf. Suppose X is a topolo-
gical space and # is a presheaf on X. Let

xeX

be the disjoint union of all the stalks. Denote by
p:|F|-X

the mapping which assigns to each element ¢ € %, the point x. Now intro-
duce a topology on | # | as follows: For any open subset U < X and an
element fe #(U), let

[U.f]:={pulf): x € U} < | #|.
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6.8. Theorem. The system B of all sets [U, f|, where U is open in X and
fe #(U), is a basis for a topology on | # |. The projection p: |F| > X isa
local homeomorphism.

PRrOOF
(2) To see that B forms a basis for a topology on |# |, one has to verify
the following two conditions:

(i) Every element ¢ € | # | is contained in at least one [U, f]. This is
trivial.

(ii) If p € [U, f] n [V, g], then there exists a [W, h] € B such that ¢ €
[W, k] <[U, f] [V, g]- For suppose p(¢)=x. Then xe U V and
o = p(f) = p.(g)- Hence there exists an open neighborhood W< U n V
of x such that f | W = g| W=:h. This implies ¢ € [W, h] < [U, f] n [V, g]-

(b) Now we will show that p: |#| — X is a local homeomorphism.
Suppose ¢ € |Z | and p(¢p) = x. There exists a [U, f]€ B with g € [U, f].
Then [U, f]is an open neighborhood of ¢ and U is an open neighborhood of
x. The mapping p|fU, f] - U is bijective and also continuous and open as
one sees immediately from the definition. Thus p: |# | - X is a local
homeomorphism. d

6.9. Definition. A presheaf # on a topological space X is said to satisfy the
Identity Theorem if the following holds. If Y < X i1s 2 domain and f
g € F(Y) are elements whose germs p,(f) and p,(g) coincide at a point
a€ Y, then f=g.

For example, this condition is satisfied by the sheaf @ (resp. .#) of holo-
morphic (resp. meromorphic) functions on a Riemann surface X.

6.10. Theorem. Suppose X is a locally connected Hausdorff space and F is a
presheaf on X which satisfies the Identity Theorem. Then the topological space
| # | is Hausdorff.

PROOF. Suppose ¢,, ¢, € | F | and ¢, # ¢,. We have to find disjoint neigh-
borhoods of ¢, and ¢,.

Case 1. Suppose p(¢;) =:x # y = p(¢p,). Since X is Hausdorff, there exist
disjoint neighborhoods U and V of x and y respectively. Then p~*(U) and
p~ (V) are disjoint neighborhoods of ¢, and ¢,, respectively.

Case 2. Suppose p(¢,) = p(¢,) = x. Suppose the germs ¢; € # , are re-
presented by elements f; € #(U;), where the U; are open neighborhoods of x,
i=1,2 Let Uc U; n U, be a connected open neighborhood of x. Then
[U, f;|U] are open neighborhoods of ¢;. Now suppose there exists i €
[U, iUl n [U, 2| U] Let p(y) = y. Then ¢ = p,(f1) = py(f2)- From the
Identity Theorem it follows that f; |U = f,|U, thus ¢, = ¢,. Contradiction!
Hence [U, f; | U] and [U, f, | U] are disjoint. O
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EXERCISES (§6)

6.1. Suppose X is a Riemann surface. For U < X open, let 2(U) be the vector space
of all bounded holomorphic functions f: U — C.For V < U let #(U) — %(V) be
the usual restriction map. Show that & is a presheaf which satisfies sheaf axiom
(I) but not sheaf axiom (II).

6.2. Suppose X is a Riemann surface. For U < X open, let
F(U)=0*(U)fexp €(U).

Show that % with the usual restriction maps is a presheaf which does not satisfy
sheaf axiom (I).

6.3. Suppose # is a presheaf on the topological space X and p: |#| — X is the
associated covering space. For U = X open, let #(U) be the space of all sections
of p over U, ie., the space of all continuous maps

U= |#|
with p o f=1d,. Prove the following:

(a) & together with the natural restriction maps is a sheaf,
(b) There is a natural isomorphism of the stalks

F.3F,, foreveryxeX.

§7. Analytic Continuation

Next we consider the construction of Riemann surfaces which arise from the
analytic continuation of germs of functions.

7.1. Definition. Suppose X is a Riemann surface, u: [0, 1] — X is a curve and
a=u(0), b :=u(1). The holomorphic function germ y € (7, is said to result
from the analytic continuation along the curve u of the holomorphic function
germ ¢ € O, if the following holds. There exists a family ¢, € €, t € [0, 1]
of function germs with ¢y = ¢ and ¢, =  with the property that for every
7 € [0, 1] there exists a neighborhood T < [0, 1] of 7, an open set U < X
with 4(T) < U and a function f € ¢(U) such that

Pun(f) = ¢, foreveryteT.

Here p,,(f) is the germ of fat the point u(t). Because of the compactness of
[0, 1] this condition is equivalent to the following (see Fig. 5). There exist a
partition O =t, <t, <---<t, , <t,=1 of the interval [0, 1], domains
U; =« X with u([t,-,, t;]) = U, and holomorphic functions f; € ¢(U;) for
i=1,..., nsuch that:

(i) @ is the germ of f; at the point a and y is the germ of £, at the point b.
(ii) f;|Vi=fis1|Vifor i=1, ..., n— 1, where V; denotes the connected
component of U; n U;, containing the point u(t;).



CHAPTER 2
Compact Riemann Surfaces

Amongst all Riemann surfaces the compact ones are especially important.
They arise, for example, as those covering surfaces of the Riemann sphere
defined by algebraic functions. As well their function theory is subject to
interesting restrictions, like the Riemann-Roch Theorem and Abel’s
Theorem. More recently the theory of Riemann surfaces has been gener-
alized to an extensive theory for complex manifolds of higher dimension.
And the methods developed for this are very well suited to proving the
classical theorems. One such method is sheaf cohomology and we give a
short introduction to this in the present chapter.

To a large extent Chapter 2 is independent of Chapter 1. Essentially only
§1 (the definition of Riemann surfaces), the first half of §6 (the definition of
sheaves) and §9 and 10 (differential forms) will be needed.

§12. Cohomology Groups

The goal of this section is to define the cohomology groups H'(X, %), where
& is a sheaf of abelian groups on a topological space X . In our further study
of Riemann surfaces, these cohomology groups play a very decided role.

12.1. Cochains, Cocycles, Coboundaries. Suppose X is a topological space
and # is a sheaf of abelian groups on X. Also suppose that an open covering
of X is given, i.e,, a2 family U = (U;);.,; of open subsets of X such that
(Jier Ui = X. For ¢ =0, 1, 2, ... define the gth cochain group of #, with
respect to U, as

Cq(u, g)’_) = H ‘g—‘;(Uio M- M Uiq)'

(i0s -, ig) e 4+ 1

96
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The elements of C(, .#) are called g-cochains. Thus a g-cochain is a family
(.fi(), vees i‘;,)io, ey Ig € Iq+ ! such that ﬁo, ey ig € f(Uio Mmoo M Uiq)

for all (iy,..., i) e ?"'. The addition of two cochains is defined
component-wise. Now define coboundary operators

d: C°'(U, #) - C'(U, F)
§: C'(U, #) - C*U, #)
as follows:
(i) For (f)icy € C°U, F) let 8((£)ic1) = (gijk, jer Where
gij=fi—fie F(U; n U;).

Here it is understood that one restricts f; and f; to the mtersection U; n U;
and then takes their difference.

(ii) For (fij), jer € C'QU, #) let 5((f;)) = (gin) where
Gije =Fi — [ +fi; € F(U; n U; n Uy

Again the terms on the right are restricted to their common domain of
definition U; n U; n U,.

These coboundary operators are group homomorphisms. Let
ZY (U, F)=Ker(C'(U, #) > C*(U, %)),

B'(U, #) =Im(C°(U, #) > C'(u, %)).
The elements of Z' (U, % ) are called I-cocycles. Thus by definition a 1-cochain
(fy;) e C*(U, #) is a cocycle precisely if
fl:k =_fij +fik on Ui M U_] M Uk (*)

for all i, j, k € I. One calls (*) the cocycle relation and it implies

fa=0, fiyy= 1y

One obtains these from (*) by letting i = j = k for the first and i = k for the
second.

The elements of B'(U, #) are called 1-coboundaries. In particular every
coboundary is a cocycle. A coboundary is also called a splitting cocycle.
Thus a 1-cocycle (f;;) € Z' (U, #) splits if and only if there is a 0-cochain
(g:) € C°(U, &) such that

fi=g:i—g; onU;n U; foreveryi,jel.

12.2. Definition. The quotient group
H'(U, #):=Z' (U, F)/B'(U, F)
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is called the 1st cohomology group with coefficients in .# with respect to the
covering U. Its elements are called cohomology classes and two cocycles
which belong to the same cohomology class are called cohomologous. Thus
two cocycles are cohomologous precisely if their difference is a coboundary.

The groups H!(l, &) depend on the covering U. In order to have coho-
mology groups which depend only on X and &, one has to use finer and
finer coverings and then take a limit. We shall now make this idea precise.

An open covering B = (V)i.x 18 called finer than the covering
U = (U;); .1, denoted B < U, ifevery ¥V, is contained in at least one U;. Thus
there is a mapping 7: K — I such that

W, < U, foreverykeK.
By means of the mapping 7 we can define a2 mapping
tu: Z'U, F) > Z(B, F)
in the following way. For (f;;) € Z'(U, #) let t3((f;;)) = (gis) where
Ga =fu alVi 0V, foreveryk lec K.

This mapping takes coboundaries intoc coboundaries and thus induces a
homomorphism of the cohomology groups H'(U, #)— H'(B, #), which
we also denote by .

12.3. Lemma. The mapping
ty: H'(U, #) > HY(B, #)
is independent of the choice of the refining mapping v: K — I.

PROOF. Suppose 7: K — I is another mapping such that V; < U, for every
k € K. Suppose (f;;) € Z'(U, #) and let

G =faa|lVe 0 Vi and  gy=fy alVin V.

We have to show that the cocycles (g,,) and (g,,) are cohomologous. Since
W < U, n U, one can define

e = fae al Vi € F (V).
On ¥, n V, one has
Ga — G = For, ot — fan, u
=foa thna —foa— fau
=fow —fa,u = — .

Thus the cocycle (g,,) — (g.) is a coboundary. O
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124. Lemma. The mapping
tg: H'QU, #)— HY(B, F)

is injective.

Proor. Suppose (f;;) e Z'(U, F) is a cocycle whose image in Z' (B, #)
splits. One has to show that ( f;;) itself splits.

Now suppose f, =g, —¢g; on V, n V;, where g, € #(V,). Then on
U; n V. n V; one has

9k — g1 :frk, = Jk, i +fi, Tl :fi, tl —”fi, ks

and thus f . + g = £ . + ¢;- Applying sheaf axiom II (see Definition (6.3))
to the family of open sets (U; n V), .k, One obtains h; € % (U;) such that

h=f,a+g onUn V.
With the elements h; found in this way, on U; n U; n ¥, one has

fi=fiatfoi=hhat o —fia—g=h—h

Since k is arbitrary, it follows from sheaf axiom I that this equation is valid
over U; n Uj, i.e, the cocycle (f;;) splits with respect to the covering U.

(1

12.5. The definition of H'(X, #). If one has three open coverings such that
W < B < U, then

15 o th = thy.

Thus one can define the following equivalence relation ~ on the disjoint
union of the H'(M, %), where U runs through all open coverings of X. Two
cohomology classes & e H'(U, #) and n e H' (W, #) are defined to be
equivalent, denoted & ~ 5, if there exists an open covering B with B < U
and B < W such that t5(¢) = ty (). The set of equivalence classes is the
so-called inductive limit of the cohomology groups H'(U, %) and is called
the 1st cohomology group of X with coefficients in the sheaf F. In symbols

(X, #) = lim H'(U, #) = (%) H(u, .gf))/~.

Addition in H'(X, #) is defined by means of representatives as follows.
Suppose the elements x, y € H'(X, &) are represented by ¢ € H'(U, %)
resp. # € H'(U', #). Let B be a common refinement of U and U’. Then
x+ye H(X, #) is defined to be the equivalence class of t5(¢) +
ty (1) € HY(B, F). One can easily check that this definition is independent
of the various choices made and makes H'(X, #) into an abelian group. If
& 1is a sheaf of vector spaces, then in a natural way H'(U, %) and H'(X, #)
are also vector spaces.
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From Lemma (12.4) it follows that for any open covering of X the canoni-
cal mapping

H'(U, F) > H'\(X, F)

is injective. In particular this implies that H'(X, #)=0 precisely if
H'(U, #) =0 for every open covering U of X.

12.6. Theorem. Suppose X is a Riemann surface and & is the sheaf of differen-
tiable functions on X. Then H'(X, &) = 0.

ProoF. We give the proof under the assumption that X has a countable
topology. However this assumption is always valid, see §23.

Suppose U = (U,);., is an arbitrary open covering of X. Then there is a
partition of unity subordinate to U, ie. a family (i;);., of functions
/; € &(X) with the following properties (cf. the Appendix):

(i) Supp(y) = U;.

(ii) Every point of X has a neighborhood meeting only finitely many of
the sets Supp(y;).

(iii) Ziel g = L.
We will show that H'(U, &) =0, i.e, every cocycle (f;) € Z (U, &) splits.
The function y; f;;, which is defined on U; n U;, may be differentiably
extended to all of U, by assigning it the value zero outside its support. Thus
it may be considered as an element of &(U;). Set

gi'= Z W fij-
jelI
Because of (ii), in a neighborhood of any point in U,, this sum has only
finitely many terms which are not zero and thus defines an element
gie &(Uy). Fori,jel
gi —g;= Z Y S — Z ‘.[’kfjk = Z lnbk(fik “fjk)

kel kel k

= ; Vil fa + fi5) = ; Vi fiy =1y
on U; n U; and thus (f;;) is a coboundary. 1

Remark. In exactly the same way one can show that on a Riemann surface
X the 1st cohomology groups with coefficients in the sheaves £, &1 0, £0-1
and &@ also vanish,

12.7. Theorem. Suppose X is a simply connected Riemann surface. Then

(a) HY(X,C)=0,
(b) H'(X, Z) =0.
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Here C (resp. Z) denotes the sheaf of locally constant functions with values
in the complex numbers (resp. integers), cf. (6.4.¢).

PROOF

(a) Suppose U is an open covering of X and (c;;) € Z'(U, C). Since
Z'U,C)<c 2!, &) and H'YU,&)=0, there exists a cochain
(f;) € C°(U, &) such that

cij:.fi -f_; o1l Uiﬁ Uj

But dc;; = 0 implies df; = df; on U; n U;, and thus there exists a global
differential form w € &"(X) such that o | U; = df;. Since ddf; = 0, it follows
that w is closed. Because X is simply connected, by (10.7) there exists
fe &(X) such that df = w. Set

¢; = ““fl U;.

Since d¢;=dfi—df=w—w=0 on U;, ¢ is locally constant, ie,
(¢;) e C°(U, C). On U; » Uj one has

ci=fi—fi=(i—f)-(fi—-fl=a—c,
and thus the cocycle (c;;) splits.
(b) Suppose (ay) € Z'(U, Z). By (a) there exists a cochain (¢;) € C°(U, C)
such that
aijCj-—Ck on Ujﬁ Uk'

Since exp(2miay) = 1, one has exp(2zic;) = exp(2ric,) on the intersection
U; n U,. Since X is connected, there exists a constant b € C* such that

b = exp(2ric;) for everyje I.
Choose ¢ € C such that exp(2nic) = b and let
a;'=c¢;— C.

Since exp(27nia;) = exp(2nic;)exp(—2nic) = 1, it follows that a; is an integer,
ie, (g;) € C°(U, Z). Moreover

ayp=¢;—=(¢;—c)— (G —¢c)=a;—a,
i.e., the cocycle (a;) lies in B'(U, Z). O

The next theorem shows that in certain cases one can calculate H' (X, #)
using only a single covering of X.

12.8. Theorem (Leray). Suppose F is a sheaf of abelian groups on the topologi-
cal space X and U= (U),.; is an open covering of X such that
HY(U;, #) =0 for every i € I. Then

H\(X, #) = H'\(UI, 7).

Such a U is called a Leray covering (of 1st order) for the sheaf #.
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PRrOOF. It suffices to show that, for every open covering B = (V,),. 4, with
B < U, the mapping ty: H'(U, F)— H'(B, #) is an isomorphism. From
(12.4) this mapping is injective.

Suppose 7: A — I is a refining mapping with ¥, c U_, for everya € A. To
prove the surjectivity of f3, we must show that given any cocycle
(fop) € Z'(B, F), there exists a cocycle (F;;) e Z'(QU, #) such that the
cocycle

(Fea, <) — (fop)

is cohomologous to zero relative to the covering 8. Now the family
(Ui n V)ee 4 is an open covering of U; which we denote by U; n 8. By
assumption H'(U; n B, #) =0, i.e, there exist g;,, € #(U; n V,) such that

fap';gia_gm onU;n ¥V, n V.
Now on the intersection U; n U; n ¥, n V; one has
Gju — Gia = YGjp — YGip
and thus by sheaf axiom II there exist elements F;; € # (U, n U;) such that
Fii=0w—09w onU;nU;n V..

Clearly, (F;;) satisfies the cocycle relation and thus lies in Z'(U, ). Let
h, =G «| Vo € F(V,). Then on ¥V, n V; one has

Ftaz, B _ft;tﬂ = (gtﬁ,a — Gz, a) - (gtﬁ,a - grﬁ,ﬁ)
=Y9p.p — Yra,a = hﬁ - haa

and thus (F,, .;) — (f.p) splits. O

12.9. Example. As an application of Leray’s Theorem, we will show
H\(C* 2)=1Z.

Let U, =C*\R_ and U, =C*\R, , where R, and R_ denote the positive
and negative real axes respectively. Then U = (U,, U,) is an open covering
of C* By (12.7) H'(U;, Z) =0 since U; is star-shaped and thus simply
connected. Thus H'(C*, Z) = H'(U, Z).

Since any cocycle (g;) € Z'(U, Z) is alternating, ie, a; =0 and
a; = —aj, it is completely determined by a;, and thus Z'(U, Z) >~
Z(U; n U,). But the intersection U; n U, has two connected components,
namely the upper and lower half planes, and thus Z(U, n U,) = Z x Z.
Since U, is connected, Z(U;) = Z and hence C°(U, Z) = Z x Z. The coboun-
dary operator 6: C°Q, Z) » Z'(U, Z) is given with respect to these isomor-
phisms by

Z X Z —> Z x Z, (bl’ bz)l—')(bz - bl’ b2 - bl)‘
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Thus the coboundaries are exactly the subgroup B < Z x Z of those ele-
ments (a,, a,) with a; = a,. Hence H'(U, Z) =~ Z x Z/B = 7.

Similarly one can show H'(C*, C) =~ C.

12.10. The Zeroth Cohomology Group. Suppose # is a sheaf of abelian
groups on the topological space X and M = (U;);., is an open covering of X.
Set

Z°(U, ) =Ker(C°(, #) % C'(U, %)),

B°(U, #) =0,

HOU, %) =Z°(U, F)/B°(U, F) = Z°(U, F).
From the definition of & it follows that a O-cochain ( f;) € C°(U, &) belongs
to Z°(U, F) precisely if ;| U; n U; = f;| U; n U, for every i, j € I. By sheaf

axiom II the elements f; piece together to give a global element f € % (X ) and
there is a natural isomorphism

HU, #) = Z°U, #) =~ F(X).

Thus the groups H°(U, #) are entirely independent of the covering M and
one can define

HY(X, 7)== F(X).

EXERCISES (§12)

12.1. Suppose p;, ..., p, are distinct points of C and let

X ‘=C\{p1, seey pn}'
Prove

HY(X, 2)~ 7"

[Hint: Construct a covering U = (U, U,) of X such that U, and U, are
connected and simply connected and U, n U, has n+ 1 connected
components. |

12.2, (a) Let X be a manifold, U = X open and V € U. Show that ¥ meets only a
finite number of connected components of U.
(b) Let X be a compact manifold and U = (U;);.;, B = (Vi)ie; be two finite
open coverings of X such that V; € U; for every i € I. Prove that

Im(Z!(U, C) > Z\(%B, C))

is a finite-dimensional vector space.
{c) Let X be a compact Riemann surface. Prove that H!(X, C) is a finite-
dimensional vector space.
[Hint: Use finite coverings U = (U;), B = (V;) of X with V; € Uy, such that all
the U; and V; are isomorphic to disks.]
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12.3. (a) Let X be a compact Riemann surface. Prove that the map
H'(X, Z) - H'(X, C),

induced by the inclusion Z < C, is injective.
(b) Let X be a compact Riemann surface. Show that H'(X, Z) is a finitely
generated free Z-module.
[Hint: Show first, as in Ex. 12.2.c), that H'(X, Z) is finitely generated and then
use 12.3.a) to prove that H'(X, 7} is free.]

§13. Dolbeault’s Lemma

In this section we solve the inhomogeneous Cauchy-Riemann differential
equation (Jf/0z) = g, where g is a given differentiable function on the disk X .
This is then used to show that the cohomology group H!(X, () vanishes.

13.1. Lemma. Suppose g € &(C) has compact support. Then there exists a
function f € &(C) such that
of
A

Prook. Define the function f: C — C by

_ 1 orrgl) .
@)= o _"Uz 7 dz ndz.
Since the integrand has a singularity when z = {, one has to show that the
integral exists and depends differentiably on {. The simplest way to do this is
to change variables by translation and then introduce polar coordinatesr, 6,
namely let
z="{ + re®.

With regard to the integration { is a constant and one has

dz Adz = —2i dx ndy = —2ir dr nd0.
Thus
_ Lrg(C + re®)
f)=— Ejj“eie r dr df

¥

-1 ” g( + re'®)e dr db.

T

Since g has compact support, one has only to integrate over a rectangle
0 <r <R, 0<0<2n, provided R is chosen sufficiently large. One may
differentiate under the integral sign, i.e., fe &(C) and

Sy _Li09€+re)
afg((:) = n '”' az. e dr do.
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Changing back to the original coordinates, one has

gl +2) 1
a (C) 2m S B” o

€

ddz

where B, '={z € C: & < |z| <R}. Since

egl+2)1 _og(+2)1 _ﬁ(g(CJrz)
oz iz z 0z z )

for z # 0, one has

aZ(C) 2 =1

&0

ﬂaz(g(“z)) dz ndz = — tim ([ do,

z 0 3

'E

where the differential form  is given by

i gl + z)
2mi z

w(z) =
(here one considers z as a variable and { as a constant). By Stokes” Theorem

(C)—-—llm ”dw:—lim( w‘:lim[ .

e—0 7 B, £>0 “8B; =0 “|z|=¢

Parametrizing the circle |z| =& by z = e®, 0 < 6 < 2n, one gets
2

1 .
(g) = lim = [ g(C + &) d0.
&0 2n T-o
Now the integral gives the average value of the function g over the circle
{ + ee* for 0 < # < 2. Since g is continuous, this converges to g({) as e — 0,
1€,

Z0=00 .

The next theorem shows that one may drop the assumption that g has
compact support.

13.2. Theorem. Suppose X ={ze C: |z| <R}, 0 <R < o, and g € £(X).
Then there exists [ € &(X) such that
of

i

This theorem is a special case of the so-called Dolbeault Lemma in
several complex variables, see [32].
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PRrOOF. In this case a solution cannot simply be given as an integral as in
(13.1), for the integral will not converge in general. For this reason we use an
exhaustion process which allows (13.1) to be applied in the present setting.

Suppose 0 < Ry < R; <--- <R, is a sequence of radii such that
lim,., R, = R and set

X,={zeC: |z| <R}

There exist functions , € &(X) with compact supports Supp(y,,) < X, 4,
and ,| X, = 1. The functions y, g vanish outside X, ,, and thus if one

extends them by zero, they become functions on C. By (13.1) there exist
functions f, € £(X) such that

of, =y,g on X.

Here and in the following we use the abbreviation 0 = (8/0z).
By induction we alter the sequence (f,) to another sequence (f;), which
for all n > 1 satisfies

(i) of,=g onkX,,
(i) | fosr —Fllx,, <27

(As usual let ||f|lx=supxek | f(x)| denote the supremum norm.) Set
fi ==f;. Suppose f}, ..., f, are already constructed. Then

E(fn+1 —f;) =0 on Xna

and thus f,, , — f, is holomorphic on X . Hence there exists a polynomial P
(e.g., 2 finite number of terms of the Taylor series of f,,; — f,) such that

| fovs =fo = Plix,o, <277

If we set f,,, ==f,,1 — P, then (ii) is satisfied. Moreover, on X, one has

5];1+1 = 5fn+1 — 0P = 5.fn+1 =Yu+19 =6
i.e, (i) also holds. Since every point z € X is contained in almost all X, the
limit
£(2)=tim £,(z)

exists. On X, one may write

f=fit X (e =i
k=n
For k>n, the functions f,,, —f, are holomorphic on X,, since

O(fur1 —fi) =0.

Because of (ii), the series

2 ];c+1 "ﬁ
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converges uniformly on X, and is thus holomorphic there. Hence f = f, + F,
is infinitely differentiably on X, for every n and thus f € £(X). As well

of=2df,=g onkX,
for every n and thus df = g on all of X. .

Remark. Naturally the solution of the equation df = g is not uniquely
determined, only up to the addition of an arbitrary holomorphic function.

13.3. Corollary. Suppose X ={z € C: |z| < R}, 0 < R < o0. Then given any
g € &(X), there exists f e &(X) such that Af =g.
Here
ot o*

— —4
Aty e

is the Laplace operator.

Proor. Choose f; € &(X) such that df; = g and f, € &(X) such that df, = f;.
Then f:=1f, satisfies Af = g, for

&, a(afz) g(afz)_afl

N=0% "o\ o

oz

ez 7 L]

134. Theorem. Suppose X :={zeC:|z| <R}, O0<R<oo. Then
HY(X, ) = 0.

PROOF. Suppose U = (U;) is an open covering of X and (f;;) € Z'(U, O)isa
cocycle. Since Z'(U, O) = Z'(U, &) and H(X, &) = 0, there exists 2 cochain
(9:) € C°(U, &) such that

fi=g—g; onU;n U;.

Since df;; = 0, one has dg; = dg; on U; n U; and thus there exists a global
function h e &(X)} with h| U, =3dg;. By (13.2) we can find a function
g € &(X) such that dg = h. Define

fi=agi—g.

Now f; is holomorphic, since df; = dg; — dg = 0, and thus (f;) e C°(U, O). As
well on U; n U, one has

fi—fi=a-—9;=Ff;
i.e, the cocycle (f;) splits. O

13.5. Theorem. For the Riemann sphere H'(P!, ¢0) = 0.
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PROOF. Set U, == P'\co and U, == P'\0. Since U; = C and U, is biholomor-
phic to C, it follows from (13.4) that H*(U;, @) = 0. Thus U = (U,, U,)isa
Leray covering of P! and H'(P!, ¢0) = H' (U, V) by (12.8). Thus the proofis
complete once one shows that every cocycle (f;;) € Z'(U, 0) splits. In order
to do this, it is clearly enough to find functions f; € ((U;) such that

fiz=fi—f;, onU;, nU,=C*
Let

fl2(z)=: :z_: ann

be the Laurent expansion of f;, on C*. Set

A0 Y e and fild)=— 3 e

n=—-o

Then f; € O(U;) and f; — f, = fi,. U

Exercisks (§13)

13.1. Let X ={z € C: |z| < R}, where 0 < R < co. Denote by # the sheaf of har-
monic functions on X, ie.

#(U)={f: U—- C:fis harmonic}
for U = X open. Prove
HY(X, o) = 0.

13.2. (a) Show that U = (P'\co, P'\0) is a Leray covering for the sheaf Q of holo-
morphic 1-forms on P!,
(b) Prove that

HY(P', Q)~ H'(U,Q)=C
and that the cohomology class of

Eizi € Q(Ul m Uz)g Zl(u, Q)

is a basis of H'(P!, Q).

13.3. Suppose g € &£(C) is a function with compact support. Prove that there is a
solution f € &(C) of the equation

of
%—9

having compact support if and only if

“ z2"g(z) dzndz =0 foreveryneN.
C



